

КОНФИГУРАЦИЯ FLOW MONITOR

Коммутатор агрегации

СЕРИЯ QSW-8400

Оглавление

1 КОНФИГУРИРОВАНИЕ ЗЕРКАЛИРОВАНИЯ ПОРТОВ	3
1.1 Введение в зеркалирование портов	3
1.2 Настройка зеркалирования	3
1.3 Пример эксплуатации MRPP	4
1.4 Поиск неисправностей зеркалирования портов	4
2 КОНФИГУРИРОВАНИЕ RSPAN	5
2.1 Введение в RSPAN	5
2.2 Настройка RSPAN	6
2.3 Пример использования RSPAN	7
2.4 Поиск неисправностей RSPAN	10
З КОНФИГУРИРОВАНИЕ SFLOW	11
3.1 Введение в sFlow	11
3.2 Настройка sFlow	11
3.3 Примеры sFlow	13
3.4 Поиск неисправностей sFlow	14

1 КОНФИГУРИРОВАНИЕ ЗЕРКАЛИРОВАНИЯ ПОРТОВ

1.1 Введение в зеркалирование портов

Функция зеркалирования включает в себя зеркалирование портов и зеркалирование потоков. Зеркалирование портов представляет собой дублирование кадров данных, посылаемых/принимаемых одним портом, на другом порту. Дублированный порт — это порт-источник зеркального порта, дублирующий его порт — это зеркальный порт (порт назначения). К зеркальному порту обычно подключают анализатор протоколов (например, Sniffer) или средства мониторинга RMON, осуществляющие мониторинг, диагностику и управление сетью.

При зеркалирование потоков коммутатор точно копирует полученные пакеты или передаваемые в рамках правил от одного порта к другому. Эффективность зеркалирования потоков возможна в случае задания специальных правил.

Шасси поддерживает до 4 зеркалированных портов пункта назначения, каждая карта шасси допускает зеркалированный порт-источник или порт назначения для зеркалированной сессии.

В настоящее время каждый коммутатор может устанавливать множество зеркалированных сессий. Число портов-источников для зеркального порта не ограничено, может использоваться как один порт, так и несколько. Порты-источники могут принадлежать как одной и той же VLAN, так и разным VLAN. Порт назначения и порты-источники могут принадлежать разным VLAN.

1.2 Настройка зеркалирования

1. Настройка порта назначения для зеркалирования.

Команда	Описание
Общий режим	
monitor session <i><session></session></i> destination interface <i><interface-number></interface-number></i> no monitor session <i><session></session></i> destination interface <i><interface-number></interface-number></i>	Позволяет задать зеркальный порт— порт назначения. Команда по удаляет зеркальный порт.

2. Настройка порта-источника для зеркалирования.

Команда	Описание
Общий режим	

1.3 Пример эксплуатации MRPP

Конфигурация следующая: для мониторинга на интерфейсе 1/1/1 фреймы с данными рассылаются интерфейсом 1/3/1 и получаются интерфейсом 1/2/3 и интерфейсом 1/4/3, далее ищется совпадение с правилом 120 (IP-адрес источника 1.2.3.4 и IP-адрес назначения 5.6.7.8).

- 1. Настройте интерфейс 1/1/1 как интерфейс зеркалирования пункта назначения.
- 2. Настройте интерфейс 1/2/3 как интерфейс входящего потока и интерфейс 1/3/1 как интерфейс исходящего потока для источника зеркалирования.

Шаги конфигурации следующие:

Switch(config)#monitor session 1 destination interface ethernet 1/1/1 Switch(config)#monitor session 1 source interface ethernet 1/2/3 rx Switch(config)#monitor session 1 source interface ethernet 1/3/1 tx

1.4 Поиск неисправностей зеркалирования портов

Если при настройке зеркалирования портов возникли проблемы, в первую очередь проверьте следующее:

- Не входит ли зеркальный порт в транк-группу; если да, то измените транк-группу.
- Если пропускная способность зеркального порта меньше суммарной пропускной способности зеркалируемых портов-источников, то зеркальный порт не сможет дублировать весь трафик портов-источников. Уменьшите число портовисточников, дублируйте трафик только одного направления, либо выберите в качестве зеркального порт с большей пропускной способностью.

2 КОНФИГУРИРОВАНИЕ RSPAN

2.1 Введение в RSPAN

Зеркалирование портов связано с дублированием фреймов данных, получаемых и посылаемых одним портом другому. Дублируемый порт связан с портом-источником зеркалирования, а дублирующий порт связан с портом назначения зеркалирования. Данная схема более удобна для сетевого администратора для слежения за сетью и управления ею, а также для выполнения диагностики после настройки функции зеркалирования, используемой только для портов-источников и портов назначения одного коммутатора.

5

RSPAN (Remote Switched Port Analyzer) связан с удалённым зеркалированием портом и устраняет ограничения расположения порта-источника и порта назначения на одном и том же коммутаторе. Эта функция делает возможным размещение на разных коммутаторах для порта источника и порта назначения и облегчает сетевому администратору управление удаленными коммутаторами. Однако данная функция не может переадресовывать транспортные потоки на удаленных зеркалированных сетях VLAN.

Существует три типа коммутаторов с активированной функцией RSPAN:

- Коммутатор-источник коммутатор, которому принадлежат наблюдаемые порты. Коммутатор-источник копирует зеркалируемый трафик в удалённую сеть VLAN, далее через уровень 2 переадресует трафик на промежуточный коммутатор или коммутатор пункта назначения.
- Промежуточный коммутатор находится между коммутатором-источником и коммутатором пункта назначения и занимается пересылкой трафика далее на промежуточный коммутатор или на коммутатор пункта назначения. Также трафик может быть переадресован без участия промежуточного коммутатора при наличии прямого соединения между коммутаторами источника и назначения.
- Коммутатор пункта назначения коммутатор, куда приходит переадресованный трафик.

Во время настройки RSPAN на коммутаторе-источнике для порта может быть выбран режим рефлектора (reflector port mode) или зеркалирования порта назначения (destination mirror port mode). Коммутатор пункта назначения перенаправит все фреймы с данными в сеть RSPAN VLAN или на RSPAN-порт назначения. Для RSPAN зеркалирования может быть выбран обычный режим или расширенный режим, обычный режим назначен по умолчанию и подходит для большинства пользователей. Расширенный режим более предназначен для опытных администраторов и включает настройку перенаправления фреймов в RSPAN VLAN и на RSPAN-порт назначения, промежуточный коммутатор и коммутатор назначения должны поддерживать перенаправление потоков. Обычный режим позволяет настраивать RSPAN-порт назначения в RSPAN VLAN. Таким образом, дейтаграммы в RSPAN VLAN будут доставлены на порт назначения. В данном режиме порт назначения должен быть в RSPAN VLAN, и на порту-источнике не должен быть настроен контроль широковещательного шторма. Транк-порты настраиваются

осторожно, чтобы исключить возможность пересылки RSPAN дейтаграмм во внешнюю сеть. Обычный режим имеет преимущества быстрой конфигурации, а также уменьшения использования аппаратных ресурсов. При использовании обычного режима дейтаграммы с зарезервированными МАС-адресами не могут использоваться при широковещании.

6

2.2 Настройка RSPAN

1. Настройка RSPAN VLAN

Команда	Описание	
Режим конфигурации VLAN		
remote-span no remote-span	Позволяет настроить указанную VLAN как RSPAN VLAN. Команда по удаляет заданные настройки.	

2. Настройка порта-источника зеркалирования.

Команда	Описание
Общий режим	
monitor session <i><session></session></i> source {interface <i><interface-list></interface-list></i> } {rx tx both} no monitor session <i><session></session></i> source {interface <i><interface-list></interface-list></i> }	Позволяет задать порт-источник для зеркального порта. Команда по удаляет порт-источник для зеркального порта.

3. Настройка порта назначения для зеркалирования.

Команда	Описание
Общий режим	
monitor session < <i>session></i> destination interface < <i>interface-number></i> no monitor session < <i>session></i> destination interface < <i>interface-number></i>	Позволяет задать зеркальный порт— порт назначения. Команда по удаляет зеркальный порт.

4. Настройка порта-рефлектора.

Конфигурация Flow Monitor

2. Конфигурирование RSPAN

Команда	Описание
Общий режим	
monitor session <session> reflector-port <interface-number> no monitor session <session> reflector-port</session></interface-number></session>	Позволяет задать порт-рефлектор. Команда no удаляет порт.

5. Настройка удалённой VLAN группы зеркалирования.

Команда	Описание
Общий режим	
monitor session <i><session></session></i> remote vlan <i><vid></vid></i> no monitor session <session> remote vlan</session>	Позволяет задать удалённой VLAN группы зеркалирования. Команда по удаляет заданную VLAN.

2.3 Пример использования RSPAN

Используя RSPAN, системные администраторы могут быстро и эффективно управлять сетью и отслеживать её состояние. На рисунке ниже показан пример применения RSPAN.

Два конфигурационных решения могут быть выбраны для RSPAN: первая без применения порта-рефлектора, и вторая - с применением. В первой конфигурации только один фиксированный порт может быть связан с промежуточным коммутатором. Однако нет необходимости конфигурировать порт-рефлектор. Во второй конфигурации порт, соединённый с промежуточным коммутатором, не является фиксированным. Широковещание дейтаграмм может осуществляться в RSPAN VLAN через loopback.

Шаги конфигурации следующие:

Решение 1

Коммутатор-источник:

- ✤ Ethernet-интерфейс 1/1/1 порт-источник для зеркалирования.
- ◆ Ethernet-интерфейс 1/1/2 порт назначения, соединённый с промежуточным коммутатором.

8

✤ RSPAN VLAN – 5.

```
Switch(config) #vlan 5
Switch (Config-Vlan5) #remote-span
Switch (Config-Vlan5) #exit
Switch (config) #interface ethernet 1/1/2
Switch(Config-If-Ethernet1/1/2)#switchport mode trunk
Switch(Config-If-Ethernet1/1/2)#exit
Switch (config) #monitor session 1 source interface ethernet1/1/1 rx
Switch (config) #monitor session 1 destination interface ethernet1/1/2
Switch(config) #monitor session 1 remote vlan 5
```

Промежуточный коммутатор:

- ◆ Ethernet-интерфейс 1/2/2 порт-источник, связанный с портом коммутатораисточника.
- ◆ Ethernet-интерфейс 1/2/3 порт назначения, соединённый с промежуточным коммутатором. Нативная VLAN этого порта не может быть сконфигурирована как RSPAN VLAN.
- ✤ RSPAN VLAN 5.

```
Switch(config) #vlan 5
Switch (Config-Vlan5) #remote-span
Switch (Config-Vlan5) #exit
Switch (config) #interface ethernet 1/2/2-3
Switch(Config-If-Port-Range)#switchport mode trunk
Switch (Config-If-Port-Range) #exit
```

Коммутатор назначения:

- Ethernet-интерфейс 1/3/1 порт-источник, связанный с портом коммутатораисточника.
- Еthernet-интерфейс 1/3/2 порт назначения, соединённый с монитором. Данный порт должен быть сконфигурирован как порт доступа, принадлежащий RSPAN VLAN.
- ✤ RSPAN VLAN 5.

```
Switch(config) #vlan 5
Switch (Config-Vlan5) #remote-span
Switch (Config-Vlan5) #exit
Switch(config) #interface ethernet 1/3/1
```


Конфигурация Flow Monitor 2. Конфигурирование RSPAN

Switch(Config-If-Ethernet1/3/1)#switchport mode trunk Switch(Config-If-Ethernet1/3/1)#exit Switch(config) #interface ethernet 1/3/2 Switch(Config-If-Ethernet1/3/2)#switchport access vlan 5 Switch (Config-If-Ethernet1/3/2) #exit

Решение 2

Коммутатор-источник:

- ✤ Ethernet-интерфейс 1/1/1 порт-источник.
- ✤ Ethernet-интерфейс 1/1/2 транк-порт, соединённый с промежуточным коммутатором. Нативная VLAN этого порта не может быть сконфигурирована как RSPAN VLAN.

9

- ✤ Ethernet-интерфейс 1/1/3 порт-рефлектор, принадлежащий RSPAN VLAN и являющийся портом доступа или транк-портом.
- ✤ RSPAN VLAN 5.

```
Switch(config) #vlan 5
Switch (Config-Vlan5) #remote-span
Switch (Config-Vlan5) #exit
Switch(config) #interface ethernet1/1/2
Switch(Config-If-Ethernet1/1/2)#switchport mode trunk
Switch(Config-If-Ethernet1/1/2)#exit
Switch (config) #interface ethernet 1/1/3
Switch(Config-If-Ethernet1/1/3)#switchport mode trunk
Switch(Config-If-Ethernet1/1/3) #exit
Switch (config) #monitor session 1 source interface ethernet1/1/1 rx
Switch (config) #monitor session 1 reflector-port ethernet1/1/3
Switch(config) #monitor session 1 remote vlan 5
```

Промежуточный коммутатор:

- Ethernet-интерфейс 1/2/2 порт-источник, связанный с портом коммутатораисточника.
- ◆ Ethernet-интерфейс 1/2/3 порт назначения, соединённый с коммутатором назначения. Нативная VLAN этого порта не может быть сконфигурирована как RSPAN VLAN.
- ✤ RSPAN VLAN 5.

```
Switch(config)#vlan 5
Switch (Config-Vlan5) #remote-span
Switch (Config-Vlan5) #exit
Switch(config)#interface ethernet 1/2/2-3
Switch(Config-If-Port-Range)#switchport mode trunk
Switch (Config-If-Port-Range) #exit
```

Коммутатор назначения:

Конфигурация Flow Monitor 2. Конфигурирование RSPAN

- Ethernet-интерфейс 1/3/1 порт-источник, связанный с портом коммутатораисточника.
- Ethernet-интерфейс 1/3/2 порт назначения, соединённый с монитором. Данный порт должен быть сконфигурирован как порт доступа, принадлежащий RSPAN VLAN.
- ✤ RSPAN VLAN 5.

```
Switch(config)#vlan 5
Switch(Config-Vlan5)#remote-span
Switch(Config-Vlan5)#exit
Switch(config)#interface ethernet 1/3/1
Switch(Config-If-Ethernet1/3/1)#switchport mode trunk
Switch(Config-If-Ethernet1/3/1)#exit
Switch(config)#interface ethernet 1/3/2
Switch(Config-If-Ethernet1/3/2)#switchport access vlan 5
Switch(Config-If-Ethernet1/3/2)#exit
```

2.4 Поиск неисправностей RSPAN

Если RSPAN работает некорректно, проверьте следующие причины:

- Порт назначения может быть частью группы Port-channel, проверьте конфигурацию данной группы.
- Пропускная способность порта назначения меньше, чем общая пропускная способность портов-источников. Если это так, порт назначения не может принять дейтаграммы от всех портов-источников. Уменьшите количество портовисточников, либо настройте зеркалирование на одно направления потока данных, либо выберите порт назначения с большей пропускной способностью.
- Между коммутатором-источником и промежуточным коммутатором нативная VLAN транк-портов может быть сконфигурирована как RSPAN VLAN. Проверьте данную конфигурацию и исправьте при необходимости.

3 КОНФИГУРИРОВАНИЕ SFLOW

3.1 Введение в sFlow

Протокол sFlow (RFC 3176) основан на стандартном сетевом экспорте и используется для мониторинга сетевого трафика. Отслеживаемый коммутатор или маршрутизатор посылает статистику на клиент-анализатор, который выполняет анализ данных в соответствии с требованиями пользователя для мониторинга сети.

Система мониторинга включает в себя sFlow-прокси, центральный коллектор данных и sFlow-анализатор. sFlow-прокси собирает данные с коммутатора, центральный коллектор форматирует выборочные статистические данные для перенаправления на sFlowанализатор, который производит анализ данных и выполняет соответствующие результату действия. Наш коммутатор выступает в роли прокси и центрального коллектора для sFlow-системы. Выборочная статистика включает в себя IPv4 и IPv6 пакеты.

3.2 Настройка sFlow

1. Настройка IP-адреса коллектора.

Команда	Описание
Общий режим и режим конфигурации порта	
sflow destination <i><collector-addres< i=""> [<i><collector-port< i="">>] no sflow destination</collector-port<></i></collector-addres<></i>	Позволяет задать IP-адрес и номер порта хоста, на котором установлено ПО sFlow. Если IP-адрес настроен для порта, то должен применяться режим конфигурации порта, в других случаях – общий режим. Команда по удаляет заданные настройки.

2. Настройка IP-адреса sFlow-прокси.

Команда	Описание
Общий режим	
sflow agent-address <collector-address></collector-address>	Позволяет задать IP-адрес sFlow-прокси.
no sflow agent-address	Команда по удаляет заданные настройки.

3. Настройка приоритета sFlow.

Конфигурация Flow Monitor **3**. Конфигурирование sFlow

Команда	Описание	
Общий режим		
sflow priority <i><priority-vlaue></priority-vlaue></i> no sflow priority	Позволяет приоритет, когда sFlow получает пакеты от аппаратной части. Команда по удаляет заданные настройки.	

4. Настройка длины заголовка пакета, копируемого sFlow.

Команда	Описание
Режим конфигурации порта	
sflow header-len <i><length-vlaue></length-vlaue></i> no sflow header-len	Позволяет задать длину заголовка пакета, копируемого sFlow. Команда по удаляет заданные настройки.

5. Настройка максимальной длины заголовка sFlow-пакета.

Команда	Описание	
Режим конфигурации порта		
sflow data-len <i><length-vlaue></length-vlaue></i> no sflow data-len	Позволяет задать максимальную длину заголовка sFlow-пакета. Команда по удаляет заданные настройки.	

6. Настройка значения частоты дискретизации.

Команда	Описание	
Режим конфигурации порта		
sflow rate {input < <i>input-rate></i> output < <i>output-rate</i> >} no sflow rate [input output]	Позволяет задать значение частоты дискретизации для сбора статистики sFlow на аппаратном уровне. Команда по удаляет заданные настройки.	

7. Настройка интервала сбора статистики.

Конфигурация Flow Monitor **3**. Конфигурирование sFlow

Команда	Описание	
Режим конфигурации порта		
sflow counter-interval <i><interval-vlaue></interval-vlaue></i> no sflow counter-interval	Позволяет задать интервал сбора статистики sFlow. Команда no удаляет заданные настройки.	

8. Настройка анализатора, используемого sFlow.

Команда	Описание	
Общий режим		
sflow analyzer sflowtrend no sflow analyzer sflowtrend	Позволяет настроить анализатор, используемый sFlow. Команда по удаляет заданные настройки.	

3.3 Примеры sFlow

Как показано на рисунке выше, функция sFlow активирована на портах 1/1/1 и 1/1/2 коммутатора. ПО sFlow установлено на ПК с IP-адресом 192.168.1.200. Адрес интерфейса уровня 3 на коммутаторе Switch A 192.168.1.100. Loopback-интерфейс с адресом 10.1.144.2 настроен на коммутаторе Switch A.

Шаги конфигурации следующие:

```
Switch#config
Switch (config)#sflow ageng-address 10.1.144.2
Switch (config)#sflow destination 192.168.1.200
Switch (config)#sflow priority 1
Switch (config)# interface ethernet1/1/1
Switch (Config-If-Ethernet1/1/1)#sflow rate input 10000
Switch (Config-If-Ethernet1/1/1)#sflow rate output 10000
Switch (Config-If-Ethernet1/1/1)#sflow counter-interval 20
Switch (config)# interface ethernet1/1/2
Switch (config)# interface ethernet1/1/2
```


13

Конфигурация Flow Monitor **3**. Конфигурирование sFlow

```
Switch (Config-If-Ethernet1/1/2)#sflow rate output 20000
Switch (Config-If-Ethernet1/1/2)#sflow counter-interval 40
```

3.4 Поиск неисправностей sFlow

Если sFlow работает некорректно, проверьте следующие причины:

- Убедитесь, что присутствует физическое соединение.
- Убедитесь в корректности адреса sFlow-анализатора, настроенного в общем режиме или режиме конфигурации порта.
- Если необходим сбор статистики по трафику, должна быть сконфигурирована частота дискретизации на интерфейсе.
- Если необходим общий сбор статистики, должен быть сконфигурирован интервал сбора статистики на интерфейсе.

