

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ



# **IP Address & Application Configuration**



| Руководство пользователя<br>1. Configuring IP Addresses and Services2 |    |
|-----------------------------------------------------------------------|----|
| Оглавление                                                            |    |
| 1. CONFIGURING IP ADDRESSES AND SERVICES                              | 5  |
| 1.1. Overview                                                         | 5  |
| 1.2. Applications                                                     | 5  |
| 1.2.1 Configuring an IP Address for Communication                     | 5  |
| 1.3. Features                                                         | 6  |
| 1.3.1. IP Address                                                     | 9  |
| 1.3.2. Broadcast Packet Processing                                    | 11 |
| 1.3.3. Sending ICMP Packets                                           | 12 |
| 1.3.4. Limiting Transmission Rate of ICMP Error Packets               | 13 |
| 1.3.5. IP MTU                                                         | 14 |
| 1.4. IP TTL                                                           | 14 |
| 1.4.1. IP Source Route                                                | 14 |
| 1.4.2. IP Address Pool                                                | 15 |
| 1.5. Configuration                                                    | 15 |
| 1.5.1. Configuring the IP Addresses of an Interface                   | 17 |
| 1.5.2. Configuring Broadcast Forwarding                               | 20 |
| 1.5.3. Configuring ICMP Forwarding                                    | 22 |
| 1.5.4. Configuring the Transmission Rate of ICMP Error Packets        | 25 |
| 2. CONFIGURING ARP                                                    | 35 |
| 2.1. Overview                                                         | 35 |
| 2.2. Applications                                                     | 35 |
| 2.2.1. LAN-based ARP                                                  | 35 |
| 2.3. Features                                                         | 37 |
| 2.3.2. Static ARP                                                     | 38 |
| 2.3.2. ARP Attributes                                                 | 38 |
| 2.3.3. Trusted ARP                                                    | 39 |
| 2.3.4. Gratuitous ARP                                                 | 40 |
| 2.3.5. Proxy ARP                                                      | 41 |
| 2.3.6. Local Proxy ARP                                                | 41 |
| 2.3.7. ARP Trustworthiness Detection                                  | 42 |
| 2.3.8. Disabling Dynamic ARP Entry Learning                           | 42 |
| 2.3.9. ARP-based IP Guard                                             | 43 |
| 2.3.10. Refraining from Sending ARP Requests to Authentication VLANs  | 43 |
| 2.3.11. Host Existence Judgment Prior to ARP Proxy Service Provision  | 44 |
| 2.3.12. ARP Packet Statistics Collection                              | 44 |
| 2.4. Configuration                                                    | 44 |
| 2.4.1. Enabling Static ARP                                            | 47 |
| 2.4.2. Configuring ARP Attributes                                     | 49 |
| 2.4.3. Enabling Trusted ARP                                           | 54 |



| Руководство пользователя<br>1. Configuring IP Addresses and Services3            |     |
|----------------------------------------------------------------------------------|-----|
| 2.4.4. Enabling Gratuitous ARP                                                   | 58  |
| 2.4.5. Enabling Proxy ARP                                                        | 60  |
| 2.4.6. Enabling Local Proxy ARP                                                  | 62  |
| 2.4.7. Enabling ARP Trustworthiness Detection                                    | 64  |
| 2.4.8. Disabling Dynamic ARP Learning                                            | 66  |
| 2.4.9. Enabling ARP-based IP Guard                                               | 68  |
| 2.4.10. Refraining from Sending ARP Requests to Authentication VLANs             | 70  |
| 2.4.11. Configuring Host Existence Judgment Prior to ARP Proxy Service Provision | 71  |
| 2.5. Monitoring                                                                  | 73  |
| 3 Configuring IPv6                                                               | 75  |
| 3.1 Overview                                                                     | 75  |
| 3.2 Applications                                                                 | 76  |
| 3.3 Features                                                                     | 77  |
| 3.4 Configuration                                                                | 96  |
| 4 Configuring DHCP                                                               | 123 |
| 4.1 Overview                                                                     | 123 |
| 4.2 Applications                                                                 | 123 |
| 4.3 Features                                                                     | 130 |
| 4.4 Configuration                                                                | 140 |
| 5 Configuring DHCPv6                                                             | 179 |
| 5.1 Overview                                                                     | 179 |
| 5.2 Applications                                                                 | 180 |
| 5.3 Features                                                                     | 183 |
| 5.4 Configuration                                                                | 194 |
| 5.5 Monitoring                                                                   | 210 |
| 6 Configuring DNS                                                                | 212 |
| 6.1 Overview                                                                     | 212 |
| 6.2 Applications                                                                 | 212 |
| 6.3 Features                                                                     | 213 |
| 6.4 Configuration                                                                | 214 |
| 7 Configuring FTP Server                                                         | 220 |
| 7.1 Overview                                                                     | 220 |
| 7.2 Applications                                                                 | 220 |
| 7.3 Features                                                                     | 221 |
| 7.4 Configuration                                                                | 224 |
| 7.5 Monitoring                                                                   | 230 |
| 8 Configuring FTP Client                                                         | 232 |
| 8.1 Overview                                                                     | 232 |
| 8.2 Applications                                                                 | 232 |
| 8.3 Features                                                                     | 233 |



| Руководство пользователя                                       |     |
|----------------------------------------------------------------|-----|
| 1. Configuring IP Addresses and Services4<br>8.4 Configuration | 237 |
| 8.5 Monitoring                                                 | 244 |
| 9 Configuring TFTP                                             | 245 |
| 9.1 Overview                                                   | 245 |
| 9.2 Applications                                               | 245 |
| 9.3 Features                                                   | 246 |
| 9.4 Configuration                                              | 248 |
| 9.5 Monitoring                                                 | 251 |
| 10 . Configuring TCP                                           | 252 |
| 10.1 Overview                                                  | 252 |
| 10.2 Applications                                              | 252 |
| 10.3 Features                                                  | 254 |
| 10.4 Configuration                                             | 260 |
| 10.5 Monitoring                                                | 266 |
| 11. CONFIGURING IPV4/IPV6 REF                                  | 268 |
| 11.1. Overview                                                 | 268 |
| 11.2. Applications                                             | 268 |
| 11.2.1. Load Balancing                                         | 268 |
| 11.2.2. ECMP Load Balancing                                    | 269 |
| 11.3. Features                                                 | 270 |
| 11.3.1. Load Balancing Policies                                | 271 |
| 11.3.2. ECMP Load Balancing Policies                           | 271 |
| 11.4. Configuration                                            | 272 |
| 11.4.1. Configuring Load Balancing Policies                    | 273 |
| 11.4.2. Configuring ECMP Policies                              | 276 |
| 11.5. Monitoring                                               | 279 |





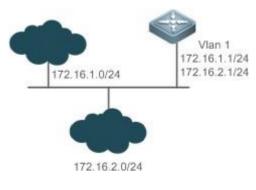
# 1.1. Overview

Internet Protocol (IP) sends packets to the destination from the source by using logical (or virtual) addresses, namely IP addresses. At the network layer, routers forward packets based on IP addresses.

# **Protocols and Standards**

- RFC 1918: Address Allocation for Private Internets
- RFC 1166: Internet Numbers

# **1.2. Applications**


| Application                                  | Description                                            |
|----------------------------------------------|--------------------------------------------------------|
| ConfiguringIPAddress an<br>Communication for | Two networks communicate through one switch interface. |

# **1.2.1 Configuring an IP Address for Communication**

#### Scenario

A switch is connected to a Local Area Network (LAN), which is divided into two network segments, namely, 172.16.1.0/24 and 172.16.2.0/24. Computers in the two network segments can communicate with the Internet through switches and computers between the two network segments can communicate with each other.

Figure 1-1 Configuring IP Addresses



#### Deployment



1. Configuring IP Addresses and Services6

- Configure two IP addresses on VLAN1. One is a primary IP address and the other is a secondary IP address.
- On hosts in the network segment 172.16.1.0/24, set the gateway to 172.16.1.1; on hosts in the network segment 172.16.2.0/24, set the gateway to 172.16.2.1.

# 1.3. Features

# **Basic Concepts**

# IP Address

An IP address consists of 32 bits in binary. To facilitate writing and description, an IP address is generally expressed in decimal. When expressed in decimal, an IP address is divided into four groups, with eight bits in each group. The value range of each group is from 0 to 255, and groups are separated by a full stop ".". For example, "192.168.1.1" is an IP address expressed in decimal.

IP addresses are used for interconnection at the IP layer. A 32-bit IP address consists of two parts, namely, the network bits and the host bits. Based on the values of the first several bits in the network part, IP addresses in use can be classified into four classes.

For a class A address, the most significant bit is 0.7 bits indicate a network ID, and 24 bits indicate a local address. There are 128 class A networks in total.

Figure 1-2

8162432ClassAIP0NetworkHost IDaddressIDID

For a class B address, the first two most significant bits are 10.14 bits indicate a network ID, and 16 bits indicate a local address. There are 16,348 class B networks in total.

Figure 1-3



8

For a class C address, the first three most significant bits are 110.21 bits indicate a network ID, and 8 bits indicate a local address. There are 2,097,152 class C networks in total.

Figure 1-4

162432





For a class D address, the first four most significant bits are 1110 and other bits indicate a multicast address.

Figure 1-5

|          |   |   |   |   | 8                 | 162432 |
|----------|---|---|---|---|-------------------|--------|
| ClassDIP | 1 | 1 | 1 | 0 | Multicast address |        |
| address  |   |   |   |   |                   |        |

The addresses with the first four most significant bits 1111 cannot be assigned.

These addresses are called class E addresses and are reserved.

When IP addresses are planned during network construction, IP addresses must be assigned based on the property of the network to be built. If the network needs to be connected to the Internet, users should apply for IP addresses to the corresponding agency. In China, you can apply to China Internet Network Information Center (CNNIC) for IP addresses. Internet Corporation for Assigned Names and Numbers (ICANN) is the final organization responsible for IP address assignment. If the network to be built is an internal private network, users do not need to apply for IP addresses. However, IP addresses cannot be assigned at random. It is recommended to assign dedicated private network addresses.

The following table lists reserved and available addresses.

| Class           | Address Range                    | Status    |
|-----------------|----------------------------------|-----------|
|                 | 0.0.0.0 - 0.255.255.255          | Reserved  |
| Class A network | 1.0.0.0 - 126.255.255.255        | Available |
|                 | 127.0.0.0 - 127.255.255.255      | Reserved  |
|                 | 128.0.0.0 - 191.254.255.255      | Available |
| Class B network | 191.255.0.0 -<br>191.255.255.255 | Reserved  |
|                 | 192.0.0.0 - 192.0.0.255          | Reserved  |
| Class C network | 192.0.1.0 - 223.255.254.255      | Available |
|                 | 223.255.255.0 -                  | Reserved  |



1. Configuring IP Addresses and Services8

|                 | 223.255.255.255             |                   |
|-----------------|-----------------------------|-------------------|
| Class D network | 224.0.0.0 - 239.255.255.255 | Multicast address |
|                 | 240.0.0.0 - 255.255.255.254 | Reserved          |
| Class E network | 255.255.255.255             | Broadcast address |

Three address ranges are dedicated to private networks. These addresses are not used in the Internet. If the networks to which these addresses are assigned need to be connected to the Internet, these IP addresses need to be converted into valid Internet addresses. The following table lists private address ranges. Private network addresses are defined in RFC 1918.

| Class           | Address Range                    | Status               |
|-----------------|----------------------------------|----------------------|
| Class A network | 10.0.0.0 - 10.255.255.255        | 1 class A network    |
| Class B network | 172.16.0.0 - 172.31.255.255      | 16 class B networks  |
| Class C network | 192.168.0.0 -<br>192.168.255.255 | 256 class C networks |

For assignment of IP addresses, TCP/UDP ports, and other codes, refer to RFC 1166.

# Subnet Mask

A subnet mask is also a 32-bit value. The bits that identify the IP address are the network address. In a subnet mask, the IP address bits corresponding to the bits whose values are 1s are the network address, and the IP address bits corresponding to the bits whose values are 0s are the host address. For example, for class A networks, the subnet mask is 255.0.0.0. By using network masks, you can divide a network into several subnets. Subnetting means to use some bits of the host address as the network address, thus decreasing the host capacity, and increasing the number of networks. In this case, network masks are called subnet masks.

# Broadcast Packet

Broadcast packets refer to the packets destined for all hosts on a physical network. QTECH products support two types of broadcast packets: (1) directed broadcast, which indicates that all hosts on the specified network are packet receivers and the host bits of a destination address are all 1s; (2) limited broadcast, which indicates that all hosts on all networks are packet receivers and the 32 bits of a destination address are all 1s.

#### ✤ ICMP Packet

Internet Control Message Protocol (ICMP) is a sub-protocol in the TCP/IP suite for transmitting control messages between IP hosts and network devices. It is mainly used to notify corresponding devices when the network performance becomes abnormal.

# \* TTL

Time To Live (TTL) refers to the number of network segments where packets are allowed to pass before the packets are discarded. The TTL is a value in an IP packet. It informs the





1. Configuring IP Addresses and Services9

network whether packets should be discarded as the packets stay on the network for a long time.

# Features

| Feature                                                   | Description                                                                                        |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| IP Address                                                | The IP protocol can run on an interface only after the interface is configured with an IP address. |
| BroadcastPacket<br>Processing                             | Broadcast addresses are configured and broadcast packets are forwarded and processed.              |
| <u>SendingICMP</u><br>Packets                             | ICMP packets are sent and received.                                                                |
| Limiting<br>Transmission<br>Rate of ICMP<br>Error Packets | This function prevents Denial of Service (DoS) attacks.                                            |
| IP MTU                                                    | Maximum Transmission Unit (MTU) of IP packets on an interface is configured.                       |
| IP TTL                                                    | The TTL of unicast packets and broadcast packets is configured.                                    |
| IP Source Route                                           | Source routes are checked.                                                                         |

# 1.3.1. IP Address

IP addresses are obtained on an interface in the following ways:

- 1. Manually configuring IP addresses
- 2. Obtaining IP addresses through DHCP
- 3. Borrowing IP addresses of other interfaces

These approaches are mutually exclusive. If you configure a new approach to obtain an IP address, the old IP address will be overwritten.

For details on how to obtain IP addresses through DHCP, see the "DHCP" chapter. The following describes the other three approaches for obtaining IP addresses.

# Configuring the IP Address for an Interface

A device can receive and send IP packets only after the device is configured with an IP address. Only the interface configured with an IP address can run the IP protocol.



1. Configuring IP Addresses and Services10

#### Configuring Multiple IP Addresses for an Interface

QTECH products support multiple IP address configuration on one interface, of which one is a primary IP address and the others are secondary IP addresses. Theoretically, the number of secondary IP addresses is not limited. However, secondary IP addresses must belong to different networks and secondary IP addresses must be in different networks from primary IP addresses. In network construction, secondary IP addresses are often used in the following circumstances:

- A network does not have enough host addresses. For example, a LAN now needs one class C network to allocate 254 addresses. However, when the number of hosts exceeds 254, one class C network is not enough and another class C network is needed. In this case, two networks need to be connected. Therefore, more IP addresses are needed.
- Many old networks are based on L2 bridged networks without subnetting. You
  can use secondary IP addresses to upgrade the network to a routing network
  based on IP layer. For each subnet, one device is configured with one IP
  address.
- When two subnets of one network are isolated by another network, you can connect the isolated subnets by creating a subnet of the isolated network and configuring a secondary address. One subnet cannot be configured on two or more interfaces of a device.

#### Borrowing an IP Addresses from Another Interface

One interface may not be configured with an IP address. To enable the interface, it must borrow an IP address from another interface.

- IP addresses of Ethernet interfaces, tunnel interfaces, and loopback interfaces can be borrowed. However, these interfaces cannot borrow IP addresses from other interfaces.
- **()** The IP addresses of borrowed interfaces cannot be borrowed from other interfaces.

If a borrowed interface has multiple IP addresses, only the primary IP address can be borrowed.

**1** The IP address of one interface can be lent to multiple interfaces.

IP addresses of borrowing interfaces are always consistent with and vary with IP addresses of borrowed interfaces.

#### **Related Configuration**

- Configuring an Interface with One or More IP Addresses
- By default, an interface is not configured with an IP address.



1. Configuring IP Addresses and Services11

- The ip address command is used to configure an IP address for an interface.
- After an IP address is configured, the IP address can be used for communication when it passes conflict detection.
- The **ip address** *ip-address mask* **secondary** command can be used to configure multiple secondary IP addresses.
- Borrowing an IP Address from Other Interfaces
- By default, an interface is not configured with an IP address.
- The **ip unnumbered** command is used to borrow IP addresses from other interfaces.

# 1.3.2. Broadcast Packet Processing

#### **Working Principle**

Broadcast is divided into two types. One is limited broadcast, and the IP address is 255.255.255.255. Because the broadcast is prohibited by routers, the broadcast is called local network broadcast. The other is directed broadcast. All host bits are 1s, for example, 192.168.1.255/24. The broadcast packets with these IP addresses can be forwarded.

If IP network devices forward limited broadcast packets (destination IP address is 255.255.255.255), the network may be overloaded, which severely affects network performance. This circumstance is called broadcast storm. Devices provide some approaches to confine broadcast storms within the local network and prevent continuous spread of broadcast storms. L2 network devices such as bridges and switches forward and spread broadcast storms.

The best way to avoid broadcast storm is to assign a broadcast address to each network, which is directed broadcast. This requires the IP protocol to use directed broadcast rather than limited broadcast to spread data.

For details about broadcast storms, see RFC 919 and RFC 922.

Directed broadcast packets refer to the broadcast packets destined for a subnet. For example, packets whose destination address is 172.16.16.255 are called directed broadcast packets. However, the node that generates the packets is not a member of the destination subnet.

After receiving directed broadcast packets, the devices not directly connected to the destination subnet forward the packets. After directed broadcast packets reach the devices directly connected to the subnet, the devices convert directed broadcast packets to limited broadcast packets (destination IP address is 255.255.255.255) and broadcast the packets to all hosts on the destination subnet at the link layer.

#### **Related Configuration**

- Configuring an IP Broadcast Address
- By default, the IP broadcast address of an interface is 255.255.255.255.



1. Configuring IP Addresses and Services12

- To define broadcast packets of other addresses, run the **ip broadcast-address** command on the interface.
- Forwarding Directed Broadcast Packets
- By default, directed broadcast packets cannot be forwarded.
- On the specified interface, you can run the **ip directed-broadcast** command to enable directed broadcast packets forwarding. In this way, the interface can forward directed broadcast packets to networks that are directly connected.
   Broadcast packets can be transmitted within the destination subnet without affecting forwarding of other directed broadcast packets.
- On an interface, you can define an Access Control List (ACL) to transmit certain directed broadcast packets. After an ACL is defined, only directed broadcast packets that match the ACL are forwarded.

# 1.3.3. Sending ICMP Packets

#### **Working Principle**

# ✤ ICMP Protocol Unreachable Message

A device receives non-broadcast packets destined for itself, and he packets contain the IP protocol that cannot be processed by the device. The device sends an ICMP protocol unreachable message to the source host. Besides, if the device does not know a route to forward packets, it also sends an ICMP host unreachable message.

#### ✤ ICMP Redirection Message

Sometimes, a route may be less than optimal, which makes a device send packets from the interface that receives packets. If a device sends packets from an interface on which it receives the packets, the device sends an ICMP redirection message to the source, informing the source that the gateway is another device on the same subnet. In this way, the source sends subsequent packets according to the optimal path.

#### ✤ ICMP Mask Response Message

Sometimes, a network device sends an ICMP mask request message to obtain the mask of a subnet.. The network device that receives the ICMP mask request message sends a mask response message.

#### Enabling Notifications of Expired TTL

- By default, notifications of expired TTL are enabled.
- You can run the **[no] ip ttl-expires enable** command to enable or disable the function.

#### Enabling the Device to Return a Timestamp Reply

By default, the device returns a Timestamp Reply.





1. Configuring IP Addresses and Services13

You can run the **[no] ip icmp timestamp** command to enable or disable the function.

#### **Related Configuration**

- Enabling ICMP Protocol Unreachable Message
  - By default, the ICMP Protocol unreachable message function is enabled on an interface.
  - You can run the **[no] ip unreachables** command to disable or enable the function.

#### Enabling ICMP Redirection Message

- By default, the ICMP redirection message function is enabled on an interface.
- You can run the **[no] ip redirects** command to disable or enable the function.

#### Enabling ICMP Mask Response Message

- By default, the ICMP mask response message function is enabled on an interface.
- You can run the [no] ip mask-reply command to disable or enable the function.

# 1.3.4. Limiting Transmission Rate of ICMP Error Packets

#### **Working Principle**

This function limits the transmission rate of ICMP error packets to prevent DoS attacks by using the token bucket algorithm.

If an IP packet needs to be fragmented but the Don't Fragment (DF) bit in the header is set to 1, the device sends an ICMP destination unreachable packet (code 4) to the source host. This ICMP error packet is used to discover the path MTU. When there are too many other ICMP error packets, the ICMP destination unreachable packet (code 4) may not be sent. As a result, the path MTU discovery function fails. To avoid this problem, you should limit the transmission rate of ICMP destination unreachable packets and other ICMP error packets respectively.

#### **Related Configuration**

- Configuring the Transmission Rate of ICMP Destination Unreachable Packets Triggered by DF Bit in the IP Header
  - The default transmission rate is 10 packets every 100 milliseconds.
  - The **ip icmp error-interval DF** command can be used to configure the transmission rate.
- **Configuring the Transmission Rate of Other ICMP Error Packets** 
  - The default transmission rate is 10 packets every 100 milliseconds.





1. Configuring IP Addresses and Services14

The **ip icmp error-interval** command can be used to configure the transmission rate.

#### 1.3.5. IP MTU

#### **Working Principle**

If an IP packet exceeds the IP MTU size, the RGOS software splits the packet. For all devices in the same physical network segment, the IP MTU of interconnected interfaces must be the same. You can adjust the link MTU of interfaces on QTECH products. After the link MTU of interfaces is changed, the IP MTU of interfaces will be changed. The IP MTU of interfaces automatically keeps consistent with the link MTU of interfaces. However, if the IP MTU of interfaces is adjusted, the link MTU of interfaces will not be changed.

# **Related Configuration**

#### Setting the IP MTU

- By default, the IP MTU of an interface is 1500.
- The **ip mtu** command can be used to set the IP packet MTU.

# 1.4. IP TTL

#### **Working Principle**

An IP packet is transmitted from the source address to the destination address through routers. After a TTL value is set, the TTL value decreases by 1 every time when the IP packet passes a router. When the TTL value drops to zero, the router discards the packet. This prevents infinite transmission of useless packets and waste of bandwidth.

#### **Related Configuration**

#### ✤ Setting the IP TTL

- By default, the IP TTL of an interface is 64.
- The **ip ttl** command can be used to set the IP TTL of an interface.

#### 1.4.1. IP Source Route

#### **Working Principle**

QTECH products support IP source routes. When a device receives an IP packet, it checks the options such as source route, loose source route, and record route in the IP packet header. These options are detailed in RFC 791. If the device detects that the packet enables one option, it responds; if the device detects an invalid option, it sends an ICMP parameter error message to the source and then discards the packet.



#### 1. Configuring IP Addresses and Services15

After the IP source route is enabled, the source route option is added to an IP packet to test the throughput of a specific network or help the packet bypasses the failed network. However, this may cause network attacks such as source address spoofing and IP spoofing.

#### **Related Configuration**

#### **\*** Configuring an IP Source Route

- By default, the IP source route function is enabled.
- The **ip source-route** command can be used to enable or disable the function.

#### 1.4.2. IP Address Pool

#### **Working Principle**

A point-to-point interface can assign an IP address to the peer end through PPP negotiation. During PPP negotiation, the server checks authentication information of the client. If the client passes the authentication, the server assigns an IP

address to the client (if the client is configured with an IP address and the IP address meets requirements of the server, the server approves the IP address of the client). The IP address of the peer end can be directly specified or assigned from the address pool.

#### **Related Configuration**

#### Enabling the Address Pool Function

- By default, the address pool function is enabled.
- The **ip address-pool local** command can be used to enable or disable the function.

#### Creating an Address Pool

- By default, no IP address pool is configured.
- The **ip local pool** command can be used to create or delete an address pool.

#### ✤ Assigning an IP Address to the Peer End through PPP Negotiation

- By default, an interface does not assign an IP address to the peer end.
- The peer default ip address command can be used to assign an IP address to the peer end.

# 1.5. Configuration

Configuration

Description and Command



Руководство пользователя 1. Configuring IP Addresses and Services16

| Configuring the IP                         | (Mandatory) It is used to configure an IP address and allow the IP protocol to run on an interface. |                                                                  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| <u>Addresses</u> of an<br>Interface        | ip address                                                                                          | Manually configures the IP<br>address of an<br>interface.        |  |  |
|                                            | ip unnumbered                                                                                       | Borrows an IP address from another interface.                    |  |  |
| <u>ConfiguringBroadca</u><br>st Forwarding | (Optional) It is used to set an I directed broadcast forwarding.                                    | P broadcast address and enable                                   |  |  |
|                                            | ip broadcast-address                                                                                | Configures an IP broadcast address.                              |  |  |
|                                            | ip directed-broadcast                                                                               | Enables directed broadcast forwarding.                           |  |  |
|                                            | (Optional) It is used to enable                                                                     | ICMP packet forwarding.                                          |  |  |
| ConfiguringICMP<br>Forwarding              | ip unreachables                                                                                     | Enables ICMP unreachable messages and host unreachable messages. |  |  |
|                                            | ip redirects                                                                                        | Enables ICMP redirection messages.                               |  |  |
|                                            | ip mask-reply                                                                                       | Enables ICMP mask response messages.                             |  |  |
|                                            | ip ttl-expires enable                                                                               | Enables error messages for TTL timeout.                          |  |  |
|                                            | ip icmp timestamp                                                                                   | Enables the device to return a<br>Timestamp<br>Reply.            |  |  |
|                                            | Optional.                                                                                           |                                                                  |  |  |
| Configuring the<br>Transmission Rate       | ip icmp error-interval DF                                                                           | Configures the transmission rate of ICMP destination             |  |  |



1. Configuring IP Addresses and Services17

| 1. Configuring IP Addresses a |                                                                |                                                               |  |
|-------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--|
| of ICMP Error<br>Packets      |                                                                | unreachable packets triggered by the DF bit in the IP header. |  |
|                               |                                                                | Configures the transmission                                   |  |
|                               | ip icmp error-interval                                         | rate of ICMP<br>error packets and ICMP                        |  |
|                               |                                                                | redirection packets.                                          |  |
| Setting the IP MTU            | (Optional) It is used to configure the IP MTU on an interface. |                                                               |  |
|                               | ip mtu                                                         | Sets the MTU value.                                           |  |
| Setting the IP TTL            | (Optional) It is used to configur<br>broadcast packets.        | e the TTL of unicast packets and                              |  |
|                               | ip ttl                                                         | Sets the TTL value.                                           |  |
| Configuring an IP             | (Optional) It is used to check th                              | ne source routes.                                             |  |
| Source Route                  | ip source-route                                                | Enables the IP source route function.                         |  |

# **1.5.1. Configuring the IP Addresses of an Interface**

# **Configuration Effect**

Configure the IP address of an interface for communication.

#### Notes

N/A

# **Configuration Steps**

# Configuring the IP Address of an Interface

- Mandatory
- Perform the configuration in L3 interface configuration mode.

# **Sorrowing an IP Address from Another Interface**

- Optional
- If a point-to-point interface is not configured with an IP address, borrow

# an IP address from another interface. Perform the configuration in L3





1. Configuring IP Addresses and Services18 interface configuration mode.

# Verification

Run the **show ip interface** command to check whether the configuration takes effect.

# **Related Commands**

# \* Manually Configuring the IP Address of an Interface

| Command     | ip address <i>ip-address network-mask</i> [ secondary ]                   |
|-------------|---------------------------------------------------------------------------|
| Parameter   | ip-address: 32-bit IP address, with 8 bits for each group. The IP address |
| Description | is expressed in decimal and groups are separated by a full stop (.).      |
|             | network-mask: 32-bit network mask. Value 1 indicates the mask bit and     |
|             | 0 indicates the host bit. Every 8 bits form one group. The network mask   |
|             | is expressed in decimal and groups are separated by a full stop (.).      |
|             | secondary: Secondary IP address                                           |
| Command     | Interface configuration mode                                              |
| Mode        |                                                                           |
| Usage Guide | N/A                                                                       |

# \* Borrowing an IP Addresses from Another Interface

| Command                  | ip unnumbered <i>interface-type interface-number</i>                               |
|--------------------------|------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>interface-type</i> : Interface type.<br><i>interface-number</i> : Interface ID. |
| Command<br>Mode          | Interface configuration mode                                                       |



1. Configuring IP Addresses and Services19

| Usage Guide | An unnumbered interface indicates that the interface is enabled with the IP protocol without an IP address assigned. An unnumbered interface needs to be associated with an interface configured with an IP address. For an IP packet generated on an unnumbered interface, the source IP address of the packet is the IP address of the associated interface. In addition, the routing protocol process decides whether to send a route update packet to the unnumbered interface according to its associated IP address. If you want to use an unnumbered interface, pay attention to the following limitations: |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | An Ethernet interface cannot be set to an unnumbered interface.<br>When a serial interface encapsulates SLIP, HDLC, PPP, LAPB, and<br>Frame-Relay, the serial interface can be set to an unnumbered interface.<br>During Frame                                                                                                                                                                                                                                                                                                                                                                                     |
|             | -Relay encapsulation, however, only a point-to-point interface can be configured as an unnumbered interface. AnX.25 interface cannot be configured as an unnumbered interface.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | The <b>ping</b> command cannot be used to check whether an unnumbered interface is working properly because an unnumbered interface is not configured with an IP address. However, you can monitor the status of an unnumbered interface remotely through SNMP.                                                                                                                                                                                                                                                                                                                                                    |
|             | A device cannot be cold started through an unnumbered interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# **Configuration Example**

# ✤ Configuring an IP Address for an Interface

| Configuration<br>Steps | Configure IP address 192.168.23.110 255.255.255.0 on interface<br>GigabitEthernet 0/0.                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH#configure terminal QTECH(config)#interface gigabitEthernet 0/0<br>QTECH(config-if-GigabitEthernet 0/0)# no switchport |
|                        | QTECH(config-if-GigabitEthernet 0/0)#ip address 192.168.23.110<br>255.255.255.0                                             |
| Verification           | Run the <b>show ip interface</b> command to check whether the configuration takes effect.                                   |



 PycobogCTBD INDISSOBATEJRS

 1. Configuring IP Addresses and Services20

 QTECH# show ip interface gigabitEthernet 0/0 GigabitEthernet 0/0 IP interface state is: UP

 IP interface type is: BROADCAST

 IP interface MTU is: 1500

 IP address is:

 192.168.23.110/24 (primary)

# 1.5.2. Configuring Broadcast Forwarding

# **Configuration Effect**

Set the broadcast address of an interface to 0.0.0.0 and enable directed broadcast forwarding.

# Notes

N/A

# **Configuration Steps**

# Configuring an IP Broadcast Address

- (Optional) Some old hosts may identify broadcast address 0.0.0.0 only. In this case, set the broadcast address of the target interface to 0.0.0.0.
- Perform the configuration in L3 interface configuration mode.

# Enabling Directed Broadcast Forwarding

- (Optional) If you want to enable a host to send broadcast packets to all hosts in a domain that it is not in, enable directed broadcast forwarding.
- Perform the configuration in L3 interface configuration mode.

# Verification

Run the **show running-config interface** command to check whether the configuration takes effect.

# **Related Commands**



1. Configuring IP Addresses and Services21

# Configuring an IP Broadcast Address

| Command                  | ip broadcast-address <i>ip-address</i>                                                                                                                                                                                                                                                                                   |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | ip-address: Broadcast address of an IP network.                                                                                                                                                                                                                                                                          |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                             |
| Usage Guide              | Generally, the destination address of IP broadcast packets is all 1s,<br>which is expressed as 255.255.255.255. The RGOS software can<br>generate broadcast packets of other IP addresses through definition and<br>receive<br>self-defined broadcast packets and the broadcast packets with address<br>255.255.255.255. |

# \* Allowing Forwarding of Directed Broadcast Packets

| Command                  | ip directed-broadcast [ access-list-number ]                                                                                                                                           |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>access-list-number</i> : Access list number, ranging from 1 to 199 and from1300 to 2699. After an ACL is defined, only directed broadcast packets that match the ACL are forwarded. |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                           |
| Usage Guide              | If the <b>no ip directed-broadcast</b> command is run on an interface, the RGOS software will discard directed broadcast packets received from the network that is directly connected. |

| Configuration | On interface gigabitEthernet 0/1, set the destination address of IP broadcast packets to 0.0.0.0 and enable directed broadcast forwarding.                                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steps         | OTECH#configure terminal OTECH(config)#interface gigabitEthernet 0/1                                                                                                                   |
| 0.000         | QTECH(config-if-GigabitEthernet 0/1)# no switchport<br>QTECH(config-if-GigabitEthernet 0/1)#ip broadcast-address 0.0.0.0<br>QTECH(config-if-GigabitEthernet 0/1)#ip directed-broadcast |





# 1.5.3. Configuring ICMP Forwarding

# **Configuration Effect**

Enable ICMP unreachable messages, ICMP redirection messages, and mask response messages on an interface.

#### Notes

N/A

# **Configuration Steps**

# Enabling ICMP Unreachable Messages

- By default, ICMP unreachable messages are enabled.
- (Optional)The no ip unreachables command can be used to disable ICMP unreachable messages.
- Perform the configuration in L3 interface configuration mode.

# Enabling ICMP Redirection Messages

- By default, ICMP redirection messages are enabled.
- (Optional)The **no ip redirects** command can be used to disable ICMP redirection messages.
- Perform the configuration in L3 interface configuration mode.

#### Enabling ICMP Mask Response Messages

- By default, ICMP mask response messages are enabled.
- (Optional)The **no ip mask-reply** command can be used to disable ICMP mask response messages.
- Perform the configuration in L3 interface configuration mode.

# Enabling Notifications of Expired TTL



1. Configuring IP Addresses and Services23

- By default, notifications of expired TTL are enabled.
- (Optional)The **no ip ttl-expires enable** command can be used to disable the function.
- Perform the configuration in global configuration mode.

# Enabling the Device to Return a Timestamp Reply

- By default, the device returns a Timestamp Reply.
- (Optional)The **no ip icmp timest** command can be used to disable the function.
- Perform the configuration in global configuration mode.

#### Verification

Run the **show ip interface** command to check whether the configuration takes effect.

Run the **show running-config** command to check whether notifications of expired TTL are enabled. Run the **show running-config** command to check whether the device returns a Timestamp Reply.

#### **Related Commands**

#### Enabling ICMP Unreachable Messages

| Command                  | ip unreachables              |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |
| Usage Guide              | N/A                          |

#### Enabling ICMP Redirection Messages

| Command                  | ip redirects                 |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |
| Usage Guide              | N/A                          |



1. Configuring IP Addresses and Services24

# Enabling ICMP Mask Response Messages

| Command                  | ip mask-reply                |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |
| Usage Guide              | N/A                          |

# \* Disabling Notifications of Expired TTL

| Command                  | no ip ttl-expires enable  |
|--------------------------|---------------------------|
| Parameter<br>Description | N/A                       |
| Command<br>Mode          | Global configuration mode |
| Usage Guide              | N/A                       |

# Disabling the Sending of a Timestamp Reply

| Command                  | no ip icmp timestamp      |
|--------------------------|---------------------------|
| Parameter<br>Description | N/A                       |
| Command<br>Mode          | Global configuration mode |
| Usage Guide              | N/A                       |

| Configuration<br>StepsEnable ICMP unreachable messages, ICMP redirection messages,<br>and mask response messages on |  |
|---------------------------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------------------------|--|



Руководство пользователя 1. Configuring IP Addresses and Services25

|              | interface gigabitEthernet 0/1.                                                                                                                                                                                  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | QTECH#configure terminal QTECH(config)# no ip ttl-expires enable<br>QTECH(config)# no ip icmp timestamp                                                                                                         |
|              | QTECH(config)#interface gigabitEthernet 0/1 QTECH(config-if-<br>GigabitEthernet 0/1)# no switchport QTECH(config-if-GigabitEthernet<br>0/1)# ip unreachables QTECH(config-if-GigabitEthernet 0/1)# ip redirects |
|              | QTECH(config-if-GigabitEthernet 0/1)# ip mask-reply                                                                                                                                                             |
| Verification | Run the <b>show ip interface</b> command to check whether the configuration takes effect.                                                                                                                       |
|              | QTECH#show running-config   include ip ttl-expires enable no ip ttl-<br>expires enable                                                                                                                          |
|              | QTECH#show running-config   include ip icmp timestamp no ip icmp timestamp                                                                                                                                      |
|              | QTECH#show ip interface gigabitEthernet 0/1 GigabitEthernet 0/1                                                                                                                                                 |
|              | ICMP mask reply is: ON                                                                                                                                                                                          |
|              | Send ICMP redirect is: ON                                                                                                                                                                                       |
|              | Send ICMP unreachabled is: ON                                                                                                                                                                                   |

# 1.5.4. Configuring the Transmission Rate of ICMP Error Packets

# **Configuration Effect**

Configure the transmission rate of ICMP error packets.

#### Notes

N/A

# **Configuration Steps**

- Configuring the Transmission Rate of ICMP Destination Unreachable Packets Triggered by the DF Bit in the IP Header
  - Optional
  - Perform the configuration in global configuration mode.
- Configuring the Transmission Rate of Other ICMP Error Packets
  - Optional





- 1. Configuring IP Addresses and Services26
  - Perform the configuration in global configuration mode.

# Verification

Run the **show running-config** command to check whether the configuration takes effect.

# **Related Commands**

 Configuring the Transmission Rate of ICMP Destination Unreachable Packets Triggered by the DF Bit in the IP Header

| Command                  | ip icmp error-interval DF milliseconds [bucket-size]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>milliseconds</i> : Refresh cycle of a token bucket. The value range is from 0 to 2,147,483,647 and the default value is 100 milliseconds. When the value is 0, the transmission rate of ICMP error packets is not limited. <i>bucket-size</i> : Number of tokens contained in a token bucket. The value range is from 1 to 200 and the default value is 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Command<br>Mode          | Global configuration mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Usage Guide              | This function limits the transmission rate of ICMP error packets to prevent DoS attacks by using the token bucket algorithm.<br>If an IP packet needs to be fragmented but the DF bit in the header is set to 1, the device sends an ICMP destination unreachable packet (code 4) to the source host. This ICMP error packet is used to discover the path MTU. When there are too many other ICMP error packets, the ICMP destination unreachable packet (code 4) may not be sent. As a result, the path MTU discovery function fails. To avoid this problem, you should limit the transmission rate of ICMP destination unreachable packets and other ICMP error packets respectively.<br>It is recommended to set the refresh cycle to integral multiples of 10 milliseconds. If the refresh cycle is set to a value greater than 0 and smaller than 10 milliseconds, the refresh cycle that actually takes effect is 10 milliseconds. If the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds. If the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle is not integral multiples of 10 milliseconds. For example, if the refresh rate is set to 3 per 15 milliseconds. For example, if the refresh rate is set to 3 per 15 milliseconds, the refresh rate that actually takes effect is 2 per 10 milliseconds. |



1. Configuring IP Addresses and Services27

| Command                  | ip icmp error-interval <i>milliseconds [bucket-size</i> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commanu                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Parameter<br>Description | <i>milliseconds</i> : Refresh cycle of a token bucket. The value range is 0to 2,147,483,647, and the default value is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| •                        | <b>100</b> (ms). When the value is <b>0</b> , the transmission rate of ICMP error packets is not limited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | <i>bucket-size</i> : Number of tokens contained in a token bucket. The value range is 1to 200 and the default value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | is 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Command                  | Global configuration mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mode                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Usage Guide              | This function limits the transmission rate of ICMP error packets to prevent DoS attacks by using the token bucket algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | It is recommended to set the refresh cycle to integral multiples of 10 milliseconds. If the refresh cycle is set to a value greater than 0 and smaller than 10 milliseconds, the refresh cycle that actually takes effect is 10 milliseconds. For example, if the refresh rate is set to 1 per 5 milliseconds, the refresh rate that actually takes effect is 2 per 10 milliseconds. If the refresh cycle is not integral multiples of 10 milliseconds, the refresh cycle that actually takes effect is automatically converted to integral multiples of 10 milliseconds. For example, if the refresh rate is set to 3 per 15 milliseconds, the refresh rate that actually takes effect is 2 per 10 milliseconds. For example, if the refresh rate is set to 3 per 15 milliseconds, the refresh rate that actually takes effect is 2 per 10 milliseconds. |

# ✤ Configuring the Transmission Rate of Other ICMP Error Packets

| Configuration<br>Steps | Set the transmission rate of ICMP destination unreachable packets<br>triggered the DF bit in IP header to 100<br>packets per second and the transmission rate of other ICMP error<br>packets to 10 packets per second. |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH(config)# ip icmp error-interval DF 1000 100                                                                                                                                                                      |
|                        | QTECH(config)# ip icmp error-interval 1000 10                                                                                                                                                                          |
| Verification           | Run the <b>show running-config</b> command to check whether the configuration takes effect.                                                                                                                            |



1. Configuring IP Addresses and Services28

QTECH#show running-config | include ip icmp error-interval ip icmp error-interval 1000 10 ip icmp error-interval DF 1000 100

# 1.1.1 Setting the IP MTU

# **Configuration Effect**

Adjust the IP packet MTU.

# Notes

N/A

# **Configuration Steps**

- (Optional) When the IP MTU of interconnected interfaces is different on devices in the same physical network segment, set the IP MTU to the same value.
- Perform the configuration in L3 interface configuration mode.

# Verification

Run the **show ip interface** command to check whether the configuration takes effect.

# **Related Commands**

# Setting the IP MTU

| Command                  | ip mtu <b>bytes</b>                                              |
|--------------------------|------------------------------------------------------------------|
| Parameter<br>Description | bytes: IP packet MTU. The value range is from 68 to 1,500 bytes. |
| Command<br>Mode          | Interface configuration mode                                     |
| Usage Guide              | N/A                                                              |

| Configuration | Set the IP MTU of interface gigabitEthernet 0/1 to 512 bytes. |
|---------------|---------------------------------------------------------------|
| Steps         |                                                               |



Руководство пользователя 1. Configuring IP Addresses and Services29

|              | QTECH#configure terminal QTECH(config)#interface gigabitEthernet 0/1<br>QTECH(config-if-GigabitEthernet 0/1)# no switchport |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|
|              | QTECH(config-if-GigabitEthernet 0/1)#ip mtu 512                                                                             |
| Verification | Run the <b>show ip interface</b> command to check whether the configuration takes effect.                                   |
|              | QTECH# show ip interface gigabitEthernet 0/1                                                                                |
|              | IP interface MTU is: 512                                                                                                    |

# 1.1.2 Setting the IP TTL

# **Configuration Effect**

Modify the IP TTL value of an interface.

# Notes

N/A

# **Configuration Steps**

- Optional
- Perform the configuration in L3 interface configuration mode.

#### Verification

Run the **show run-config** command to check whether the configuration takes effect.

# **Related Commands**

# ✤ Setting the IP TTL

| Command                  | ip ttl <b>value</b>                                         |
|--------------------------|-------------------------------------------------------------|
| Parameter<br>Description | <i>value</i> : TTL value. The value range is from 0 to 255. |
| Command<br>Mode          | Global configuration mode.                                  |
| Usage Guide              | N/A                                                         |



1. Configuring IP Addresses and Services30

| Configuration<br>Steps | Set the TTL of unicast packets to 100.                                                  |
|------------------------|-----------------------------------------------------------------------------------------|
|                        | QTECH#configure terminal                                                                |
|                        | QTECH(config)#ip ttl 100                                                                |
| Verification           | Run the <b>show run-config</b> command to check whether the configuration takes effect. |
|                        | QTECH#show running-config                                                               |
|                        | ip ttl 100                                                                              |

# 1.1.3 Configuring an IP Source Route

#### **Configuration Effect**

Enable or disable the IP source route function.

#### Notes

N/A

#### **Configuration Steps**

- By default, the IP source route function is enabled.
- Optional) The **no ip source-route** command can be used to disable the IP source route function.

# Verification

Run the **show run-config** command to check whether the configuration takes effect.

#### **Related Commands**

# Configuring an IP Source Route

| Command                  | ip source-route            |
|--------------------------|----------------------------|
| Parameter<br>Description | N/A                        |
| Command                  | Global configuration mode. |



| 1. Configuring IP Addre | sses and Services31 |
|-------------------------|---------------------|
| Usage Guide             | N/A                 |

# **Configuration Example**

| Configuration<br>Steps | Disable the IP source route function.                                                   |
|------------------------|-----------------------------------------------------------------------------------------|
|                        | QTECH#configure terminal                                                                |
|                        | QTECH(config)#no ip source-route                                                        |
| Verification           | Run the <b>show run-config</b> command to check whether the configuration takes effect. |
|                        | QTECH#show running-config                                                               |
|                        | no ip source-route                                                                      |

# 1.1.4 Configuring an IP Address Pool

# **Configuration Effect**

Assign an IP address to a client through PPP negotiation.

# Notes

N/A

# **Configuration Steps**

# Enabling the IP Address Pool Function

- Optional
- Perform the configuration in global configuration mode.

# \* Creating an IP Address Pool

- Optional
- An IP address pool can be created only after the IP address pool function is enabled. After the IP address pool function is disabled, the created address pool is automatically deleted.





- 1. Configuring IP Addresses and Services32
  - Perform the configuration in global configuration mode.
  - ✤ Assigning an IP Address to the Peer End through PPP Negotiation
    - Optional
    - Perform the configuration in L3 interface configuration mode.

# Verification

Run the **show run-config** command to check whether the configuration takes effect.

# **Related Commands**

# Enabling the IP Address Pool Function

| Command                  | ip address-pool local                                                                                                                                                                                                                                                                                            |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                                                                                              |  |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                        |  |
| Usage Guide              | By default, the IP address pool function is enabled. You can configure an IP address pool to assign an IP address to the peer end through PPP negotiation. To disable the IP address pool function, run the <b>no ip address-pool local</b> command. All IP address pools configured previously will be deleted. |  |

# Creating an IP Address Pool

| Command                  | ip local pool pool-namelow-ip-address[high-ip-address]                                                                                                                                                                                                                                                                                                                          |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter<br>Description | <ul> <li><i>pool-name</i>: Name of a local IP address pool. <b>default</b> indicates the default address pool name.</li> <li><i>low-ip-address</i>: Smallest IP address in an IP address pool.</li> <li><i>high-ip-address</i>: Optional)Largest IP address in an IP address pool. If the largest IP address is not specified, the IP address pool contains only one</li> </ul> |  |
| Command<br>Mode          | IP address, that is, <i>low-ip-address</i> .<br>Global configuration mode                                                                                                                                                                                                                                                                                                       |  |



1. Configuring IP Addresses and Services33

| Usage Guide | The command is used to create one or more IP address pools to assign IP addresses to peer ends through |
|-------------|--------------------------------------------------------------------------------------------------------|
|             | PPP negotiation.                                                                                       |

# ✤ Assigning an IP Address to the Peer End through PPP Negotiation

| Command                  | peer default ip address { <i>ip-address</i>   pool [ <i>pool-name</i> ] }                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>ip-address</i> : IP address assigned to the peer end.<br><i>pool-name</i> : (Optional) Specifies the address pool that assigns IP<br>addresses. If this parameter is not set, IP addresses are assigned from<br>the default address pool.                                                                                                                                                                          |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                          |
| Usage Guide              | If the peer end is not configured with an IP address while the local device<br>is configured with an IP address, you can enable the local device to<br>assign an IP address to the peer end. Run the <b>ip address negotiate</b><br>command on the peer end and the <b>peer default ip address</b> command on<br>the local device so that the peer end can accept the IP address assigned<br>through PPP negotiation. |
|                          | The <b>peer default ip address</b> command can be configured on only PPP or SLIP interfaces.                                                                                                                                                                                                                                                                                                                          |
|                          | The <b>peer default ip address pool</b> command is used to assign an IP address to the peer end from an IP address pool. The IP address pool is configured through the <b>ip local pool</b> command.                                                                                                                                                                                                                  |
|                          | The <b>peer default ip address</b> <i>ip-address</i> command is used to specify an IP address for the peer end. The command cannot be run on virtual template interfaces or asynchronous interfaces.                                                                                                                                                                                                                  |

| Configuration<br>Steps | Assign an IP address from address pool "quark" to the peer end on interface "dialer1".                                                                             |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                        | QTECH#configure terminal QTECH(config)# ip address-pool local<br>QTECH(config)# ip local pool quark 172.16.23.2 172.16.23.255<br>QTECH(config)# interface dialer 1 |  |
|                        | QTECH(config-if-dialer 1)#peer default ip address pool quark                                                                                                       |  |
| Verification           | Run the <b>show run-config</b> command to check whether the configuration takes effect.                                                                            |  |





# 1.2 Monitoring

# Displaying

| Description                                                                | Command                                                                |
|----------------------------------------------------------------------------|------------------------------------------------------------------------|
| Displays the IP address of an interface.                                   | <pre>show ip interface [interface-type interface-number   brief]</pre> |
| Displays IP packet statistics.                                             | show ip packet statistics [total   interface-name]                     |
| Displays statistics on sent and received IP packets in the protocol stack. | show ip packet queue                                                   |
| Displays address pool statistics.                                          | show ip pool [ pool-name ]                                             |



# 2.1. Overview

In a local area network (LAN), each IP network device has two addresses: 1) local address. Since the local address is contained in the header of the data link layer (DLL) frame, it is a DLL address. However, it is processed by the MAC sublayer at the DLL and thereby is usually called the MAC address. MAC addresses represent IP network devices on LANs. 2) network address. Network addresses on the Internet represent IP network devices and also indicate the networks where the devices reside.

In a LAN, two IP devices can communicate with each other only after they learn the 48-bit MAC address of each other. The process of obtaining the MAC address based on the IP address is called address resolution. There are two types of address resolution protocols: 1) Address Resolution Protocol (ARP); 2) Proxy ARP. ARP and Proxy ARP are described respectively in RFC 826 and RFC 1027.

ARP is used to bind the MAC address with the IP address. When you enter an IP address, you can learn the corresponding MAC address through ARP. Once the MAC address is obtained, the IP-MAC mapping will be saved to the ARP cache of the network device. With the MAC address, the IP device can encapsulate DLL frames and send them to the LAN. By default, IP and ARP packets on the Ethernet are encapsulated in Ethernet II frames.

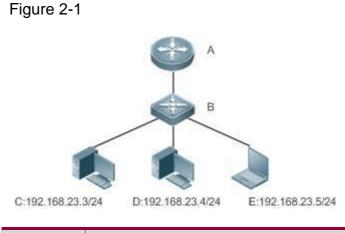
#### **Protocols and Standards**

- RFC 826: An Ethernet Address Resolution Protocol
- RFC 1027: Using ARP to implement transparent subnet gateways

# 2.2. Applications

| Application                                   | Description                                                                                                         |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| LAN-based ARP                                 | A user learns the MAC addresses of other users in the same network segment through ARP.                             |
| ProxyARP-<br>basedTransparent<br>Transmission | With Proxy ARP, a user can directly communicate with users<br>in another network<br>without knowing that it exists. |

# 2.2.1. LAN-based ARP


#### Scenario

✤ ARP is required in all IPv4 LANs.





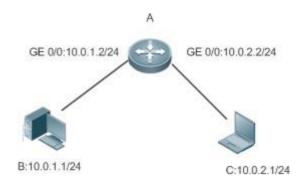
• A user needs to learn the MAC addresses of other users through ARP to communicate with them.



RemarksA is a router.B is a switch. It acts as the gateway. C, D, and E are hosts.

# Deployment

• Enable ARP in a LAN to implement IP-MAC mapping.


2.2.2 Proxy ARP-based Transparent Transmission

#### Scenario

Transparent transmission across IPv4 LANs is performed.

• Enable Proxy ARP on the router to achieve direct communication

between users in different network segments. Figure 2-2





| -                                   |                                                                                    |
|-------------------------------------|------------------------------------------------------------------------------------|
| Руководство пол<br>2. Configuring A |                                                                                    |
| Remarks                             | A is a router connecting two LANs.                                                 |
|                                     | B and C are hosts in different subnets. No default gateway is configured for them. |

# Deployment

 Enable Proxy ARP on the subnet gateway. After configuration, the gateway can act as a proxy to enable a host without any route information to obtain MAC addresses of IP users in other subnets.

# 2.3. Features

#### Overview

| Feature                                           | Description                                                                                                                           |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Static ARP                                        | Users can manually specify IP-MAC mapping to prevent the device from learning incorrect ARP entries.                                  |
| ARP Attributes                                    | Users can specify the ARP entry timeout, ARP request retransmission times and interval, and maximum number of unresolved ARP entries. |
| Trusted ARP                                       | Trusted ARP is used to prevent ARP spoofing.                                                                                          |
| Gratuitous ARP                                    | Gratuitous ARP is used to detect IP address conflicts and enable peripheral devices to update ARP entries.                            |
| Proxy ARP                                         | A proxy replies to the ARP requests from other devices in different subnets.                                                          |
| Local Proxy ARP                                   | A proxy replies to the ARP requests from other devices in the same subnet.                                                            |
| ARPTrustworthin<br>ess<br>Detection               | Neighbor Unreachable Detection (NUD) is used to ensure that correct ARP entries are learned.                                          |
| <u>Disabling</u><br>Dynamic ARP<br>Entry Learning | After dynamic ARP learning is disabled on an interface, the interface does not learn dynamic ARP entries.                             |



| Z. Comiganing Arti oc |                                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| ARP-based IP<br>Guard | You can set the number of IP packets for triggering ARP drop to prevent a large number of unknown unicast packets from being sent to the CPU. |
|                       |                                                                                                                                               |
| Refraining from       | The device refrains from sending ARP broadcast requests to                                                                                    |
| <u>Sending</u>        | authentication VLANs to reduce the number of ARP broadcast requests                                                                           |
| ARPRequeststo         | in the network.                                                                                                                               |
| Authentication        |                                                                                                                                               |
| VLANs                 |                                                                                                                                               |
| VLAINS                |                                                                                                                                               |

## 2.3.2. Static ARP

Static ARP entries can be configured manually or assigned by the authentication server. The manually configured ones prevail. Static ARP can prevent the device from learning incorrect ARP entries.

## Working Principle

If static ARP entries are configured, the device does not actively update ARP entries and these ARP entries permanently exist.

When the device forwards Layer-3 packets, the static MAC address is encapsulated in the Ethernet header as the destination MAC address.

## **Related Configuration**

## Enabling Static ARP

Run the **arp [vrf name]** *ip-address mac-address type* command in global configuration mode to configure static ARP entries. By default, no static ARP entry is configured. Users can bind static ARP entries to individual VRF instances or the global VRF instance. ARP encapsulation supports only the Ethernet II type, which is represented by ARPA.

## 2.3.2. ARP Attributes

Users can specify the ARP timeout, ARP request retransmission interval and times, maximum number of unresolved ARP entries, maximum number of ARP entries on an interface, and maximum number of ARP entries on a board.

# **Working Principle**

## ✤ ARP Timeout

The ARP timeout only applies to the dynamically learned IP-MAC mapping. When the ARP entry timeout expires, the device sends a unicast ARP request packet to detect whether the peer end is online. If it receives an ARP reply from the peer end, it does not delete this ARP entry. Otherwise, the device deletes this ARP entry.

When the ARP timeout is set to a smaller value, the mapping table stored in the ARP cache is more accurate but ARP consumes more network bandwidth.

# ARP Request Retransmission Interval and Times



#### Руководство пользователя

#### 2. Configuring ARP39

The device consecutively sends ARP requests to resolve an IP address to a MAC address. The shorter the retransmission interval is, the faster the resolution is. The more times the ARP request is retransmitted, the more likely the resolution will succeed and the more bandwidth ARP will consume.

#### Maximum Number of Unresolved ARP Entries

In a LAN, ARP attacks and scanning may cause a large number of unresolved ARP entries generated on the gateway. As a result, the gateway fails to learn the MAC addresses of the users. To prevent such attacks, users can configure the maximum number of unresolved ARP entries.

#### \* Maximum Number of ARP Entries on an Interface

Configure the maximum number of ARP entries on a specified interface to prevent ARP entry resource waste.

#### **Related Configuration**

#### Configuring the ARP Timeout

Run the **arp timeout** seconds command in interface configuration mode to configure the ARP timeout. The default timeout is 3,600 seconds. You can change it based on actual situations.

## **\*** Configuring the ARP Request Retransmission Interval and Times

- Run the arp retry interval seconds command in global configuration mode to configure the ARP request retransmission interval. The default interval is 1 second. You can change it based on actual situations.
- Run the arp retry times number command in global configuration mode to configure the ARP request retransmission times. The default number of retransmission times is 5. You can change it based on actual situations.

## Configuring the Maximum Number of Unresolved ARP Entries

Run the **arp unresolve** *number* command in global configuration mode to configure the maximum number of unresolved ARP entries. The default value is the maximum number of ARP entries supported by the device. You can change it based on actual situations.

## **Configuring the Maximum Number of ARP Entries on an Interface**

Run the **arp cache interface-limit** *limit* command in interface configuration mode to configure the maximum number of ARP entries learned on an interface. The default number is 0. You can change it based on actual situations. This command also applies to static ARP entries.

## 2.3.3. Trusted ARP

#### **Working Principle**

As a type of special ARP entries, trusted ARP entries are added to the ARP table to prevent ARP spoofing. Trusted ARP entries have characteristics of both static and dynamic ARP



#### Руководство пользователя

#### 2. Configuring ARP40

entries, with a priority higher than that of dynamic ARP entries and lower than that of static ARP entries. Trusted ARP has an aging mechanism similar to that of dynamic ARP. When an ARP entry ages, the device actively sends an ARP request packet to detect whether the corresponding user exists. If the user sends a reply, the device regards the user active and updates the ARP timeout. Otherwise, the device deletes the ARP entry. Trusted ARP has characteristics of static ARP, that is, the device does not learn ARP packets to update the MAC address and interface ID in the ARP entry.

When a user goes online on a GSN client, the authentication server obtains the user's reliable IP-MAC mapping through the access switch, and adds trusted ARP entries to the user's gateway. This process is transparent to the network administrator and does not affect the administrator's work on network management.

Since trusted ARP entries come from authentic sources and will not be updated, they can efficiently prevent ARP spoofing targeted at the gateway.

#### **Related Configuration**

- Enabling Trusted ARP
  - Run the service trustedarp command in global configuration mode to enable trusted ARP. This function is disabled by default.
  - Run the arp trusted user-vlan vid1 translated-vlan vid2 command in global configuration mode to implement VLAN redirection. This function is disabled by default. If the VLAN pushed by the server differs from the VLAN in the trusted ARP entry, users need to enable VLAN redirection.
  - Run the arp trusted aging command in global configuration mode to enable ARP aging. Trusted ARP entries are not aged by default.
  - Run the arp trusted number command in global configuration mode to configure the capacity of trusted ARP entries. The default value is half of the total capacity of ARP entries. You can change it based on actual situations.

#### 2.3.4. Gratuitous ARP

#### **Working Principle**

Gratuitous ARP packets are a special type of ARP packets. In a gratuitous ARP packet, the source and destination IP addresses are the IP address of the local device. Gratuitous ARP packets have two purposes:

- IP address conflict detection. If the device receives a gratuitous packet and finds the IP address in the packet the same as its own IP address, it sends an ARP reply to notify the peer end of the IP address conflict.
- 2. ARP update. When the MAC address of an interface changes, the device sends





#### 2. Configuring ARP41

a gratuitous ARP packet to notify other devices to update ARP entries.

The device can learn gratuitous ARP packets. After receiving a gratuitous ARP packet, the device checks whether the corresponding dynamic ARP entry exists. If yes, the device updates the ARP entry based on the information carried in the gratuitous ARP packet.

#### **Related Configuration**

#### Enabling Gratuitous ARP

Run the **arp gratuitous-send interval** *seconds* [*number*] command in interface configuration mode to enable gratuitous ARP. This function is disabled on interfaces by default. Generally you need to enable this function on the gateway interface to periodically update the MAC address of the gateway on the downlink devices, which prevents others from faking the gateway.

## 2.3.5. Proxy ARP

#### **Working Principle**

The device enabled with Proxy ARP can help a host without any route information to obtain MAC addresses of IP users in other subnets. For example, if the device receiving an ARP request finds the source IP address in a different network segment from the destination IP address and knows the route to the destination address, the device sends an ARP reply containing its own Ethernet MAC address. This is how Proxy ARP works.

#### **Related Configuration**

- Enabling Proxy ARP
- Run the **ip proxy-arp** command in interface configuration mode to enable Proxy ARP.
- This function is enabled on routers while disabled on switches by default.

## 2.3.6. Local Proxy ARP

#### **Working Principle**

Local Proxy ARP means that a device acts as a proxy in the local VLAN (common VLAN or sub VLAN).

After local Proxy ARP is enabled, the device can help users to obtain the MAC addresses of other users in the same subnet. For example, when port protection is enabled on the device, users connected to different ports are isolated at Layer 2. After local Proxy ARP is enabled, the device receiving an ARP request acts as a proxy to send an ARP reply containing its own

Ethernet MAC address. In this case, different users communicate with each other through Layer-3 routes. This is how local Proxy ARP works.



#### Enabling Local Proxy ARP

- Run the local-proxy-arp command in interface configuration mode to enable local Proxy ARP.
- This function is disabled by default.
- This command is supported only on switch virtual interfaces (SVIs).

#### 2.3.7. ARP Trustworthiness Detection

#### **Working Principle**

The **arp trust-monitor enable** command is used to enable anti-ARP spoofing to prevent excessive useless ARP entries from occupying device resources. After ARP trustworthiness detection is enabled on a Layer-3 interface, the device receives ARP request packets from this interface:

1. If the corresponding entry does not exist, the device creates a dynamic ARP

entry and performs NUD after 1 to 5 seconds. That is, the device begins to age

the newly learned ARP entry and sends a unicast ARP request. If the device

receives an ARP update packet from the peer end within the aging time, it stores

the entry. If not, it deletes the entry.

- 2 If the corresponding ARP entry exists, NUD is not performed.
- a If the MAC address in the existing dynamic ARP entry is updated, the device also performs NUD.

Since this function adds a strict confirmation procedure in the ARP learning process, it affects the efficiency of ARP learning. After this function is disabled, NUD is not required for learning and updating ARP entries.

#### **Related Configuration**

#### Enabling ARP Trustworthiness Detection

Run the **arp trust-monitor enable** command in interface configuration mode to

enable ARP trustworthiness detection. This function is disabled by default.

## 2.3.8. Disabling Dynamic ARP Entry Learning

## **Working Principle**

After dynamic ARP entry learning is disabled on an interface, this interface does not learn dynamic ARP entries.

## **Related Configuration**





#### 2. Configuring ARP43

- Disabling Dynamic ARP Entry Learning
  - Dynamic ARP entry learning is enabled on interfaces by default.
  - Run the no arp-learning enable command in interface configuration mode to disable dynamic ARP entry learning.

#### 2.3.9. ARP-based IP Guard

#### **Working Principle**

When receiving unresolved IP packets, the switch cannot forward them through the hardware and thereby need to send them to the CPU for address resolution. If a large number of such packets are sent to the CPU, the CPU will be congested, affecting other services on the switch.

After ARP-based IP guard is enabled, the switch receiving ARP request packets counts the number of packets in which the destination IP address hits this ARP entry. If this number is equal to the configured number, the switch sets a drop entry in the hardware so that the hardware will not send the packets with this destination IP address to the CPU. After the address resolution is complete, the switch continues to forward the packets with this destination IP address.

#### **Related Configuration**

- Enabling ARP-based IP Guard
- Run the arp anti-ip-attack command in global configuration mode to configure the number of IP packets for triggering ARP drop.
- By default, the switch discards the corresponding ARP entry after it receives three unknown unicast packets containing the same destination IP address.

## 2.3.10. Refraining from Sending ARP Requests to Authentication VLANs

## **Working Principle**

In gateway authentication mode, all sub VLANs in a Super VLAN are authentication VLANs by default. Users in an authentication VLAN have to pass authentication to access the network. After authentication, a static ARP entry is generated on the device. Therefore, when accessing an authenticated user, the device does not need to send ARP requests to the authentication VLAN. If the device attempts to access users in an authentication-exemption VLAN, it only needs to send ARP requests to the authentication-exemption VLAN.

In gateway authentication mode, this function is enabled on the device by default. If the device needs to access authentication-exemption users in an authentication VLAN, disable this function.

## **Related Configuration**

Refraining from Sending ARP Requests to Authentication VLANs





- 2. Configuring ARP44
  - Run the arp suppress-auth-vlan-req command in interface configuration mode to refrain from sending ARP requests to authentication VLANs.
  - This function is enabled by default.

#### 2.3.11. Host Existence Judgment Prior to ARP Proxy Service Provision

#### Working Principle

Two devices are configured to form a Virtual Router Redundancy Protocol (VRRP) network and a local ARP proxy is enabled on them. When the standby VRRP device sends an ARP request to a terminal, the active VRRP device acts as a proxy of the terminal and sends an ARP response to the standby VRRP device regardless of whether the terminal exists. As a result, the standby VRRP device learns a large number of proxy ARP entries.

After the **arp proxy-resolved** command is configured, the active VRRP device first judges, upon receiving an ARP request, whether the ARP entry corresponding to the destination IP address exists. If yes, the active VRRP device acts as an ARP proxy. If no, the active VRRP device does not act as an ARP proxy. In addition, the gateway automatically requests the ARP entry corresponding to the destination IP address in broadcast mode. This prevents a case that the gateway fails to act as a proxy to respond to an ARP request of the destination IP address due to absence of the ARP entry corresponding to the destination IP address.

After the **no arp proxy-resolved** command is configured, if the proxy conditions are met, the active VRRP device directly acts as a proxy upon receiving an ARP request, with no need to judge whether the ARP entry corresponding to the destination IP address has been resolved.

#### **Related Configuration**

- Configuring a Device Not to Judge the Existence of the ARP Entry Corresponding to a Destination IP Address When the Device Responds to an ARP Request as an ARP Proxy
  - Run the **no arp proxy-resolved** command in global configuration mode.
  - By default, **arp proxy-resolved** is enabled.

## 2.3.12. ARP Packet Statistics Collection

#### **Working Principle**

The device counts the total numbers of sent/received ARP requests/responses and packets of unknown types on all interfaces from power-on.

# 2.4. Configuration



| 2. Configuring ARP45                        |                                                                                                                                                                                                        |                                                                   |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Configuration                               | Description and Command                                                                                                                                                                                |                                                                   |
| Enabling Static ARP                         | (Optional) It is used to enable static IP-MAC binding.                                                                                                                                                 |                                                                   |
|                                             | arp                                                                                                                                                                                                    | Enables static ARP.                                               |
| <u>Configuring ARP</u><br><u>Attributes</u> | (Optional) It is used to specify the ARP timeout, ARP request<br>retransmission interval and times, maximum number of<br>unresolved ARP entries, and maximum number of ARP entries<br>on an interface. |                                                                   |
|                                             | arp timeout                                                                                                                                                                                            | Configures the ARP timeout.                                       |
|                                             | arp retry interval                                                                                                                                                                                     | Configures the ARP request retransmission interval.               |
|                                             | arp unresolve                                                                                                                                                                                          | Configuresthemaximumnumber<br>of<br>unresolved ARP entries.       |
|                                             | arp cache interface-limit                                                                                                                                                                              | Configures the maximum<br>number of ARP                           |
|                                             |                                                                                                                                                                                                        | entries on an interface.                                          |
|                                             | (Optional) It is used to enable                                                                                                                                                                        | anti-ARP spoofing.                                                |
|                                             | service trustedarp                                                                                                                                                                                     | Enables trusted ARP.                                              |
| Enabling Trusted<br>ARP                     | arp trusted user-vlan                                                                                                                                                                                  | Enables VLAN redirection when<br>a trusted<br>ARP entry is added. |
|                                             | arp trusted aging                                                                                                                                                                                      | Enables trusted ARP aging.                                        |
|                                             | arp trusted                                                                                                                                                                                            | Configures the capacity of trusted ARP entries.                   |
| Enabling Gratuitous<br>ARP                  | (Optional) It is used to detect IP address conflicts and enables peripheral devices to update ARP entries.                                                                                             |                                                                   |



| 2. Configuring ARP46                        |                                                                                                         |                                                             |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
|                                             | arp gratuitous-send interval                                                                            | Enables gratuitous ARP.                                     |  |
| Enabling Proxy ARP                          | (Optional) It is used to act as a proxy to reply to ARP requests from the devices in different subnets. |                                                             |  |
|                                             | ip proxy-arp                                                                                            | Enables Proxy ARP.                                          |  |
| Enabling Local                              | (Optional) It is used to act as a proxy to reply to ARP requests from other devices in the same subnet. |                                                             |  |
| Proxy ARP                                   | local-proxy-arp                                                                                         | Enables local Proxy ARP.                                    |  |
| EnablingARP<br>Trustworthiness<br>Detection | (Optional) It is used to unicast ARP request packets to ensure that correct ARP entries are learned.    |                                                             |  |
|                                             | arp trusted-monitor enable                                                                              | Enables ARP trustworthiness detection.                      |  |
| <u>DisablingDynamicA</u><br>RP Learning     | (Optional) It is used to disable dynamic ARP learning on an interface.                                  |                                                             |  |
| <u></u>                                     | no arp-learning enable                                                                                  | Disables dynamic ARP learning<br>on an<br>interface.        |  |
| EnablingARP-<br>basedIP Guard               | (Optional) It is used to prevent a large number of IP packets from being sent to the CPU.               |                                                             |  |
|                                             | arp anti-ip-attack                                                                                      | Configures the number of IP packets for                     |  |
|                                             |                                                                                                         | triggering ARP drop.                                        |  |
| Refraining from<br>Sending ARP              | (Optional) It is used to refrain fro authentication VLANs.                                              | m sending ARP requests to                                   |  |
| Requeststo<br>Authentication<br>VLANs       | arp suppress-auth-vlan-req                                                                              | Refrains from sending ARP requests to authentication VLANs. |  |
|                                             | (Optional) It is used to disable                                                                        | the function of judging, before the                         |  |



| Руководство пользователя<br>2. Configuring ARP47    |                                                             |                                                                                                                                                                         |
|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Configuring Host</u><br><u>Existence</u>         | device responds to an ARP<br>the ARP entry of a destination | request as an ARP proxy, whether<br>on IP address exists.                                                                                                               |
| Judgment Prior to<br>ARP Proxy Service<br>Provision | no arp proxy-resolved                                       | Disables the function of<br>enabling the active VRRP<br>device to respond to an ARP<br>request as a proxy only when<br>the destination IP<br>address has been resolved. |

## 2.4.1. Enabling Static ARP

#### **Configuration Effect**

Users can manually specify IP-MAC mapping to prevent the device from learning incorrect ARP entries.

#### Notes

After a static ARP entry is configured, the Layer-3 switch learns the physical port corresponding to the MAC address in the static ARP entry before it performs Layer-3 routing.

#### **Configuration Steps**

#### Configuring Static ARP Entries

- Optional.
- You can configure a static ARP entry to bind the IP address of the uplink device with its MAC address to prevent MAC change caused by ARP attacks.
- Configure static ARP entries in global configuration mode.

#### Verification

Run the **show running-config** command to check whether the configuration takes effect. Or run the **show arp static** 

command to check whether a static ARP cache table is created.

#### **Related Commands**

Configuring Static ARP Entries



| Command                  | arp [ vrf <i>name  </i> oob ] <i>ip-address mac-address type</i>                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <ul> <li>vrf name: Specifies a VRF instance. The name parameter indicates the name of the VRF instance.</li> <li>oob: Configures a static ARP entry for a management port.</li> <li><i>ip-address</i>: Indicates the IP address mapped to a MAC address, which is in four-part dotted-decimal format.</li> <li><i>mac-address</i>: Indicates the DLL address, consisting of 48 bits.</li> <li><i>type</i>: Indicates the ARP encapsulation type. For an Ethernet interface,</li> </ul> |
| Command<br>Mode          | the keyword is <b>arpa</b> .<br>Global configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Usage Guide              | The RGOS queries a 48-bit MAC address based on a 32-bit IP address<br>in the ARP cache table.<br>Since most hosts support dynamic ARP resolution, usually the static<br>ARP mapping are not configured. Use the <b>clear arp-cache</b> command to<br>delete the dynamic ARP entries.                                                                                                                                                                                                   |

| Scenario               | C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24                                          |
|------------------------|------------------------------------------------------------------------------------------------|
| Remakrs                | A: Router<br>B: Switch<br>serving as a<br>gateway C, D<br>and E: Users                         |
| Configuration<br>Steps | Configure a static ARP entry on B to statically bind the IP address of A with the MAC address. |



| 2. Configuring ART 49 |                                                                                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | QTECH(config)#arp 192.168.23.1 00D0.F822.334B arpa                                                                                               |
| Verification          | Run the <b>show arp static</b> command to display the static ARP entry.                                                                          |
|                       | QTECH(config)#show arp static                                                                                                                    |
|                       | Protocol Address Age(min) Hardware Type Interface<br>Internet 192.168.23.1 <static> 00D0.F822.334B arpa<br/>1 static arp entries exist.</static> |

#### **Common Errors**

• The MAC address in static ARP is incorrect.

## 2.4.2. Configuring ARP Attributes

#### **Configuration Effect**

Users can specify the ARP timeout, ARP request retransmission interval and times, maximum number of unresolved ARP entries, maximum number of ARP entries on an interface, and maximum number of ARP entries on a board.

#### **Configuration Steps**

#### Configuring the ARP Timeout

- Optional.
- In a LAN, if a user goes online/offline frequently, it is recommended to set the ARP timeout small to delete invalid ARP entries as soon as possible.
- Configure the ARP timeout in interface configuration mode.

## **Configuring the ARP Request Retransmission Interval and Times**

- Optional.
- If the network resources are insufficient, it is recommended to set the ARP request retransmission interval great and the retransmission times small to reduce the consumption of network bandwidths.
- Configure the ARP request retransmission interval and times in global configuration mode.
- Configuring the Maximum Number of Unresolved ARP Entries



#### Руководство пользователя

- 2. Configuring ARP50
  - Optional.
  - If the network resources are insufficient, it is recommended to set the maximum number of unresolved ARP entries small to reduce the consumption of network bandwidths.
  - Configure the maximum number of unresolved ARP entries in global configuration mode.
  - Configuring the Maximum Number of ARP Entries on an Interface
  - Optional.
  - Configure the maximum number of ARP entries on an interface in interface configuration mode.

#### Verification

Run the **show arp timeout** command to display the timeouts of all interfaces.

Run the **show running-config** command to display the ARP request retransmission interval and times, maximum number of unresolved ARP entries, maximum number of ARP entries on an interface, and maximum number of ARP entries on a board.

#### **Related Commands**

## Configuring the ARP Timeout

| Command                  | arp timeout <b>seconds</b>                                                                                                                                                                                                                                                                |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>seconds</i> : Indicates the timeout in seconds, ranging from 0 to 2,147,483. The default value is 3,600.                                                                                                                                                                               |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                              |
| Usage Guide              | The ARP timeout only applies to the dynamically learned IP-MAC mapping. When the ARP timeout is set to a smaller value, the mapping table stored in the ARP cache is more accurate but ARP consumes more network bandwidth. Unless otherwise specified, do not configure the ARP timeout. |

## Configuring the ARP Request Retransmission Interval and Times



| Command                  | arp retry interval <b>seconds</b>                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>seconds</i> : Indicates the ARP request retransmission interval in seconds, ranging from 1 to 3,600. The default value is 1. |
| Command<br>Mode          | Global configuration mode                                                                                                       |
| Usage Guide              | If a device frequently sends ARP requests, affecting network performance, you can set the ARP request                           |
|                          | retransmission interval longer. Ensure that this interval does not exceed the ARP timeout.                                      |

# ✤ Configuring the Maximum Number of Unresolved ARP Entries

| Command                  | arp unresolve <i>number</i>                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>number</i> . Indicates the maximum number of unresolved ARP entries, ranging from 1 to 8,192. The default value is 8,192. |
| Command<br>Mode          | Global configuration mode                                                                                                    |
| Usage Guide              | If a large number of unresolved entries exist in the ARP cache table and remain in the table after a while, it is            |
|                          | recommended to use this command to limit the number of unresolved ARP entries.                                               |

# ✤ Configuring the Maximum Number of ARP Entries on an Interface

| Command                  | arp cache interface-limit <i>limit</i>                                                                                                                                                                                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>limit</i> . Indicates the maximum number of ARP entries that can be learned<br>on an interface, including configured ARP entries and dynamically<br>learned ARP entries. The value ranges from 0 to the ARP entry<br>capacity supported by the device. 0 indicates no limit on this number. |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                   |



| 2. Configuring ARP52 |                                                                                                  |
|----------------------|--------------------------------------------------------------------------------------------------|
| Usage Guide          | Limiting the number of ARP entries on an interface can prevent                                   |
|                      | malicious ARP attacks from generating excessive ARP entries on the                               |
|                      | device and occupying entry resources. The configured value must be                               |
|                      | equal to or greater than the number of the ARP entries learned by the                            |
|                      | interface. Otherwise, the configuration does                                                     |
|                      | not take effect. The configuration is subject to the ARP entry capacity supported by the device. |

| Scenario               | C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remakrs                | A: Router<br>B: Switch serving as a gateway<br>C, D and E: Users                                                                                                                                                                                                                                                                                                                                                                                                      |
| Configuration<br>Steps | <ul> <li>Set the ARP timeout to 60 seconds on port GigabitEthernet 0/1.</li> <li>Set the maximum number of learned ARP entries to 300 on port GigabitEthernet 0/1.</li> <li>Set the ARP request retransmission interval to 3 seconds.</li> <li>Set the ARP request retransmission times to 4.</li> <li>Set the maximum number of unresolved ARP entries to 4,096.</li> <li>Set the maximum number of learned ARP entries to 1,000 on Sub Slot 2 of Slot 1.</li> </ul> |



| 2. Configuring ARP53 |                                                                                                                                                                                                          |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | QTECH(config)#interface gigabitEthernet                                                                                                                                                                  |
|                      | 0/1 QTECH(config-if-GigabitEthernet                                                                                                                                                                      |
|                      | 0/1)#arp timeout 60                                                                                                                                                                                      |
|                      | QTECH(config-if-GigabitEthernet 0/1)#arp cache interface-                                                                                                                                                |
|                      | limit 300 QTECH(config-if-GigabitEthernet 0/1)#exit                                                                                                                                                      |
|                      | QTECH(config)#arp retry interval 3                                                                                                                                                                       |
|                      | QTECH(config)#arp retry times 4                                                                                                                                                                          |
|                      | QTECH(config)#arp unresolve 4096                                                                                                                                                                         |
| Verification         | Run the show arp timeout command to display the timeout of the interface.                                                                                                                                |
|                      | Run the show running-config command to display the ARP request retransmission<br>interval and times, maximum number of unresolved ARP entries, and maximum number<br>of ARP entries on the<br>interface. |
|                      | QTECH#show arp timeout                                                                                                                                                                                   |
|                      | Interface arp timeout(sec)                                                                                                                                                                               |
|                      | GigabitEthernet 0/1 60                                                                                                                                                                                   |
|                      | GigabitEthernet 0/2 3600                                                                                                                                                                                 |
|                      | GigabitEthernet 0/4 3600                                                                                                                                                                                 |
|                      | GigabitEthernet 0/5 3600                                                                                                                                                                                 |
|                      | GigabitEthernet 0/7 3600                                                                                                                                                                                 |
|                      | VLAN 100 3600                                                                                                                                                                                            |
|                      | VLAN 111 3600                                                                                                                                                                                            |
|                      | Mgmt 0 3600                                                                                                                                                                                              |
|                      | QTECH(config) # show running-config                                                                                                                                                                      |
|                      | arp unresolve 4096                                                                                                                                                                                       |



Руководство пользователя

| 2. Configuring ARP54 |                               |
|----------------------|-------------------------------|
|                      | arp retry times 4             |
|                      | arp retry interval 3          |
|                      | !                             |
|                      | interface GigabitEthernet 0/1 |
|                      | arp cache interface-limit 300 |

## 2.4.3. Enabling Trusted ARP

## **Configuration Effect**

The gateway is protected from ARP spoofing.

#### Notes

Trusted ARP is supported only on switches.

#### **Configuration Steps**

- To deploy a GSN solution, enable trusted ARP.
- To deploy a GSN solution, enable trusted ARP.
- Enable trusted ARP in global configuration mode.

#### Verification

Run the **show arp trusted** command to display trusted ARP entries.

Run the **show running** command to check whether the configuration takes effect.

#### **Related Commands**

#### Enabling Trusted ARP

| Command                  | service trustedarp                                                                                        |
|--------------------------|-----------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                       |
| Command<br>Mode          | Global configuration mode                                                                                 |
| Usage Guide              | Trusted ARP is an anti-ARP spoofing function. As a part of the GSN solution, trusted ARP needs to be used |



Руководство пользователя

2. Configuring ARP55

with the GSN solution.

# Enabling VLAN Redirection When a Trusted ARP Entry Is Added

| Command                  | arp trusted user-vlan <i>vid1</i> translated-vlan <i>vid2</i>                                                           |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>vid1</i> : Indicates the VLAN ID configured on the server.<br><i>vid2</i> : Indicates the ID of the VLAN redirected. |
| Command<br>Mode          | Global configuration mode                                                                                               |
| Usage Guide              | This command takes effect only after trusted ARP is enabled. Configure this command only when the VLAN                  |
|                          | pushed by the server differs from the VLAN in the trusted ARP entry.                                                    |

# Displaying Trusted ARP Entries

| Command     | show arp trusted [ <i>ip</i> [ <i>mask</i> ]]                                |
|-------------|------------------------------------------------------------------------------|
| Parameter   | ip: Indicates the IP address. The ARP entry of the specified IP address      |
| Description | is displayed. If keyword trusted is specified, only the trusted ARP          |
|             | entries are displayed. Otherwise, the non-trusted ARP entries are            |
|             | displayed. mask: ARP entries within the IP subnet are displayed. If          |
|             | keyword trusted is specified, only the trusted ARP                           |
|             | entries are displayed. Otherwise, the non-trusted ARP entries are displayed. |
| Command     | Privileged EXEC mode                                                         |
| Mode        |                                                                              |
| Usage Guide | N/A                                                                          |

# ✤ Deleting Trusted ARP Entries

Command clear arp trusted [*ip* [*mask*]]



| 2. Comiganing / iter oo |                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------|
| Parameter               | ip: Indicates the IP address. The ARP entry of the specified IP address                                          |
| Description             | is displayed. If keyword trusted is specified, only the trusted ARP                                              |
|                         | entries are displayed. Otherwise, the non-trusted ARP entries are                                                |
|                         | displayed. mask: ARP entries within the IP subnet are displayed. If                                              |
|                         | keyword trusted is specified, only the trusted ARP                                                               |
|                         | entries are displayed. Otherwise, the non-trusted ARP entries are displayed.                                     |
| Command                 | Privileged EXEC mode                                                                                             |
| Mode                    |                                                                                                                  |
| Usage Guide             | After you run the clear arp trusted command to delete all trusted ARP                                            |
|                         | entries on the switch, users may fail to access the network.                                                     |
|                         | It is recommended to use the <b>clear arp trusted</b> <i>ip</i> command to delete a specified trusted ARP entry. |

# Enabling Trusted ARP Aging

| Command                  | arp trusted aging                                                                                                                                                                                                                       |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                     |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                               |
| Usage Guide              | After you configure this command, trusted ARP entries begin to age, with the aging time the same as the dynamic ARP aging time. You can run the <b>arp timeout</b> command in interface configuration mode to configure the aging time. |

# ✤ Adjusting the Capacity of Trusted ARP Entries

| Command                  | arp trusted <i>number</i>                                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>number</i> : The minimum value is 10. The maximum number is the capacity supported by the device minus 1,024. By default, the maximum number of trusted ARP entries is half of the total capacity of ARP entries. |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                            |



| Usage Guide | To make this command take effect, enable trusted ARP first. Trusted    |
|-------------|------------------------------------------------------------------------|
|             | ARP entries and other entries share the memory. If trusted ARP entries |
|             | occupy much space, dynamic ARP entries may not have sufficient         |
|             | space. Set the number of ARP entries based on the actual requirement.  |
|             | Do not set it to an excessively large                                  |
|             | value.                                                                 |
|             |                                                                        |

| Scenario          | C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------|
| Remakrs           | A: Router                                                                                                |
|                   | B: Switch serving                                                                                        |
|                   | as a gateway C, D                                                                                        |
| 1                 | and E: Users                                                                                             |
| Configurati<br>on | <ul> <li>Enable trusted ARP.</li> </ul>                                                                  |
| Steps             | <ul> <li>Enable VLAN redirection.</li> </ul>                                                             |
|                   | <ul> <li>Enable trusted ARP aging.</li> </ul>                                                            |
|                   | <ul> <li>Set the maximum number of trusted ARP entries to 1,024.</li> </ul>                              |
|                   | QTECH(config)#service trustedarp                                                                         |
|                   | QTECH(config)#arp trusted user-vlan 2-9 translated-vlan 10                                               |
|                   | QTECH(config) #arp trusted aging<br>QTECH(config) #arp trusted 1024                                      |
|                   | Zineu(courry) #arb crusted 1024                                                                          |
| Verification      | <ul> <li>Run the show running-config command to check whether the configurations take effect.</li> </ul> |





#### **Common Errors**

• Trusted ARP is disabled, causing failure to assign ARP entries.

## 2.4.4. Enabling Gratuitous ARP

#### **Configuration Effect**

The interface periodically sends gratuitous ARP packets.

#### **Configuration Steps**

- Optional.
- When a switch acts as the gateway, enable gratuitous ARP on an interface to prevent other users from learning incorrect gateway MAC address in case of ARP spoofing.
- Enable gratuitous ARP in interface configuration mode.

#### Verification

Run the **show running-config interface** [*name*] command to check whether the configuration is successful.

#### **Related Commands**

Enabling Gratuitous ARP

| Command                  | arp gratuitous-send interval <i>seconds</i> [ <i>number</i> ]                                                                                                                                                                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>seconds</i> : Indicates the interval for sending a gratuitous ARP request. The unit is second. The value ranges from 1 to 3,600.<br><i>number</i> . Indicates the number of gratuitous ARP requests that are sent. The default value is 1. The value ranges from 1 to 100. |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                  |
| Usage Guide              | If a network interface of a device acts as the gateway for downstream devices but a downstream device                                                                                                                                                                         |





#### 2. Configuring ARP59

pretends to be the gateway, enable gratuitous ARP on the interface to advertise itself as the real gateway.

| Scenario               | C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24                                                 |
|------------------------|-------------------------------------------------------------------------------------------------------|
| Remakrs                | A: Router                                                                                             |
|                        | B: Switch serving as a gateway<br>C, D and E: Users                                                   |
| Configuration<br>Steps | Configure the GigabitEthernet 0/0 interface to send a gratuitous ARP packet every 5 seconds.          |
|                        | QTECH(config-if-GigabitEthernet 0/0)#arp gratuitous-send interval 5                                   |
| Verification           | Run the <b>show running-config interface</b> command to check whether the configuration takes effect. |
|                        | QTECH#sh running-config interface gigabitEthernet 0/0                                                 |
|                        | Building configuration Current configuration : 127 bytes                                              |
|                        | interface GigabitEthernet 0/0                                                                         |
|                        | duplex auto                                                                                           |
|                        | speed auto                                                                                            |
|                        | ip address 30.1.1.1 255.255.0                                                                         |
|                        | arp gratuitous-send interval 5                                                                        |



#### 2.4.5. Enabling Proxy ARP

## **Configuration Effect**

The device acts as a proxy to reply to ARP request packets from other users.

#### Notes

By default, Proxy ARP is disabled on Layer-3 switches while enabled on routers.

## **Configuration Steps**

- Optional.
- If a user without any route information needs to obtain the MAC addresses of the IP users in other subnets, enable Proxy ARP on the device so that the device can act as a proxy to send ARP replies.
- Enable Proxy ARP in interface configuration mode.

#### Verification

Run the **show run interface** [ *name* ] command to check whether the configuration takes effect.

## **Related Commands**

#### Enabling Proxy ARP

| • Enabring               |                              |
|--------------------------|------------------------------|
| Command                  | ip proxy-arp                 |
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |
| Usage Guide              | N/A                          |



| Руководство пользова<br>2. Configuring ARP61 |                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scenario                                     | A<br>B<br>C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24                                                                                                                                                                                                                                                                      |
| Remakrs                                      | A: Router<br>B: Switch<br>serving as a<br>gateway C, D<br>and E: Users                                                                                                                                                                                                                                                               |
| Configuration<br>Steps                       | Enable Proxy ARP on port GigabitEthernet 0/0 .                                                                                                                                                                                                                                                                                       |
|                                              | QTECH(config-if-GigabitEthernet 0/0)#ip proxy-arp                                                                                                                                                                                                                                                                                    |
| Verification                                 | Run the <b>show ip interface</b> command to check whether the configuration takes effect.                                                                                                                                                                                                                                            |
|                                              | QTECH#show ip interface gigabitEthernet 0/0 GigabitEthernet 0/0<br>IP interface state is: DOWN<br>IP interface type is: BROADCAST<br>IP interface MTU is: 1500<br>IP address is:<br>No address configured<br>IP address negotiate is: OFF<br>Forward direct-broadcast is: OFF<br>ICMP mask reply is: ON<br>Send ICMP redirect is: ON |

-



Руководство пользователя

```
2. Configuring ARP62
                  Send ICMP unreachable is: ON
                  DHCP relay is: OFF
                  Fast switch is: ON
                  Help address is: 0.0.0.0
                  Proxy ARP is: ON
                ARP packet input number: 0
                  Request packet : 0
                  Reply packet : 0
                  Unknown packet : 0
                TTL invalid packet number: 0 ICMP packet input number: 0
                 Echo request : 0
                 Echo reply : 0
                 Unreachable : 0
                 Source quench : 0
                 Routing redirect : 0
```

## 2.4.6. Enabling Local Proxy ARP

## **Configuration Effect**

The device acts as a proxy to reply to ARP request packets from other users in the same subnet.

#### Notes

Local Proxy ARP is supported only on SVIs.

## **Configuration Steps**

Optional.





#### 2. Configuring ARP63

- If a user enabled with port protection needs to communicate with users in the VLAN, enable local Proxy ARP on the device.
- Enable local Proxy ARP in interface configuration mode.

#### Verification

Run the **show run interface** [ *name* ] command to check whether the configuration takes effect.

#### **Related Commands**

#### Enabling Local Proxy ARP

| Command                  | local-proxy-arp              |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |
| Usage Guide              | N/A                          |

| Scenario       |                                                       |
|----------------|-------------------------------------------------------|
|                |                                                       |
|                | B                                                     |
|                |                                                       |
|                |                                                       |
|                | C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24 |
| Remakrs        | A: Router                                             |
|                | B: Switch serving as                                  |
|                | a gateway C, D and                                    |
|                | E: Users                                              |
| Configur ation | Enable local Proxy ARP on the VLAN 1 interface.       |



| Steps            |                                                                                           |
|------------------|-------------------------------------------------------------------------------------------|
|                  | QTECH(config-if-VLAN 1)#local-proxy-arp                                                   |
| Verificati<br>on | Run the <b>show ip interface</b> command to check whether the configuration takes effect. |
|                  | QTECH#show running-config interface vlan 1                                                |
|                  | Building configuration Current configuration : 53 bytes                                   |
|                  | interface VLAN 1                                                                          |
|                  | ip address 192.168.1.2 255.255.2                                                          |
|                  | local-proxy-arp                                                                           |
|                  |                                                                                           |

# 2.4.7. Enabling ARP Trustworthiness Detection

# **Configuration Effect**

Enable ARP trustworthiness detection. If the device receiving an ARP request packet fails to find the corresponding entry, it performs NUD. If the MAC address in the existing dynamic ARP entry is updated, the device immediately performs NUD to prevent ARP attacks.

## Notes

Since this function adds a strict confirmation procedure in the ARP learning process, it affects the efficiency of ARP learning.

# **Configuration Steps**

- Optional.
- If there is a need for learning ARP entries, enable ARP trustworthiness
  detection on the device. If the device receiving an ARP request packet fails to
  find the corresponding entry, it needs to send a unicast ARP request packet to
  check whether the peer end exists. If yes, the device learns the ARP entry. If

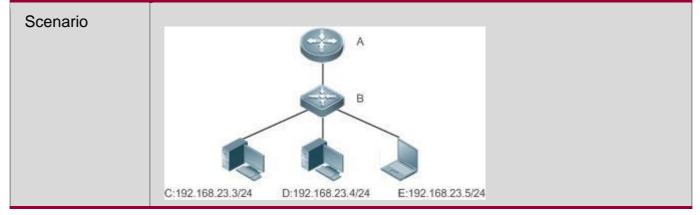




2. Configuring ARP65

not, the device does not learn the ARP entry. If the MAC address in the ARP entry changes, the device will immediately perform NUD to prevent ARP spoofing.

• Enable ARP trustworthiness detection in interface configuration mode.


#### Verification

Run the **show running-config interface** [ *name* ] command to check whether the configuration take effect

#### **Related Commands**

#### Enabling ARP Trustworthiness Detection

| Command                  | arp trust-monitor enable                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                                                                                                                                                       |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                                                                              |
| Usage Guide              | Enable this function. If the corresponding ARP entry exists and the MAC address is not updated, the device does not perform NUD.<br>Enable this function. If the MAC address of the existing dynamic ARP entry is updated, the device immediately performs NUD.<br>After this function is disabled, the device does not perform NUD for learning or updating ARP entries. |





| 2. Configuring ARP66   |                                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------|
| Remakrs                | A: Router                                                                                             |
|                        | B: Switch                                                                                             |
|                        | serving as a                                                                                          |
|                        | gateway C, D                                                                                          |
|                        | and E: Users                                                                                          |
| Configuration<br>Steps | Enable ARP trustworthiness detection on port GigabitEthernet 0/0.                                     |
|                        | QTECH(config-if-GigabitEthernet 0/0)#arp trust-monitor enable                                         |
| Verification           | Run the <b>show running-config interface</b> command to check whether the configuration takes effect. |
|                        | QTECH#show running-config interface gigabitEthernet 0/0                                               |
|                        | Building configuration Current configuration : 184 bytes                                              |
|                        | interface GigabitEthernet 0/0                                                                         |
|                        | duplex auto                                                                                           |
|                        | speed auto                                                                                            |
|                        | ip address 30.1.1.1 255.255.0                                                                         |
|                        | arp trust-monitor enable                                                                              |
|                        |                                                                                                       |

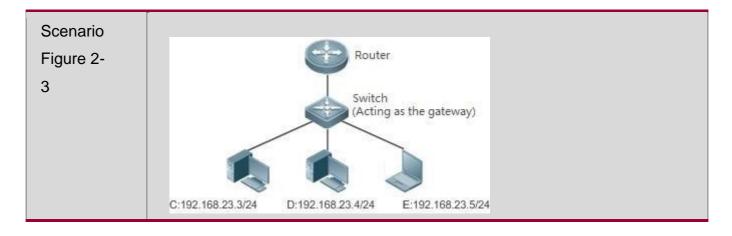
## 2.4.8. Disabling Dynamic ARP Learning

## **Configuration Effect**

After dynamic ARP learning is disabled on an interface, the interface does not learn dynamic ARP entries.

## **Configuration Steps**

- Optional.
- Enable dynamic ARP learning in interface configuration mode.




Run the **show running-config interface** [*name*] command to check whether the configuration takes effect.

#### **Related Commands**

## Disabling Dynamic ARP Learning

| Command                  | no arp-learning enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Usage Guide              | If the device has learned the dynamic ARP entries and converted the ARP<br>entries into static ARP entries through Web, disable dynamic ARP learning.<br>Otherwise, enable dynamic ARP learning. After this function is enabled,<br>users can convert dynamic ARP entries into static ARP entries through<br>Web. Users can also use the <b>clear arp</b> command to clear ARP entries to<br>deny a user Internet access. If the <b>clear arp</b> command is not configured,<br>dynamic ARP entries will be cleared when the timeout expires. After the<br>dynamic ARP learning function is disabled on an interface, the any IP<br>ARP and ARP trustworthiness detection functions will not<br>work. |





| Configuratio<br>n<br>Steps | Disable dynamic ARP entry learning on port GigabitEthernet 0/0.                                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------|
| -                          | QTECH(config-if-GigabitEthernet 0/0) #no arp-learning enable                                                        |
| Verification               | Run the <b>show running-config interface</b> command to check whether the configuration takes effect.               |
|                            | QTECH#sh running-config interface gigabitEthernet 0/0                                                               |
|                            | Building configuration                                                                                              |
|                            | Current configuration : 127 bytes<br>!                                                                              |
|                            | interface GigabitEthernet 0/0 duplex auto<br>speed auto<br>ip address 30.1.1.1 255.255.255.0 no arp-learning enable |

# 2.4.9. Enabling ARP-based IP Guard

## **Configuration Effect**

When the CPU receives the specified number of packets in which the destination IP address hits the ARP entry, all packets with this destination IP address will not be sent to the CPU afterwards.

## Notes

ARP-based IP guard is supported on switches.

# **Configuration Steps**

- Optional.
- By default, when three unknown unicast packets are sent to the switch CPU, the drop entry is set. Users can run this command to adjust the number of packets for triggering ARP drop based on the network environment. Users can also disable this function.
- Configure ARP-based IP guard in global configuration mode.

# Verification





Run the **show run** command to check whether the configuration takes effect.

#### **Related Commands**

## Enabling ARP-based IP Guard

| Command                  | arp anti-ip-attack <i>num</i>                                                                                                                                                                                                                                                                                                                           |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>num</i> : Indicates the number of IP packets for triggering ARP drop. The value ranges from 0 to 100.<br>0 indicates that ARP-based IP guard is disabled. The default value is 3.                                                                                                                                                                    |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                               |
| Usage Guide              | If hardware resources are sufficient, run the arp anti-ip-attack <i>num</i> command to set the number of IP packets for triggering ARP drop to a small value. If hardware resources are insufficient, run the arp anti-ip-attack <i>num</i> command to set the number of IP packets for triggering ARP drop to a large value, or disable this function. |

| Scenario      | C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24 |  |
|---------------|-------------------------------------------------------|--|
| Remakrs       | A: Router<br>B: Switch                                |  |
|               | serving as a                                          |  |
|               | gateway C, D                                          |  |
|               | and E: Users                                          |  |
| Configuration | Enable ARP-based IP guard on B.                       |  |
| Steps         | QTECH(config)#arp anti-ip-attack 10                   |  |



| Руководство пользова<br>2. Configuring ARP70 | ятеля                                                                                                          |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Verification                                 | Run the <b>show running-config</b> command to check whether the configuration takes effect.                    |
|                                              | QTECH#show running-config<br>Building configuration Current configuration : 53 bytes arp anti-ip-<br>attack 10 |

# 2.4.10. Refraining from Sending ARP Requests to Authentication VLANs

# **Configuration Effect**

The device does not send ARP request packets to authentication VLANs.

## Notes

This function is supported only on SVIs.

## **Configuration Steps**

- Optional.
- In gateway authentication mode, the device does not send ARP request packets to authentication VLANs by default. If the device needs to send ARP request packets to authentication VLANs, run the **no arp suppress-auth-vlan**req command to disable this function.
- Perform this configuration in interface configuration mode.

## Verification

Run the **show run interface** [ *name* ] command to check whether the configuration takes effect.

## **Related Commands**

## Refraining from Sending ARP Requests to Authentication VLANs

| Command                  | arp suppress-auth-vlan-req   |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |



| Руководство пользова                         | геля |  |  |
|----------------------------------------------|------|--|--|
| Руководство пользова<br>2. Configuring ARP71 |      |  |  |
| Usage Guide                                  | N/A  |  |  |

# **Configuration Example**

| Scenario               | C:192.168.23.3/24 D:192.168.23.4/24 E:192.168.23.5/24                                                                                                                                             |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remakrs                | A: Router<br>B: Switch<br>serving as a<br>gateway C, D<br>and E: Users                                                                                                                            |
| Configuration<br>Steps | Disable the VLAN 2 interface from refraining from sending ARP requests to authentication VLANs.<br>QTECH(config-if-VLAN 2)#no arp suppress-auth-vlan-req                                          |
| Verification           | Run the <b>show running-config interface</b> <i><name></name></i> command to check whether the configuration takes effect.                                                                        |
|                        | <pre>QTECH#show running-config interface vlan 2 Building configuration Current configuration : 53 bytes interface VLAN 2 ip address 192.168.1.2 255.255.255.0 no arp suppress-auth-vlan-req</pre> |

# 2.4.11. Configuring Host Existence Judgment Prior to ARP Proxy Service Provision

# **Configuration Effect**



#### Руководство пользователя

#### 2. Configuring ARP72

Enable the local ARP proxy on the active VRRP device. When responding to an ARP request as a proxy, the active VRRP device does not need to judge whether the ARP entry corresponding to the destination IP address exists.

#### Notes

The **arp proxy-resolved** command is enabled on devices by default. That is, by default, the active VRRP device responds to an ARP request as a proxy only after the destination IP address has been resolved.

#### **Configuration Steps**

- Optional.
- When the active VRRP device needs to forcibly respond to ARP requests as a proxy, run the **no arp proxy-resolved** command.
- Configure this function in global configuration mode.

#### Verification

Run the **show running-config** command to check whether the configuration is successful.

#### **Related Commands**

 Configuring the Active VRRP Device to Forcibly Respond to ARP Requests as a Proxy

| Command                  | no arp proxy-resolved     |
|--------------------------|---------------------------|
| Parameter<br>Description | N/A                       |
| Command<br>Mode          | Global configuration mode |
| Usage Guide              | N/A                       |



| Руководство пользоват<br>2. Configuring ARP73                                                                                                              | еля                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Scenario<br>Figure 2-4                                                                                                                                     | Active VRRP deviceStandby VRRP device                                                                                                                       |  |
| Configuration<br>Steps                                                                                                                                     | Configure the active VRRP device to forcibly respond to ARP requests as a proxy, with no need to judge whether destination IP addresses have been resolved. |  |
| QTECH (config) #no arp proxy-resolved           Verification         Run the show running-config command to check whether the configuration is successful. |                                                                                                                                                             |  |
|                                                                                                                                                            |                                                                                                                                                             |  |

## **Common Errors**

N/A

# 2.5. Monitoring

## Clearing

Running the **clear** commands may lose vital information and thus interrupt services.

| Description                                                                                                                             | Command         |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Clears dynamic ARP<br>entries. In gateway<br>authentication mode,<br>dynamic ARP entries in<br>authentication VLANs are<br>not cleared. | clear arp-cache |

# Displaying



| Description                                  | Command                                                                                                                                                                                               |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Displays the ARP table in detail.            | <pre>show arp [detail] [ interface-type interface-number / [vrf vrf-name] [ip [mask]   mac-address   static   complete   incomplete ]   subvlan {subvlan-number   min-max min_value max_value}]</pre> |  |
| Displays the ARP table.                      | show ip arp [ vrf vrf-name ]                                                                                                                                                                          |  |
| Displays the trusted ARP table.              | <pre>show arp [detail] trusted [ ip [ mask ] ]</pre>                                                                                                                                                  |  |
| Displays the ARP entry counter.              | show arp counter                                                                                                                                                                                      |  |
| Displays ARP packet statistics.              | show arp packet statistics [ interface ]                                                                                                                                                              |  |
| Displays the timeout of dynamic ARP entries. | show arp timeout                                                                                                                                                                                      |  |

## Debugging

System resources are occupied when debugging information is output. Therefore, disable the debugging switch immediately after use.

| Description                                      | Command         |
|--------------------------------------------------|-----------------|
| Debugs ARP packet sending and receiving.         | debug arp       |
| Debugs the creation and deletion of ARP entries. | debug arp event |



# 3 Configuring IPv6

## 3.1 Overview

As the Internet develops rapidly and IPv4 address space is becoming exhausted, IPv4 limitations become more and more obvious. At present, many researches and practices on Internet Protocol Next Generation (IPng) have been conducted. The IPng working group of the Internet Engineering Task Force (IETF) has formulated an IPng protocol named IP Version 6 (IPv6), which is described in RFC 2460.

## **Main Features**

## \* Larger Address Space

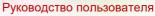
Compared with 32 bits in an IPv4 address, the length of an IPv6 address is extended to 128 bits. Therefore, the address space has approximately 2<sup>128</sup> addresses. IPv6 adopts a hierarchical address allocation mode to support address allocation of multiple subnets from the Internet core network to intranet subnet.

## Simpler Packet Header Format

Since the design principle of the IPv6 packet header is to minimize the overhead of the packet header, some non-key fields and optional fields are removed from the packet header to the extended packet header. Therefore, although the length of an IPv6 address is four times of that of an IPv4 address, the IPv6 packet header is only two times of the IPv4 packet header. The IPv6 packet header makes device forwarding more efficient. For example, with no checksum in the IPv6 packet header, the IPv6 device does not need to process fragments (fragmentation is completed by the initiator).

## Efficient Hierarchical Addressing and Routing Structure

IPv6 uses a convergence mechanism and defines a flexible hierarchical addressing and routing structure. Multiple networks at the same layer are represented as a uniform network prefix on the upstream device, greatly reducing routing entries maintained by the device and routing and storage overheads of the device.


## Easy Management: Plug and Play (PnP)

IPv6 provides automatic discovery and auto-configuration functions to simplify management and maintenance of network nodes. For example, Neighbor Discovery (ND), MTU Discovery, Router Advertisement (RA), Router Solicitation (RS), and auto-configuration technologies provide related services for PnP. Particularly, IPv6 offers two types of auto-configuration: stateful auto-configuration and stateless auto-configuration. In IPv4, Dynamic Host Configuration Protocol (DHCP) realizes auto-configuration of the host IP address and related parameters. IPv6 inherits this auto-configuration service from IPv4 and called it stateful autoconfiguration (see DHCPv6). Besides, IPv6 also offers the stateless auto-configuration service.During stateless auto-configuration, a host automatically obtains the local address of the link, address prefix of the local device, and other related configurations.

## Security

As an optional extension protocol of IPv4, Internet Protocol Security (IPSec) is a part of IPv6 to provide security for IPv6 packets. At present, IPv6 provides two mechanisms: Authentication Header (AH) and Encapsulated Security Payload (ESP). AH provides data





#### 2. Configuring ARP76

integrity and authenticates IP packet sources to ensure that the packets originate from the nodes identified by the source addresses. ESP provides data encryption to realize end-to-end encryption.

### Better QoS Support

A new field in the IPv6 packet header defines how to identify and process data streams. The Flow Label field in the IPv6 packet header is used to authenticate a data flow. Using this field, IPv6 allows users to propose requirements on the communication quality. , A device can identify all packets belonging to a specific data stream based on this field and process these packets according to user requirements.

### New Protocol for Neighboring Node Interaction

IPv6 Neighbor Discovery Protocol (NDP) uses a series of Internet Control Message Protocol Version 6 (ICMPv6) packets to implement interactive management of neighboring nodes (nodes on the same link). IPv6 uses NDP packets and efficient multicast/unicast ND packets instead of broadcast-based Address Resolution Protocol (ARP) and Control Message Protocol Version 4 (ICMPv4) router discovery packets.

### ✤ Extensibility

With strong extensibility, IPv6 features can be added to the extended packet header following the IPv6 packet header. Unlike IPv4, the IPv6 packet header can support at most 40 bytes of options. For an IPv6 packet, the length of the extended packet header is restricted only by the maximum number of bytes in the packet.

### **Protocols and Standards**

- RFC 4291 IP Version 6 Addressing Architecture
- RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
- RFC 4443 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification
- RFC 4861 Neighbor Discovery for IP version 6 (IPv6)
- RFC 4862 IPv6 Stateless Address Auto-configuration
- RFC 5059 Deprecation of Type 0 Routing Headers in IPv6

## 3.2 Applications

| Application            | Description                                               |  |  |
|------------------------|-----------------------------------------------------------|--|--|
| Communication Based on | Two PCs communicate with each other using IPv6 addresses. |  |  |
| Addresses IPv6         |                                                           |  |  |

### **3.2.1** Communication Based on IPv6 Addresses

### Scenario



2. Configuring ARP77

As shown in Figure 3-1, Host 1 and Host 2 communicate with each other using IPv6 addresses. Figure 3-1



## Deployment

Hosts can use the stateless address auto-configuration or DHCPv6 address assignment mode. After addresses are configured, hosts can communicate with each other using IPv6 addresses.

## 3.3 Features

### Overview

| Feature                                 | Description                                                                                                                                                                                                                                                            |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>IPv6 Address</u><br><u>Format</u>    | The IPv6 address format makes IPv6 have a larger address space and flexible representation approach.                                                                                                                                                                   |
| IPv6 Address<br>Type                    | IPv6 identifies network applications based on addresses.                                                                                                                                                                                                               |
| IPv6 Packet<br>Header<br>Format         | IPv6 simplifies the fixed and extended packet headers to improve the data packet processing and forwarding efficiency of the device.                                                                                                                                   |
| <u>IPv6Neighbor</u><br><u>Discovery</u> | ND functions include router discovery, prefix discovery, parameter<br>discovery, address auto-configuration, address resolution (like ARP),<br>next-hop determination, Neighbor Unreachability<br>Detection (NUD), Duplicate Address Detection (DAD), and redirection. |
| IPv6 Source<br>Routing                  | This feature is used to specify the intermediate nodes that a packet passes through along the path to the destination address. It is similar to the IPv4 loose source routing option and loose record routing option.                                                  |



| 2. Configuring ARP78 |                                                                                                                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Restrictingthe       | This feature prevents DoS attacks.                                                                                             |
| Sending Rate         |                                                                                                                                |
| of ICMPv6Error       |                                                                                                                                |
| <u>Messages</u>      |                                                                                                                                |
| IPv6 HOP-LIMIT       | This feature prevents useless unicast packets from being unlimitedly transmitted on the network and wasting network bandwidth. |
| Refrainingfrom       | In gateway authentication mode, a device is refrained from sending NS                                                          |
| Sending NS           | packets to authentication VLANs.                                                                                               |
| Packets to           |                                                                                                                                |
| Authentication       |                                                                                                                                |
| <u>VLANs</u>         |                                                                                                                                |
| <u>Default</u>       | The default gateway is configured on the management interface to                                                               |
| <u>Gateway on</u>    | generate a default route for this interface.                                                                                   |
| theManagemen         |                                                                                                                                |
| <u>t</u>             |                                                                                                                                |
| Interface            |                                                                                                                                |

## 3.3.1 IPv6 Address Format

An IPv6 address is represented in the X:X:X:X:X:X:X format, where X is a 4-digit hexadecimal integer (16 bits). Each address consists of 8 integers, with a total of 128 bits (each integer contains 4 hexadecimal digits and each digit contains four bits). The following are three valid IPv6 addresses:

2001:ABCD:1234:5678:AAAA:BBBB:1200:2100

800:0:0:0:0:0:0:1

1080:0:0:0:8:800:200C:417A

These integers are hexadecimal, where A to F represent 10 to 15. Each integer in the address must be represented, except the leading zeros in each integer. If an IPv6 address contains a string of zeros (as shown in the second and third examples above), a double colon (::) can be used to represent these zeros. That is, 800:0:0:0:0:0:0:1 can be represented as 800::1.

A double colon indicates that this address can be extended to a complete 128-bit address. In this approach, only when the 16-bit integers are all 0s, can they can be replaced with a double colon. A double colon can exist once in an IPv6 address.



#### 2. Configuring ARP79

In IPv4/IPv6 mixed environment, an address has a mixed representation. In an IPv6 address, the least significant 32 bits can be used to represent an IPv4 address. This IPv6 address can be represented in a mixed manner, that is, X:X:X:X:X:A.d.d.d, where X is a hexadecimal integer and d is a 8-bit decimal integer. For example, 0:0:0:0:0:0:192.168.20.1 is a valid IPv6 address. It can be abbreviated to :::192.168.20.1. Typical applications are IPv4-compatible IPv6 addresses and IPv4-mapped IPv6 addresses. If the first 96 bits are 0 in an IPv4-compatible IPv6 address, this address can be represented as ::A.B.C.D, e.g., ::1.1.1.1. IPv4-compatible addresses have been abolished at present. IPv4-mapped IPv6 addresses are represented as ::FFFF:A.B.C.D to represent IPv4 addresses as IPv6 addresses. For example, IPv4 address 1.1.1.1 mapped to an IPv6 address is represented as ::FFFF:1.1.1.1.

Since an IPv6 address is divided into two parts: subnet prefix and interface ID, it can be represented as an address with an additional value according to an address allocation method like Classless Inter-Domain Routing (CIDR). The additional value indicates how many bits (subnet prefix) in the address represent the network part. That is, the IPv6 node address contains the prefix length. The prefix length is separated from the IPv6 address by a slash. For example, in 12AB::CD30:0:0:0/60, the prefix length used for routing is 60 bits.

### **Related Configuration**

### Configuring an IPv6 Address

- No IPv6 address is configured on interfaces by default.
- Run the **ipv6 address** command to configure an IPv6 address on an interface.
- After configuration, a host can communicate with others using the configured IPv6 address based on DAD.

### 3.3.2 IPv6 Address Type

RFC 4291 defines three types of IPv6 addresses:

- Unicast address: ID of a single interface. Packets destined to a unicast address are sent to the interface identified by this address.
- Multicast address: ID of an interface group (the interfaces generally belong to different nodes). Packets destined to a multicast address are sent to all interfaces included in this address.
- Anycast address: ID of an interface group. Packets destined to an anycast address are sent to one interface included in this address (the nearest interface according to the routing protocol).

IPv6 does not define broadcast addresses

These three types of addresses are described as follows:

### Unicast Addresses

Unicast addresses fall into five types: unspecified address, loopback address, link-local



### 2. Configuring ARP80

address, site-local address, and global unicast address. At present, site-local addresses have been abolished. Except unspecified, loopback, and link-local addresses, all other addresses are global unicast addresses.

Unspecified address

The unspecified address is 0:0:0:0:0:0:0:0:0, which is usually abbreviated to ::. It has two general purposes:

- If a host has no unicast address when started, it uses the unspecified address as the source address to send an RS packet to obtain prefix information from the gateway and thereby generate a unicast address.
- 2. When an IPv6 address is configured for a host, the device detects whether the address conflicts with addresses of other hosts in the same network segment and uses the unspecified address as the source address to send a Neighbor Solicitation (NS) packet (similar to a free ARP packet).
- Loopback address

The loopback address is 0:0:0:0:0:0:0:0:1, which is usually abbreviated to ::1. Similar to IPv4 address 127.0.0.1, the loopback address is generally used by a node to send itself packets.

Link-local address

The format of a link-local address is as follows:

Figure 3-2

| 10 bits      | 54 bits | 64 bits      |
|--------------|---------|--------------|
| 1111 1110 10 | 0       | Interface ID |

The link-local address is used on a single network link to assign IDs to hosts. The address identified by the first 10 bits in the prefix is the link-local address. A device never forwards packets in which the source or destination address contains the link-local address. The intermediate 54 bits in the address are all 0s. The last 64 bits represent the interface ID, which allows a single network to connect  $2^{64}$ -1 hosts.

Site-local address

The format of a site-local address is as follows:



| 1 |                                                           |           |              |  |  |
|---|-----------------------------------------------------------|-----------|--------------|--|--|
| i | <mark>Руководство по</mark><br>2. Configuring<br>Figure 3 | ARP81     |              |  |  |
|   | 10 bits                                                   | 54 bits   | 64 bits      |  |  |
|   | 1111 1110 11                                              | Subnet ID | Interface ID |  |  |

A site-local address is used to transmit data within a site. A device never forwards packets in which the source or destination address contains the site-local address to the Internet. That is, these packets can be forwarded only within the site. A site can be assumed as an enterprise's local area network (LAN). Such addresses are similar to IPv4 private addresses such as 192.168.0.0/16. RFC 3879 has abolished site-local addresses. New addresses do not support the first 10 bits as the prefix and are all regarded as global unicast addresses. Existing addresses can continue to use this prefix.

Global unicast address

The format of a global unicast address is as follows:

Figure 3-4

| n bits                | m bits    | 128- n- m bits |
|-----------------------|-----------|----------------|
| Global Routing Prefix | Subnet ID | Interface ID   |

Among global unicast addresses, there is a type of IPv4-embedded IPv6 addresses, including IPv4-compatible IPv6 addresses and IPv4-mapped IPv6 addresses. They are used for interconnection between IPv4 nodes and IPv6 nodes.

The format of an IPv4-compatible IPv6 address is as follows:

### Figure 3-5

| 80 bits |          | 16 bits | 32 bits      |
|---------|----------|---------|--------------|
|         | 00000000 | 0000    | IPv4 Address |

The format of an IPv4-mapped IPv6 address is as follows:

### Figure 3-6

| 80 bits  | 16 bits | 32 bits      |
|----------|---------|--------------|
| 00000000 | FFFF    | IPv4 Address |





#### 2. Configuring ARP82

IPv4-compatible IPv6 addresses are mainly used on automatic tunnels. Nodes on automatic tunnels support both IPv4 and IPv6. Using these addresses, IPv4 devices transmit IPv6 packets over tunnels. At present, IPv4-compatible IPv6 addresses have been abolished. IPv4-mapped IPv6 addresses are used by IPv6 nodes to access IPv4-only nodes. For example, if the

IPv6 application on an IPv4/IPv6 host requests to resolve the name of an IPv4-only host, the name server dynamically generates an IPv4-mapped IPv6 address and returns it to the IPv6 application.

### Multicast Addresses

The format of an IPv6 multicast address is as follows:

|8| 4 | 4 |112 bits|

+ + + + + +

|1111111|flgs|scop|group ID|

+ + + + +

The first byte in the address is all 1s, representing a multicast address.

Flag field

The flag field consists of four bits. Currently only the fourth bit is specified to indicate whether this address is a known multicast address assigned by the Internet Assigned Numbers Authority (IANA) or a temporary multicast address in a certain scenario. If the flag bit is 0, this address is a known multicast address. If the flag bit is 1, this address is a temporary multicast address. The remaining three flag bits are reserved for future use.

Scope field

The scope field consists of four bits to indicate the multicast range. That is, a multicast group includes the local node, local link, local site, and any node in the IPv6 global address space.

Group ID field

The group ID consists of 112 bits to identify a multicast group. A multicast ID can represent different groups based on the flag and scope fields.

IPv6 multicast addresses are prefixed with FF00::/8. One IPv6 multicast address usually identifies interfaces on a series of different nodes. After a packet is sent to a multicast address, the packet is then forwarded to the interfaces on each node identified by this multicast address. For a node (host or device), you must add the following multicast addresses:

3. Multicast address for all nodes on the local link, that is, FF02::1





2. Configuring ARP83

4. Solicited-node multicast address, prefixed with FF02:0:0:0:1:FF00:0000/104

If the node is a device, it also has to be added to the multicast address of all devices on the local link, that is, FF02::2.

The solicited-node multicast address corresponds to the IPv6 unicast and anycast address. You must add a corresponding solicited-node multicast address for each configured unicast and anycast address of an IPv6 node. The solicited-node multicast address is prefixed with FF02:0:0:0:0:1:FF00:0000/104. The remaining 24 bits are composed of the least significant 24 bits of the unicast or anycast address. For example, if the unicast address is FE80::2AA:FF:FE21:1234, the solicited-node multicast address is FF02::1:FF21:1234.

The solicited-node multicast address is usually used in NS packets. Its address format is as follows: Figure 3-7

| IPv6 Unicast and Anycast Address |                     |        |        |        |               |
|----------------------------------|---------------------|--------|--------|--------|---------------|
| Prefix Interface <sup>I</sup> ID |                     |        |        |        |               |
| Correspond                       | ling Solicited-node | Multic | cast A | ddress | ← -24 bits- → |
| FF02                             | 0                   |        | 1      | FF     | Lower 24      |

### Anycast Addresses

Similar to a multicast address, an anycast address can also be shared by multiple nodes. The difference is that only one node in the anycast address receives data packets while all nodes included in the multicast address receive data packets.

Anycast addresses can be allocated only to devices and cannot be used as source addresses of packets.

Since anycast addresses are allocated to the normal IPv6 unicast address space, they have the same formats with unicast addresses. Every member in an anycast address must be configured explicitly for easier recognition.

RFC 2373 redefines an anycast address called subnet-router anycast address. Figure 3-8 shows the format of a subnet-router anycast address. Such an address consists of the subnet prefix and a series of 0s (interface ID).

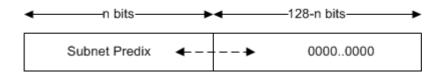

The subnet prefix identifies a specified link (subnet). Packets destined to the subnet-router anycast address will be forwarded to a device on this subnet. A subnet-router anycast address is usually used by the application on a node to communicate with a device on a remote subnet.

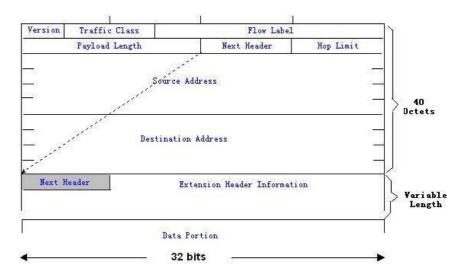
Figure 3-8



### 2. Configuring ARP84

Format of a Subnet-router Anycast Address




### **Related Configuration**

### Configuring an IPv6 Address

- No IPv6 address is configured on interfaces by default.
- Run the **ipv6 address** command to configure the IPv6 unicast address and anycast address of an interface.
- After an interface goes up, it will automatically join the corresponding multicast group.

### 3.3.3 IPv6 Packet Header Format

Figure 3-9 shows the format of the IPv6 packet header. Figure 3-9



The IPv4 packet header is in unit of four bytes. The IPv6 packet header consists of 40 bytes, in unit of eight bytes. The IPv6 packet header has the following fields:

Version

This field consists of 4 bits. In an IPv6 address, this field must be 6.

Traffic Class

This field consists of 8 bits. This field indicates the service provided by this packet, similar to the TOS field in an IPv4 address.

Flow Label





This field consists of 20 bits to identify packets belonging to the same service flow. One node can act as the Tx source of multiple service flows. The flow label and source address uniquely identify one service flow.

Payload Length

This field consists of 16 bits, including the packet payload length and the length of IPv6 extended options (if available). That is, it includes the IPv6 packet length except the IPv6 packet header.

Next Header

This field indicates the protocol type in the header field following the IPv6 packet header. Similar to the Protocol field in the IPv4 address header, the Next Header field is used to indicate whether the upper layer uses TCP or UDP. It can also be used to indicate existence of the IPv6 extension header.

Hop Limit

This field consists of 8 bits. Every time a device forwards a packet, the field value reduced by 1. If the field value reaches 0, this packet will be discarded. It is similar to the Lifetime field in the IPv4 packet header.

Source Address

This field consists of 128 bits and indicates the sender address in an IPv6 packet.

Destination Address

This field consists of 128 bits and indicates the receiver address in an IPv6 packet. At present, IPv6 defines the following extension headers:

Hop-By-Hop Options

This extension header must follow the IPv6 packet header. It consists of option data to be checked on each node along the path.

Routing Options (Type 0 routing header)

This extension header indicates the nodes that a packet passes through from the source address to the destination address. It consists of the address list of the passerby nodes. The initial destination address in the IPv6 packet header is the first address among the addresses in the routing header, but not the final destination address of the packet. After the node corresponding to the destination address in the IPv6 packet header, and sends the packet to the second address, the third address, and so on in the routing header list till the packet reaches the final destination address.





Fragment

The source node uses this extension header to fragment the packets of which the length exceeds the path MTU (PMTU).

Destination Options

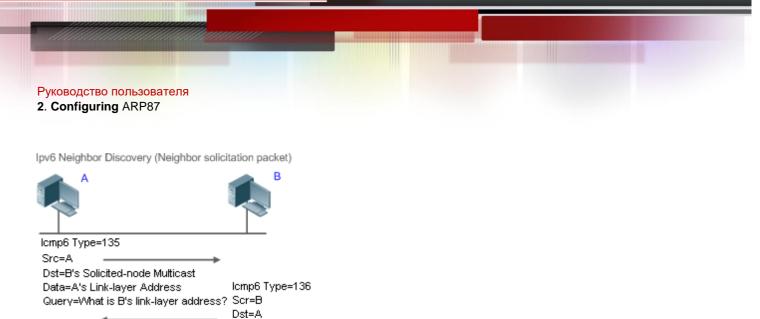
This extension header replaces the option fields of IPv4. At present, the Destination Options field can only be filled with integral multiples of 64 bits (eight bytes) if required. This extension header can be used to carry information to be checked by the destination node.

Upper-layer header

This extension header indicates the protocol used at the upper layer, such as TCP (6) and UDP (17). Another two extension headers AH and ESP will be described in the *Configuring IPSec*.

### 3.3.4 IPv6 Neighbor Discovery

NDP is a basic part of IPv6. Its main functions include router discovery, prefix discovery, parameter discovery, address auto-configuration, address resolution (like ARP), next-hop determination, NUD, DAD, and redirection. NDP defines five ICMP packets: RS (ICMP type: 133), RA (ICMP type: 134), NS (similar to ARP request, ICMP type: 135), NA (similar to ARP reply, ICMP type: 136), ICMP Redirect (ICMP type: 137).


All the above ICMP packets carry one or multiple options. These options are optional in some cases but are significant in other cases. NDP mainly defines five options: Source Link-Layer Address Option, Type=1; Target Link-Layer Address Option, Type=2; Prefix Information Option, Type=3; Redirection Header Option, Type=4; MTU Option, Type=5.

### Address Resolution

When a node attempts to communicate with another, the node has to obtain the link-layer address of the peer end by sending it an NS packet. In this packet, the destination address is the solicited-node multicast address corresponding to the IPv6 address of the destination node. This packet also contains the link-layer address of the source node. After receiving this NS packet, the peer end replies with an NA packet in which the destination address is the source address of the NS packet, that is, the link-layer address of the solicited node. After receiving this NA packet, the source node can communicate with the destination node.

Figure 3-11 shows the address resolution process. Figure 3-10





#### Data=B's Link-leayer Address A and B are ready to communicate now.

## NUD

If the reachable time of a neighbor has elapsed but an IPv6 unicast packet needs to be sent to it, the device performs NUD. While performing NUD, the device can continue to forward IPv6 packets to the neighbor.

### DAD


To know whether the IPv6 address configured for a host is unique, the device needs to perform DAD by sending an NS packet in which the source IPv6 address is the unspecified address.

If a device detects an address conflict, this address is set to the duplicate status so that the device cannot receive IPv6 packets with this address being the destination address. Meanwhile, the device also starts a timer for this duplicate address to periodically perform DAD. If no address conflict is detected in re-detection, this address can be properly used.

## Router, Prefix, and Parameter Discovery

A device periodically sends RA packets to all local nodes on the link. Figure 3-11 shows the RA packet sending process.

Figure 3-11



An RA packet usually contains the following content:

 One or multiple IPv6 address prefixes (used for on-link determination or stateless address auto-configuration)



- Validity of the IPv6 address prefix
- Host auto-configuration method (stateful or stateless)
- Default device information (whether the device acts as the default device; if yes, the interval for acting as the default device is also included.)
- Other information provided for host configuration, such as hop limit, MTU, and NS retransmission interval

RA packets can also be used as replies to the RS packets sent by a host. Using RS packets, a host can obtain the auto-configured information immediately after started rather than wait for the RA packets sent by the device. If no unicast address is configured for a newly started host, the host includes the unspecified address (0:0:0:0:0:0:0:0) as the source address in the RS packet. Otherwise, the host uses the configured unicast address as the source address and the multicast address of all local routing devices (FF02::2) as the destination address in the RS packet. As an reply to the RS packet, the RA packet uses the source address of the RS packet as the destination address (if the source address is the unspecified address, it uses the multicast address of all local nodes (FF02::1).

In an RA packet, the following parameters can be configured:

- Ra-interval: Interval for sending the RA packet.
- Ra-lifetime: Lifetime of a router, that is, whether the device acts as the default router on the local link and the interval for acting as the default router.
- Prefix: Prefix of an IPv6 address on the local link. It is used for on-link determination or stateless address auto-configuration, including other parameter configurations related to the prefix.
- Ns-interval: NS packet retransmission interval.
- Reachabletime: Period when the device regards a neighbor reachable after detecting a Confirm Neighbor Reachability event.
- Ra-hoplimit: Hops of the RA packet, used to set the hop limit for a host to send a unicast packet.
- Ra-mtu: MTU of the RA packet.
- Managed-config-flag: Whether a host receiving this RA packet obtains the address through stateful auto-configuration.
- Other-config-flag: Whether a host receiving this RA packet uses DHCPv6 to obtain other information except the IPv6 address for auto-configuration.

Configure the above parameters when configuring IPv6 interface attributes.





## Redirection

If a router receiving an IPv6 packet finds a better next hop, it sends the ICMP Redirect packet to inform the host of the better next hop. The host will directly send the IPv6 packet to the better next hop next time.

### Maximum Number of Unresolved ND Entries

 You can configure the maximum number of unresolved ND entries to prevent malicious scanning network segments from generating a large number of unresolved ND entries and occupying excessive memory space.

## Maximum Number of ND Options

 You can configure the maximum number of ND options to prevent forged ND packets from carrying unlimited ND options and occupying excessive CPU space on the device.

## Maximum Number of Neighbor Learning Entries on an Interface

 You can configure the maximum number of neighbor learning entries on an interface to prevent neighbor learning attacks from occupying ND entries and memory space of the device and affecting forwarding efficiency of the device.

## **Related Configuration**

## Enabling IPv6 Redirection

- By default, ICMPv6 Redirect packets can be sent on IPv6 interfaces.
- Run the **no ipv6 redirects** command in interface configuration mode to prohibit an interface from sending Redirect packets.

## Configuring IPv6 DAD

- By default, an interface sends one NS packet to perform IPv6 DAD.
- Run the ipv6 nd dad attempts value command in interface configuration mode to configure the number of NS packets consecutively sent by DAD. Value 0 indicates disabling DAD for IPv6 addresses on this interface.
- Run the **no ipv6 nd dad attempts** command to restore the default configuration.
- By default, the device performs DAD on duplicate IPv6 addresses every 60 seconds.
- Run the **ipv6 nd dad retry** value command in global configuration mode to configure the DAD interval. Value 0 indicates disabling DAD for the device.
- Run the **no ipv6 nd dad retry** command to restore the default configuration.



## Configuring the Reachable Time of a Neighbor

- The default reachable time of an IPv6 neighbor is 30s.
- Run the **ipv6 nd reachable-time** *milliseconds* command in interface configuration mode to modify the reachable time of a neighbor.

## Configuring the Stale Time of a Neighbor

- The default stale time of an IPv6 neighbor is 1 hour. After the time elapses, the device performs NUD.
- Run the **ipv6 nd stale-time** seconds command in interface configuration mode to modify the stale time of a neighbor.

## Configuring Prefix Information

- By default, the prefix in an RA packet on an interface is the prefix configured in the **ipv6 address** command on the interface.
- Run the **ipv6 nd prefix** command in interface configuration mode to add or delete prefixes and prefix parameters that can be advertised.

## Enabling/disabling RA Suppression

- By default, an IPv6 interface does not send RA packets.
- Run the **no ipv6 nd suppress-ra** command in interface configuration mode to disable RA suppression.

## Configuring the Maximum Number of Unresolved ND Entries

- The default value is 0, indicating no restriction. It is only restricted to the ND entry capacity supported by the device.
- Run the ipv6 nd unresolved number command in global configuration mode to restrict the number of unresolved neighbors. After the entries exceed this restriction, the device does not actively resolve subsequent packets.

## Configuring the Maximum Number of ND Options

 Run the **ipv6 nd max-opt** value command in global configuration mode to restrict the number of ND options to be processed. The default value is 10.

## Configuring the Maximum Number of ND Entries Learned on an Interface

 Run the ipv6 nd cache interface-limit value command in interface configuration mode to restrict the number of neighbors learned on an interface.





The default value is 0, indicating no restriction.

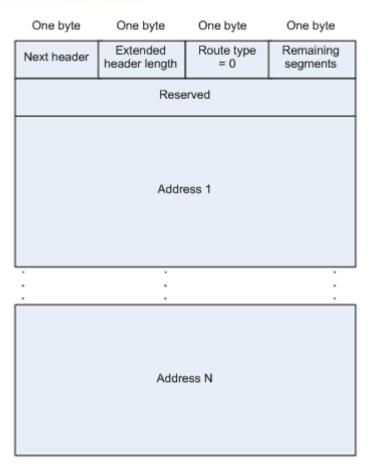
### 3.3.5 IPv6 Source Routing

### Working Principle

Similar to the IPv4 loose source routing and loose record routing options, the IPv6 routing header is used to specify the intermediate nodes that the packet passes through along the path to the destination address. It uses the following format:

Figure 3-13

| One byte                         | One byte                  | One byte          | One byte              |
|----------------------------------|---------------------------|-------------------|-----------------------|
| Next header                      | Extended<br>header length | Route type<br>= 0 | Remaining<br>segments |
| Data specific to each route type |                           |                   |                       |


The Segments Left field is used to indicate how many intermediate nodes are specified in the routing header for the packet to pass through from the current node to the final destination address.

Currently, two routing types are defined: 0 and 2. The Type 2 routing header is used for mobile communication. RFC 2460 defines the Type 0 routing header (similar to the loose source routing option of IPv4). The format of the Type 0 routing header is as follows:

Figure 3-14



#### 2. Configuring ARP92



The following example describes the application of the Type 0 routing

header, as shown in Figure 3-15. Figure 3-15



Host 1 sends Host 2 a packet specifying the intermediate nodes Router 2 and Router 3. The following table lists the changes of fields related to the IPv6 header and routing header during the forwarding process.

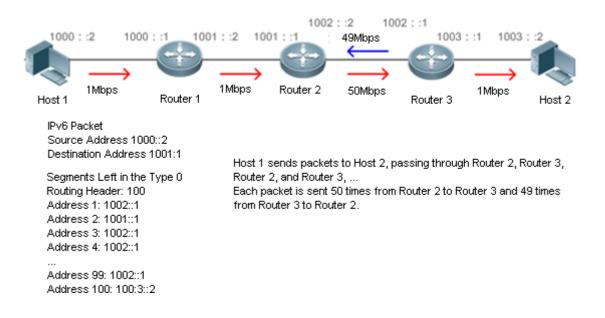
| Transmission<br>Node | Fields in the IPv6 Header                                                      | Fields Related to the Type 0 Routing Header                                                         |
|----------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Host 1               | Source address=1000::2<br>Destination address=1001::1<br>(Address of Router 2) | Segments Left=2<br>Address 1=1002::1 (Address of<br>Router 3)<br>Address 2=1003::2 (Address of Host |



|          |                                                                                | 2)                                                                                                   |
|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Router 1 | No change                                                                      |                                                                                                      |
| Router 2 | Source address=1000::2<br>Destination address=1002::1<br>(Address of Router 3) | Segments Left=1<br>Address 1=1001::1 (Address of<br>Router 2)<br>Address 2=1003::2 (Address of Host  |
| Router 3 | Source address=1000::2<br>Destination address=1003::2<br>(Address of Host 2)   | 2)<br>Segments Left=0<br>Address 1=1001::1 (Address of<br>Router 2)<br>Address 1=1002::2 (Address of |
| Host 2   | No change                                                                      | Router 3)                                                                                            |

The forwarding process is as follows:

- Host 1 sends a packet in which the destination address is Router 2's address 1001::1, the Type 0 routing header is filled with Router 3's address 1002::1 and Host 2's address 1003::2, and the value of the Segments Left field is 2.
- 2. Router 1 forwards this packet to Router 2.
- Router 2 changes the destination address in the IPv6 header to Address 1 in the routing header. That is, the destination address becomes Router 3's address 1002::1, Address 1 in the routing header becomes Router 2's address 1001::1, and the value of the Segments Left field becomes 1. After modification, Router 2 forwards the packet to Router 3.
- 4. Router 3 changes the destination address in the IPv6 header to Address 2 in the routing header. That is, the destination address becomes Host 2's address 1003::2, Address 2 in the routing header becomes Router 3's address 1002::1, and the value of the Segments Left field becomes 0. After modification, Router 3 forwards the packet to Host 2.


The Type 0 routing header may be used to initiate DoS attacks. As shown in Figure 3-16, Host 1 sends packets to Host 2 at 1 Mbps and forges a routing header to cause multiple round-trips between Router 2 and Router 3 (50 times from Router 2 to Router 3 and 49 times from Router





3 to Router 2). At the time, the routing header generates the traffic amplification effect:" 50 Mbps from Router 2 to Router 3 and 49 Mbps from Router 3 to Router 2." Due to this security problem, RFC 5095 abolished the Type 0 routing header.

Figure 3-16



### **Related Configuration**

- Enabling IPv6 Source Routing
  - The Type 0 routing header is not supported by default.
  - Run the **ipv6 source-route** command in global configuration mode to enable IPv6 source routing.
- **3.3.6** Restricting the Sending Rate of ICMPv6 Error Messages

### **Working Principle**

The destination node or intermediate router sends ICMPv6 error messages to report the errors incurred during IPv6 data packet forwarding and transmission. There are mainly four types of error messages: Destination Unreachable, Packet Too Big, Time Exceeded, and Parameter Problem.

When receiving an invalid IPv6 packet, a device discards the packet and sends back an ICMPv6 error message to the source IPv6 address. In the case of invalid IPv6 packet attacks, the device may continuously reply to ICMPv6 error messages till device resources are exhausted and thereby fail to properly provide services. To solve this problem, you can restrict the sending rate of ICMPv6 error messages.

If the length of an IPv6 packet to be forwarded exceeds the IPv6 MTU of the outbound interface, the router discards this IPv6 packet and sends back an ICMPv6 Packet Too Big message to the source IPv6 address. This error message is mainly used as part of the IPv6 PMTUD process. If the sending rate of ICMPv6 error messages is restricted due to excessive



#### 2. Configuring ARP95

other ICMPv6 error messages, ICMPv6 Packet Too Big messages may be filtered, causing failure of IPv6 PMTUD. Therefore, it is recommended to restrict the sending rate of ICMPv6 Packet Too Big messages independently of other ICMPv6 error messages.

Although ICMPv6 Redirect packets are not ICMPv6 error messages, QTECH recommends restricting their rates together with ICMPv6 error messages except Packet Too Big messages.

### **Related Configuration**

### Configuring the Sending Rate of ICMPv6 Packet Too Big Messages

- The default rate is 10 per 100 ms.
- Run the ipv6 icmp error-interval too-big command to configure the sending rate of ICMPv6 Packet Too Big messages.
- Configuring the Sending Rate of Other ICMPv6 Error Messages
  - The default rate is 10 per 100 ms.
  - Run the ipv6 icmp error-interval command to configure the sending rate of other ICMPv6 error messages.

### **3.3.7** IPv6 Hop Limit

### Working Principle

An IPv6 data packet passes through routers from the source address and destination address. If a hop limit is configured, it decreases by one every time the packet passes through a router. When the hop limit decreases to 0, the router discards the packet to prevent this useless packet from being unlimitedly transmitted on the network and wasting network bandwidth. The hop limit is similar to the TTL of IPv4.

### **Related Configuration**

- Configuring the IPv6 Hop Limit
  - The default IPv6 hop limit of a device is 64.
  - Run the **ipv6 hop-limit** command to configure the IPv6 hop limit of a device.

### **3.3.8** Refraining from Sending NS Packets to Authentication VLANs

### **Working Principle**

In gateway authentication mode, all sub VLANs in a super VLAN are authentication VLANs by default. Users in an authentication VLAN have to pass authentication to access the network. After authentication, a static ND entry is generated on the device. Therefore, when accessing an authenticated user, the device does not need to send NS packets to the authentication VLAN. If the device attempts to access users in an authentication-free VLAN, it only needs to send NS requests to the authentication-free VLAN.





#### 2. Configuring ARP96

In gateway authentication mode, the function of refraining from sending NS packets to authentication VLANs is enabled on the device by default. If the device needs to access authentication-free users in an authentication VLAN, disable this function.

### **Related Configuration**

- Enabling the Function of Refraining from Sending NS Packets to Authentication VLANs
  - Run the ipv6 nd suppress-auth-vlan-ns command in interface configuration mode to enable the function of refraining from sending NS packets to authentication VLANs.
  - This function is enabled by default.
  - This function is supported only on switch virtual interfaces (SVIs) and takes effect only in gateway authentication mode.
- 3.3.9 Default Gateway on the Management Interface

### **Working Principle**

The default gateway is configured on the management interface to generate a default route for this interface.

### **Related Configuration**

### Configuring the Default Gateway on the Management Interface

- Run the **ipv6 gateway** *ipv6-address* command in interface configuration mode to configure the default gateway on the management interface.
- No default gateway is configured on the management interface by default.

### 3.4 Configuration

| Configuration                                | Description and Command                                             |                                                      |  |
|----------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|--|
|                                              | (Mandatory) It is used to configure IPv6 addresses and enable IPv6. |                                                      |  |
| <u>Configuring an IPv6</u><br><u>Address</u> | ipv6 enable                                                         | Enables IPv6 on an interface.                        |  |
|                                              | ipv6 address                                                        | Configures the IPv6 unicast address of an interface. |  |
|                                              | (Optional) It is used to enable IPv6 redirection on an interface.   |                                                      |  |



| ipv6 redirects                                    | Enables IPv6 redirection on an interface.                                                                                                                                                                                                                                                                                                    |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (Optional) It is used to enable DAD.              |                                                                                                                                                                                                                                                                                                                                              |  |
| ipv6 nd dad<br>attempts                           | Configures the number of consecutive NS packets sent during DAD.                                                                                                                                                                                                                                                                             |  |
| (Optional) It is used to configure ND parameters. |                                                                                                                                                                                                                                                                                                                                              |  |
| ipv6 nd reachable-<br>time                        | Configures the reachable time of a neighbor.                                                                                                                                                                                                                                                                                                 |  |
| ipv6 nd prefix                                    | Configures the address prefix to be advertised in an RA packet.                                                                                                                                                                                                                                                                              |  |
| ipv6 nd suppress-ra                               | Enables RA suppression on an interface.                                                                                                                                                                                                                                                                                                      |  |
| (Optional) It is used<br>unresolved ND enti       | t to configure the maximum number of ries.                                                                                                                                                                                                                                                                                                   |  |
| ipv6 nd unresolved                                | Configures the maximum number of unresolved ND entries.                                                                                                                                                                                                                                                                                      |  |
| (Optional) It is used options.                    | to configure the maximum number of ND                                                                                                                                                                                                                                                                                                        |  |
| ipv6 nd max-opt                                   | Configures the maximum number of ND options.                                                                                                                                                                                                                                                                                                 |  |
| (Optional) It is used<br>neighbors learned o      | to configure the maximum number of on an interface.                                                                                                                                                                                                                                                                                          |  |
| ipv6 nd cache<br>interface-limit                  | Configures the maximum number of neighbors learned on an interface.                                                                                                                                                                                                                                                                          |  |
| (Optional) It is used                             | to enable IPv6 source routing.                                                                                                                                                                                                                                                                                                               |  |
| ipv6 source-route                                 | Configures the device to forward IPv6 packets carrying the routing header.                                                                                                                                                                                                                                                                   |  |
|                                                   | (Optional) It is used<br>ipv6 nd dad<br>attempts<br>(Optional) It is used<br>ipv6 nd reachable-<br>time<br>ipv6 nd prefix<br>(Optional) It is used<br>unresolved ND entre<br>ipv6 nd unresolved<br>(Optional) It is used<br>options.<br>ipv6 nd max-opt<br>(Optional) It is used<br>neighbors learned of<br>ipv6 nd cache<br>interface-limit |  |



| O and investigate the                                        | Optional.                                                                                                    |                                                                                                |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| <u>Configuring the</u><br><u>Sending Rate of</u>             | ipv6icmperror-<br>interval                                                                                   | Configures the sending rate of ICMPv6<br>Packet Too Big                                        |
| ICMPv6 Error                                                 | too-big                                                                                                      | messages.                                                                                      |
| <u>Messages</u>                                              | ipv6 icmp error-<br>interval                                                                                 | Configures the sending rates of other<br>ICMPv6 error<br>messages and ICMPv6 Redirect packets. |
| <u>Configuring the</u><br>IPv6 Hop Limit                     | (Optional) It is used packets sent on an                                                                     | to restrict the hop limit of IPv6 unicast interface.                                           |
|                                                              | ipv6 hop-limit                                                                                               | Configures the IPv6 hop limit.                                                                 |
| Enabling Refraining<br>from Sending NS                       | (Optional) It is used to restrict sending NS packets to authentication VLANs in gateway authentication mode. |                                                                                                |
| Packets to<br>Authentication<br>VLANs                        | ipv6nd<br>suppress-auth-vlan-<br>ns                                                                          | Enables NS broadcast suppression in authentication VLANs.                                      |
| <u>Configuring the</u><br><u>Default</u>                     | (Optional) It is used<br>management interf                                                                   | t to configure the default gateway on the ace.                                                 |
| <u>Gatewayonthe</u><br><u>Management</u><br><u>Interface</u> | <b>ipv6 gateway</b> ipv6-<br>address                                                                         | Configures the default gateway on the management interface.                                    |

## 3.4.1 Configuring an IPv6 Address

## **Configuration Effect**

Configure the IPv6 address of an interface to implement IPv6 network communication.

## **Configuration Steps**

## Enabling IPv6 on an Interface

 (Optional) If you do not want to enable IPv6 by configuring an IPv6 address, run the ipv6 enable command.

## Configuring the IPv6 Unicast Address of an Interface





Mandatory.

## Verification

Run the **show ipv6 interface** command to check whether the configured address takes effect.

## **Related Commands**

Enabling IPv6 on an Interface

| Command                  | ipv6 enable                                                                                                                                                                                                                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                                                                           |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                  |
| Usage Guide              | IPv6 can be enabled on an interface by two methods: 1) running the <b>ipv6 enable</b> command in interface configuration mode; 2) configuring an IPv6 address on the interface.                                                                                                               |
|                          | <ul> <li>If an interface is bound to a multiprotocol VRF instance configured<br/>with no IPv6 address family, IPv6 cannot be enabled on this<br/>interface. You can enable IPv6 on this interface only after<br/>configuring an<br/>IPv6 address family for the multiprotocol VRF.</li> </ul> |
|                          | If an IPv6 address is configured on an interface, IPv6 is automatically enabled on this interface. In this case, IPv6 cannot be disabled even when you run the <b>no ipv6 enable</b> command.                                                                                                 |

## ✤ Configuring the IPv6 Unicast Address of an Interface

| Command | ipv6 address <i>ipv6-address / prefix-length</i>                    |
|---------|---------------------------------------------------------------------|
|         | ipv6 address <b>ipv6-prefix / prefix-length</b> eui-64              |
|         | ipv6 address <i>prefix-name sub-bits / prefix-length</i> [ eui-64 ] |



| <i>ipv6-address</i> : Indicates the IPv6 address, which must comply with the address format defined in RFC 4291. Separated by a colon (:), each address field consists of 16 bits and is represented by hexadecimal digits. <i>ipv6-prefix</i> : Indicates the IPv6 address prefix, which must comply with the address format defined in RFC 4291.                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>prefix-length</i> : Indicates the length of the IPv6 address prefix, that is, the part representing the network in the IPv6 address.                                                                                                                                                                                                                                                                                                                         |
| <i>prefix-name</i> : Indicates the name of the universal prefix. This specified universal prefix is used to create the interface address.                                                                                                                                                                                                                                                                                                                       |
| <i>sub-bits</i> : Indicates the subprefix bits and host bits of the address to be concatenated with the prefixes provided by the general prefix specified with the <i>prefix-name</i> parameter. This value is combined with the universal prefix to create the interface address. This value must be in the form documented in RFC 4291. <i>eui-64</i> : Indicates the created IPv6 address, consisting of the configured address prefix and 64-bit interface  |
| ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| If an interface is bound to a multiprotocol VRF instance configured<br>with no IPv6 address family, the IPv6 address cannot be configured for<br>this interface. You can configure the IPv6 address of this                                                                                                                                                                                                                                                     |
| interface only after configuring an IPv6 address family for the multiprotocol VRF.                                                                                                                                                                                                                                                                                                                                                                              |
| If an IPv6 interface is created and is Up state, the system automatically generates a link-local address for this interface.                                                                                                                                                                                                                                                                                                                                    |
| The IPv6 address of an interface can also be created by the universal prefix mechanism. That is, IPv6 address = Universal prefix + Sub prefix + Host bits. The universal prefix can be configured by running the ipv6 general-prefix command or learned by the prefix discovery function of the DHCPv6 client (see the <i>Configuring DHCPv6</i> ). Sub prefix + Host bits are specified by the <i>sub-bits</i> and <i>prefix-length</i> parameters in the ipv6 |
| address command.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# **Configuration Example**

✤ Configuring an IPv6 Address on an Interface



| Configuration<br>Steps | Enable IPv6 on the GigabitEthernet 0/0 interface and add IPv6 address 2000::1 to the interface.   |  |  |
|------------------------|---------------------------------------------------------------------------------------------------|--|--|
|                        | QTECH(config)#interface gigabitEthernet 0/0 QTECH(config-if<br>GigabitEthernet 0/0)#ipv6 enable   |  |  |
|                        | QTECH(config-if-GigabitEthernet 0/0)#ipv6 address 2000::1/64                                      |  |  |
| /erification           | Run the <b>show ipv6 interface</b> command to verify that an address is successfully added to the |  |  |
|                        | GigabitEthernet 0/0 interface.                                                                    |  |  |
|                        | QTECH(config-if-GigabitEthernet 0/0)#show ipv6 interface gigabitEtherne<br>0/0                    |  |  |
|                        | interface GigabitEthernet 0/0 is Down, ifindex: 1, vrf_id 0                                       |  |  |
|                        | address(es):                                                                                      |  |  |
|                        | Mac Address: 00:00:00:00:00                                                                       |  |  |
|                        | INET6: FE80::200:FF:FE00:1 [ TENTATIVE ], subnet is FE80::/64                                     |  |  |
|                        | INET6: 2000::1 [ TENTATIVE ], subnet is 2000::/64                                                 |  |  |
|                        | Joined group address(es):                                                                         |  |  |
|                        | MTU is 1500 bytes                                                                                 |  |  |
|                        | ICMP error messages limited to one every 100 milliseconds                                         |  |  |
|                        | ICMP redirects are enabled                                                                        |  |  |
|                        | ND DAD is enabled, number of DAD attempts: 1<br>ND reachable time is 30000 milliseconds           |  |  |
|                        | ND advertised reachable time is 0 milliseconds                                                    |  |  |
|                        | ND retransmit interval is 1000 milliseconds                                                       |  |  |
|                        | ND advertised retransmit interval is 0 milliseconds                                               |  |  |
|                        | ND router advertisements are sent every 200 seconds<160240>                                       |  |  |



## 3.4.2 Configuring IPv6 NDP

### **Configuration Effect**

Configure NDP-related attributes, for example, enable IPv6 redirection and DAD.

### Notes

RA suppression is enabled on interfaces by default. To configure a device to send RA packets, run the **no ipv6 nd suppress-ra** command in interface configuration mode.

## **Configuration Steps**

## Enabling IPv6 Redirection on an Interface

- (Optional) IPv6 redirection is enabled by default.
- To disable IPv6 redirection on an interface, run the **no ipv6 redirects** command.

## Configuring the Number of Consecutive NS Packets Sent During DAD

- Optional.
- To prevent enabling DAD for IPv6 addresses on an interface or modify the number of consecutive NS packets sent during DAD, run the ipv6 nd dad attempts command.

## Configuring the Reachable Time of a Neighbor

- Optional.
- To modify the reachable time of a neighbor, run the **ipv6 nd reachable-time** command.

## Configuring the Address Prefix to Be Advertised in an RA Packet

By default, the prefix in an RA packet on an interface is the prefix configured in the ipv6 address command on the interface.

## Enabling/Disabling RA Suppression on an Interface

- Optional.
- If a device needs to send RA packets, run the **no ipv6 nd suppress-ra** command.

## Configuring the Maximum Number of Unresolved ND Entries



#### 2. Configuring ARP103

- Optional.
- If a large number of unresolved ND entries are generated due to scanning attacks, run the ipv6 nd unresolved

command to restrict the number of unresolved neighbors.

## Configuring the Maximum Number of ND Options

- Optional.
- If a device needs to process more options, run the **ipv6 nd max-opt** command.

## ✤ Configuring the Maximum Number of ND Entries Learned on an Interface

- Optional.
- If the number of IPv6 hosts is controllable, run the ipv6 nd cache interfacelimit command to restrict the number of neighbors learned on an interface. This prevents ND learning attacks from occupying the memory space and affecting device performance.

### Verification

Run the following commands to check whether the configuration is correct:

- show ipv6 interface interface-type interface-num: Check whether the configurations such as the redirection function, reachable time of a neighbor, and NS sending interval take effect.
- show ipv6 interface interface-type interface-num ra-inifo: Check whether the prefix and other information configured for RA packets are correct.
- show run

### **Related Commands**

## Enabling IPv6 Redirection on an Interface

| Command                  | ipv6 redirects               |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |



| 2. | Configuring | ARP104 |
|----|-------------|--------|
|----|-------------|--------|

| Usage Guide | All ICMPv6 error messages are transmitted at a limited transmission rate.<br>By default, a maximum number of |  |
|-------------|--------------------------------------------------------------------------------------------------------------|--|
|             | 10 ICMPv6 error messages are transmitted per second (10 pps).                                                |  |

# ✤ Configuring the Number of Consecutive NS Packets Sent During DAD

| Command                  | ipv6 nd dad attempts <i>value</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | value: Indicates the number of NS packets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Command</b><br>Mode   | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Usage Guide              | You need to enable DAD before configuring an IPv6 address on an interface. Then the address is in tentative state. If no address conflict is detected by DAD, this address can be correctly used. If an address conflict is detected and the interface ID of this address uses EUI-64, duplicate link-layer addresses exist on this link. In this case, the system automatically disables this interface to prevent IPv6-related operations on this interface to re-enable DAD. When an interface changes from the down state to the up state, DAD is re-enabled for the addresses on this interface. |

# ✤ Configuring the Reachable Time of a Neighbor

| Command                  | ipv6 nd reachable-time <i>milliseconds</i>                                                                                                                                                                                                                                                                  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>milliseconds</i> : Indicates the reachable time of a neighbor, ranging from 0 to 3,600,000. The unit is millisecond. The default value is 30s.                                                                                                                                                           |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                |
| Usage Guide              | A device detects unreachable neighbors based on the configured reachable time. The shorter the configured reachable time, the faster the device detects unreachable neighbors but the more it consumes network bandwidth and device resources. Therefore, it is not recommended to set this time too small. |
|                          | The configured value is advertised in an RA packet and is also used on the device. If the value is 0, the                                                                                                                                                                                                   |
|                          | reachable time is not specified on the device and it is recommended to                                                                                                                                                                                                                                      |



2. Configuring ARP105

use the default value.

## ✤ Configuring the Address Prefix to Be Advertised in an RA Packet

| Command                  | <pre>ipv6 nd prefix {ipv6-prefix/prefix-length   default} [ [ valid-lifetime {     infinite / preferred-lifetime } ]   [ at     valid-date preferred-date ]   [infinite {infinite   preferred-     lifetime}]][no-advertise]   [[ off-link ] [ no-autoconfig ]]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <ul> <li><i>ipv6-prefix</i>: Indicates the network ID of IPv6, which must comply with the address representation format in RFC 4291.</li> <li><i>prefix-length</i>: Indicates the length of the IPv6 address prefix. A slash (/) must be added before the prefix. <i>valid-lifetime</i>: Indicates the period when a host receiving the prefix of an RA packet regards the prefix valid. The value ranges from 0 to 4,294,967,295. The default value is 30 days.</li> <li><i>preferred-lifetime</i>: Indicates the preferred period when a host receiving the prefix of an RA packet regards the prefix valid. The value ranges from 0 to 4,294,967,295. The default value is 30 days.</li> <li><i>preferred-lifetime</i>: Indicates the preferred period when a host receiving the prefix of an RA packet regards the prefix valid. The value ranges from 0 to 4,294,967,295. The default value is 7 days.</li> <li><b>at</b> <i>valid-date preferred-date</i>: Indicates the valid date and preferred deadline configured for the RA prefix. It uses the format of <i>dd+mm+yyyy+hh+mm</i>.</li> <li><b>infinite</b>: Indicates that the prefix is permanently valid.</li> <li><b>default</b>: Indicates that the prefix is not advertised by a router.</li> <li><b>off-link</b>: If the prefix of the destination address in the IPv6 packet sent by a host matches the configured prefix, the device regards the destination address on the same link and directly reachable. This parameter indicates that this prefix does not require on-link determination.</li> <li><b>no-autoconfig</b>: Indicates that the prefix in the RA packet received by a host cannot be used for address auto-configuration.</li> </ul> |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



### 2. Configuring ARP106 Usage Guide This command can be used to configure parameters related to each prefix, including whether to advertise this prefix. By default, an RA packet uses the prefix configured by running the ipv6 address command. Run the **ipv6 nd prefix** command to add other prefixes. Run the ipv6 nd prefix default command to configure the default parameters for an interface. That is, if no parameter is specified when a prefix is added, use the parameters configured in the ipv6 nd prefix default command as the parameters of the new prefix. The default parameter configurations are abandoned once a parameter is specified for the prefix. That is, when you use the **ipv6 nd prefix default** command to modify the default parameter configurations, only the prefix configured for the default parameters changes and configurations of the prefix remain the same. at valid-date preferred-date: You can specify the valid date of the prefix in two methods: 1) specifying a fixed time for each prefix in an RA packet: 2) specifying the deadline. In the second method, the valid date of the prefix in each RA packet decreases till it becomes 0.

## Enabling/Disabling RA Suppression on an Interface

| Command                  | ipv6 nd suppress-ra                                                                |
|--------------------------|------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                |
| Command<br>Mode          | Interface configuration mode                                                       |
| Usage Guide              | To enable RA suppression on an interface, run the <b>ipv6 suppress-ra</b> command. |

## Configuring the Maximum Number of Unresolved ND Entries

| Command                  | ipv6 nd unresolved <i>number</i>                                                                |
|--------------------------|-------------------------------------------------------------------------------------------------|
| Parameter<br>Description | number. Indicates the maximum number of unresolved ND entries.                                  |
| Command<br>Mode          | Global configuration mode                                                                       |
| Usage Guide              | To prevent malicious scanning attacks from creating a large number of unresolved ND entries and |



2. Configuring ARP107

occupying entry resources, you can restrict the number of unresolved ND entries.

## Configuring the Maximum Number of ND Options

| Command                  | ipv6 nd max-opt <b>value</b>                                                                                                                                  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | value: Indicates the number of supported ND options.                                                                                                          |
| Command<br>Mode          | Global configuration mode                                                                                                                                     |
| Usage Guide              | Configure the maximum number of ND options processed by a device,<br>such as link-layer address option,<br>MTU option, redirection option, and prefix option. |

# ✤ Configuring the Maximum Number of ND Entries Learned on an Interface

| Command                  | ipv6 nd cache interface-limit <i>value</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>value</i> : Indicates the maximum number of neighbors learned by an interface.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Usage Guide              | Restricting the number of ND entries learned on an interface can<br>prevent malicious neighbor attacks. If this number is not restricted, a<br>large number of ND entries will be generated on the device, occupying<br>excessive memory space. The configured value must be equal to or<br>greater than the number of the ND entries learned by the interface.<br>Otherwise, the configuration does not take effect. The configuration is<br>subject to the ND<br>entry capacity supported by the device. |

## **Configuration Example**

Enabling IPv6 Redirection on an Interface



| Configuration<br>Steps | Enable IPv6 redirection on interface GigabitEthernet 0/0.                                   |
|------------------------|---------------------------------------------------------------------------------------------|
|                        | QTECH(config-if-GigabitEthernet 0/0)#ipv6 redirects                                         |
| Verification           | Run the <b>show ipv6 interface</b> command to check whether the configuration takes effect. |
|                        | QTECH#show ipv6 interface gigabitEthernet 0/0                                               |
|                        | <pre>interface GigabitEthernet 0/0 is Down, ifindex: 1, vrf_id 0</pre>                      |
|                        | address(es):                                                                                |
|                        | Mac Address: 00:00:00:00:00                                                                 |
|                        | INET6: FE80::200:FF:FE00:1 [ TENTATIVE ], subnet is FE80::/64                               |
|                        | Joined group address(es):                                                                   |
|                        | MTU is 1500 bytes                                                                           |
|                        | ICMP error messages limited to one every 100 milliseconds                                   |
|                        | ICMP redirects are enabled                                                                  |
|                        | ND DAD is enabled, number of DAD attempts: 1                                                |
|                        | ND reachable time is 30000 milliseconds                                                     |
|                        | ND advertised reachable time is 0 milliseconds                                              |
|                        | ND retransmit interval is 1000 milliseconds                                                 |
|                        | ND advertised retransmit interval is 0 milliseconds                                         |
|                        | ND router advertisements are sent every 200 seconds<160240>                                 |

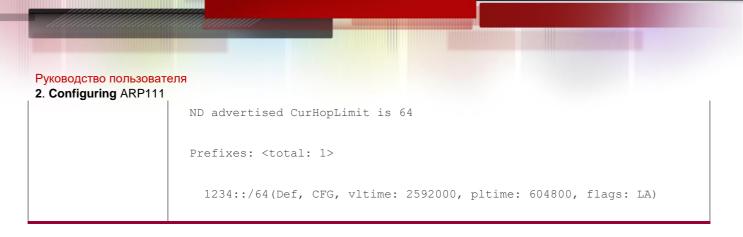
ConfigurationEnable IPv6 redirection on interface GigabitEthernet 0/0.Steps



| 2. Configuring ARP109 |                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------|
|                       | QTECH(config-if-GigabitEthernet 0/0)#ipv6 redirects                                         |
| Verification          | Run the <b>show ipv6 interface</b> command to check whether the configuration takes effect. |
|                       | ND router advertisements live for 1800 seconds                                              |

## ✤ Configuring IPv6 DAD

| Configuration<br>Steps | Configure the interface to send three consecutive NS packets during DAD.                    |
|------------------------|---------------------------------------------------------------------------------------------|
|                        | QTECH(config-if-GigabitEthernet 0/0)# ipv6 nd dad attempts 3                                |
| Verification           | Run the <b>show ipv6 interface</b> command to check whether the configuration takes effect. |
|                        | QTECH#show ipv6 interface gigabitEthernet 0/0                                               |
|                        |                                                                                             |
|                        | <pre>interface GigabitEthernet 0/0 is Down, ifindex: 1, vrf_id 0</pre>                      |
|                        | address(es):                                                                                |
|                        | Mac Address: 00:00:00:00:00                                                                 |
|                        | INET6: FE80::200:FF:FE00:1 [ TENTATIVE ], subnet is FE80::/64                               |
|                        | Joined group address(es):                                                                   |
|                        | MTU is 1500 bytes                                                                           |
|                        | ICMP error messages limited to one every 100 milliseconds                                   |
|                        | ICMP redirects are enabled                                                                  |
|                        | ND DAD is enabled, number of DAD attempts: 3                                                |
|                        | ND reachable time is 30000 milliseconds                                                     |
|                        | ND advertised reachable time is 0 milliseconds                                              |






## \* Configuring Prefix Information in an RA Packet

| Configuration<br>Steps | Add a prefix 1234::/64 to interface GigabitEthernet 0/0.                                    |
|------------------------|---------------------------------------------------------------------------------------------|
|                        | QTECH(config-if-GigabitEthernet 0/0)#ipv6 nd prefix 1234::/6                                |
| Verification           | Run the <b>show ipv6 interface</b> command to check whether the configuration takes effect. |
|                        | QTECH#show ipv6 interface gigabitEthernet 0/0 ra-info                                       |
|                        | GigabitEthernet 0/0: DOWN (RA is suppressed)                                                |
|                        | RA timer is stopped                                                                         |
|                        | waits: 0, initcount: 0                                                                      |
|                        | <pre>statistics: RA(out/in/inconsistent): 0/0/0, RS(input): 0</pre>                         |
|                        | Link-layer address: 00:00:00:00:00:00                                                       |
|                        | Physical MTU: 1500                                                                          |
|                        | ND router advertisements live for 1800 seconds                                              |
|                        | ND router advertisements are sent every 200 seconds<160240>                                 |
|                        | Flags: !M!O, Adv MTU: 1500                                                                  |
|                        | ND advertised reachable time is 0 milliseconds                                              |
|                        | ND advertised retransmit time is 0 milliseconds                                             |





## \* Configuring RA Packets to Obtain Prefixes from the Prefix Pool

| Configuration<br>Steps | Configure RA packets to obtain prefixes from the prefix pool "ra-<br>pool".      |
|------------------------|----------------------------------------------------------------------------------|
|                        | QTECH(config-if-GigabitEthernet 0/0)#peel default ipv6 pool ra-pool              |
| Verification           | Run the <b>show run</b> command to check whether the configuration takes effect. |
|                        | QTECH(config-if-GigabitEthernet 0/0)#show run interface gigabitEthernet 0/0      |
|                        | Building configuration Current configuration : 125 bytes                         |
|                        | interface GigabitEthernet 0/0                                                    |
|                        | ipv6 enable                                                                      |
|                        | no ipv6 nd suppress-ra                                                           |
| Configuration<br>Steps | Configure RA packets to obtain prefixes from the prefix pool "ra-pool".          |
|                        | QTECH(config-if-GigabitEthernet 0/0)#peel default ipv6 pool ra-pool              |
| Verification           | Run the <b>show run</b> command to check whether the configuration takes effect. |
|                        | peel default ipv6 pool ra-pool                                                   |
|                        | 1                                                                                |

## Disabling RA Suppression



| Configuration<br>Steps | Disable RA suppression on an interface.                                                                                                    |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH(config-if-GigabitEthernet 0/0) # no ipv6 nd suppress-ra                                                                              |
| Verification           | Run the <b>show run</b> command to check whether the configuration takes effect.                                                           |
|                        | QTECH(config-if-GigabitEthernet 0/0)#show run interface gigabitEthernet<br>0/0<br>Building configuration Current configuration : 125 bytes |
|                        | <pre>interface GigabitEthernet 0/0 ipv6 enable no ipv6 nd suppress-ra !</pre>                                                              |

## ✤ Configuring the Maximum Number of Unresolved ND Entries

| Configuration<br>Steps | Set the maximum number of unresolved ND entries to 200.                          |
|------------------------|----------------------------------------------------------------------------------|
|                        | QTECH(config) # ipv6 nd unresolved 200                                           |
| Verification           | Run the <b>show run</b> command to check whether the configuration takes effect. |
|                        | QTECH#show run                                                                   |
|                        | ipv6 nd unresolved 200                                                           |
|                        | !                                                                                |

## Configuring the Maximum Number of ND Options

|  | Configuration<br>Steps | Set the maximum number of ND options to 20. |
|--|------------------------|---------------------------------------------|
|--|------------------------|---------------------------------------------|



|              | QTECH(config) # ipv6 nd max-opt 20                                               |
|--------------|----------------------------------------------------------------------------------|
| Verification | Run the <b>show run</b> command to check whether the configuration takes effect. |
|              | QTECH#show run                                                                   |
|              | ipv6 nd max-opt 20                                                               |
|              | !                                                                                |

## **\*** Configuring the Maximum Number of ND Entries Learned on an Interface

| Configuration<br>Steps | Set the maximum number of ND entries learned on an interface to 100.             |
|------------------------|----------------------------------------------------------------------------------|
|                        | QTECH(config-if-GigabitEthernet 0/1)# ipv6 nd cache interface-limit 100          |
| Verification           | Run the <b>show run</b> command to check whether the configuration takes effect. |
|                        | QTECH#show run                                                                   |
|                        | !                                                                                |
|                        | interface GigabitEthernet 0/1 ipv6 nd cache interface-limit 100<br>!             |

## 3.4.3 Enabling IPv6 Source Routing

## **Configuration Effect**

RFC 5095 abolished the Type 0 routing header. QTECH devices do not support the Type 0 routing header by default. The administrator can run the **ipv6 source-route** command to in global configuration mode to enable IPv6 source routing.

## **Configuration Steps**

- Enabling IPv6 Source Routing
- Optional.
- To enable IPv6 source routing, run the **ipv6 source-route** command.





The device can properly forward packets carrying the Type 0 routing header.

## **Related Commands**

## \* Enabling IPv6 Source Routing

| Command                  | ipv6 source-route                                                                                                                                                                                                                                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                                                          |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                    |
| Usage Guide              | Since the Type 0 header may cause the device prone to DoS attacks,<br>the device does not forward IPv6 packets carrying the routing header by<br>default, but still processes IPv6 packets with itself being the final<br>destination address and the Type 0 routing header. |

## **Configuration Example**

## Enabling IPv6 Source Routing

| Configuration<br>Steps | Enable IPv6 source routing.                                                      |
|------------------------|----------------------------------------------------------------------------------|
|                        | QTECH(config)#ipv6 source-route                                                  |
| Verification           | Run the <b>show run</b> command to check whether the configuration takes effect. |
|                        | QTECH#show run   inc ipv6 source-route                                           |
|                        | ipv6 source-route                                                                |

## 3.4.4 Configuring the Sending Rate of ICMPv6 Error Messages

## **Configuration Effect**

Configure the sending rate of ICMPv6 error messages.

## **Configuration Steps**



#### Руководство пользователя

#### 2. Configuring ARP115

- Configuring the Sending Rate of ICMPv6 Packet Too Big Messages
- Optional.
- If a device receives many IPv6 packets with the packet length exceeding the IPv6 MTU of the outbound interface and thereby sends many ICMPv6 Packet Too Big messages to consume much CPU resources, run the ipv6 icmp error**interval too-big** command to restrict the sending rate of this error message.

## Configuring the Sending Rate of Other ICMPv6 Error Messages

- Optional.
- If a device receives many illegal IPv6 packets and thereby generates many ICMPv6 error messages, run the ipv6 icmp error-interval command to restrict the sending rate of ICMPv6 error messages. (This command does not affect the sending rate of ICMPv6 Packet Too Big messages.)

## Verification

Run the **show running-config** command to check whether the configuration takes effect.

## **Related Commands**

## Configuring the Sending Rate of ICMPv6 Packet Too Big Messages

| Command                  | ipv6 icmp error-interval too-big <i>milliseconds</i> [bucket-size]                                                                                                                                                                                                                                                                                                                 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>milliseconds</i> : Indicates the refresh period of a token bucket, ranging<br>from 0 to 2,147,483,647. The unit is millisecond. The default value is<br>100. If the value is 0, the sending rate of ICMPv6 error messages is not<br>restricted.<br><i>bucket-size</i> : Indicates the number of tokens in a token bucket, ranging<br>from 1 to 200. The default value is<br>10. |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                                                          |



#### Руководство пользователя

## 2. Configuring ARP116

| Usage Guide | To prevent DoS attacks, use the token bucket algorithm to restrict the sending rate of ICMPv6 error messages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | If the length of an IPv6 packet to be forwarded exceeds the IPv6 MTU of the outbound interface, the router discards this IPv6 packet and sends back an ICMPv6 Packet Too Big message to the source IPv6 address. This error message is mainly used as part of the IPv6 PMTUD process. If other ICMPv6 error messages are excessive, ICMPv6 Packet Too Big messages cannot be sent, causing failure of IPv6 PMTUD. Therefore, it is recommended to restrict the sending rate of ICMPv6 Packet Too Big messages independently of other ICMPv6 error messages.                                                                                                                                                                                                 |
|             | Since the precision of the timer is 10 milliseconds, it is recommended to<br>set the refresh period of a token bucket to an integer multiple of 10<br>milliseconds. If the refresh period of the token bucket is between 0 and<br>10, the actual refresh period is 10 milliseconds. For example, if the<br>sending rate is set to 1 every 5 milliseconds, two error messages are sent<br>every 10 milliseconds in actual situations. If the refresh period of the token<br>bucket is not an integer multiple of 10 milliseconds, it is automatically<br>converted to an integer multiple of 10 milliseconds. For example, if the<br>sending rate is set to 3 every 15 milliseconds, two tokens are<br>refreshed every 10 milliseconds in actual situations. |

## ✤ Configuring the Sending Rate of Other ICMPv6 Error Messages

| Command     | ipv6 icmp error-interval <i>milliseconds</i> [bucket-size]                                                         |  |
|-------------|--------------------------------------------------------------------------------------------------------------------|--|
| Parameter   | milliseconds: Indicates the refresh period of a token bucket, ranging from                                         |  |
| Description | 0 to 2,147,483,647. The unit is millisecond. The default value is 100. If                                          |  |
|             | the value is 0, the sending rate of ICMPv6 error messages is not                                                   |  |
|             | restricted.                                                                                                        |  |
|             | <i>bucket-size</i> : Indicates the number of tokens in a token bucket, ranging from 1 to 200. The default value is |  |
|             | 10.                                                                                                                |  |
| Command     | Global configuration mode                                                                                          |  |
| Mode        |                                                                                                                    |  |
| Usage Guide | To prevent DoS attacks, use the token bucket algorithm to restrict the                                             |  |
|             | sending rate of ICMPv6 error messages.                                                                             |  |
|             | Since the precision of the timer is 10 milliseconds, it is recommended to set the refresh period of a token        |  |



| bucket to an integer multiple of 10 milliseconds. If the refresh period of |
|----------------------------------------------------------------------------|
| the token bucket is between 0 and 10, the actual refresh period is 10      |
| milliseconds. For example, if the sending rate is set to 1 every 5         |
| milliseconds, two error messages are sent every 10 milliseconds in actual  |
| situations. If the refresh period of the token bucket is not an integer    |
| multiple of 10 milliseconds, it is automatically converted to an integer   |
| multiple of 10 milliseconds. For example, if the sending rate is set to 3  |
| every 15 milliseconds, two tokens are                                      |
| refreshed every 10 milliseconds in actual situations.                      |

## **Configuration Example**

## Configuring the Sending Rate of ICMPv6 Error Messages

| Configuration<br>Steps | Set the sending rate of the ICMPv6 Packet Too Big message to 100 pps and that of other ICMPv6 error |
|------------------------|-----------------------------------------------------------------------------------------------------|
| ·                      | messages to 10 pps.                                                                                 |
|                        | QTECH(config)#ipv6 icmp error-interval too-big 1000 100                                             |
|                        | QTECH(config)#ipv6 icmp error-interval 1000 10                                                      |
| Verification           | Run the <b>show running-config</b> command to check whether the configuration takes effect.         |
|                        | QTECH#show running-config   include ipv6 icmp error-interval ipv6 icmp<br>error-interval 1000 10    |
|                        | ipv6 icmp error-interval too-big 1000 100                                                           |

## 3.4.5 Configuring the IPv6 Hop Limit

## **Configuration Effect**

Configure the number of hops of a unicast packet to prevent the packet from being unlimitedly transmitted.

## **Configuration Steps**

- Configuring the IPv6 Hop Limit
- Optional.



#### Руководство пользователя

- 2. Configuring ARP118
  - To modify the number of hops of a unicast packet, run the **ipv6 hop-limit value** command.

## Verification

- Run the show running-config command to check whether the configuration is correct.
- Capture the IPv6 unicast packets sent by a host. The packet capture result shows that the hop-limit field value in the IPv6 header is the same as the configured hop limit.

## **Related Commands**

## Configuring the IPv6 Hop Limit

| Command                  | ipv6 hop-limit value                                                                                                |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>value</i> : Indicates the number of hops of a unicast packet sent by the device. The value ranges from 1 to 255. |
| Command<br>Mode          | Global configuration mode                                                                                           |
| Usage Guide              | N/A                                                                                                                 |

## **Configuration Example**

## Configuring the IPv6 Hop Limit

| Configuration<br>Steps | Change the IPv6 hop limit of a device to 250.                                               |
|------------------------|---------------------------------------------------------------------------------------------|
|                        | QTECH(config)#ipv6 hop-limit 250                                                            |
| Verification           | Run the <b>show running-config</b> command to check whether the configuration takes effect. |
|                        | QTECH#show running-config                                                                   |
|                        | ipv6 hop-limit 254                                                                          |

## 3.4.6 Enabling/Disabling the Function of Refraining from Sending NS Packets to Authentication VLANs

## **Configuration Effect**





Enable or disable the function of refraining from sending NS packets to authentication VLANs on an SVI.

## Notes

The configuration is supported only on SVIs and takes effect only in gateway authentication mode.

## **Configuration Steps**

- Enabling/Disabling the Function of Refraining from Sending NS Packets to Authentication VLANs
- Optional.
- In gateway authentication mode, run the no ipv6 nd suppress-auth-vlan-ns command so that the device can send NS packets to authentication VLANs.

## Verification

• Run the **show running-config** command to check whether the configuration is correct.

## **Related Commands**

Enabling/Disabling the Function of Refraining from Sending NS Packets to Authentication VLANs

| Command                  | ipv6 nd suppress-auth-vlan-ns                                    |
|--------------------------|------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                              |
| Command<br>Mode          | Interface configuration mode                                     |
| Usage Guide              | Use the <b>no</b> form of this command to disable this function. |

## **Configuration Example**

Disabling the Function of Refraining from Sending NS Packets to Authentication VLANs

| Configuration<br>Steps | Disable the function of refraining from sending NS packets to authentication VLANs. |
|------------------------|-------------------------------------------------------------------------------------|
|------------------------|-------------------------------------------------------------------------------------|



|              | QTECH(config-if-VLAN 2)#no ipv6 nd suppress-auth-vlan-ns                                                     |
|--------------|--------------------------------------------------------------------------------------------------------------|
| Verification | Run the <b>show running-config interface vlan 2</b> command to check whether the configuration takes effect. |
|              | QTECH#show running-config interface vlan 2                                                                   |
|              | no ipv6 nd suppress-auth-vlan-ns                                                                             |

## 3.4.7 Configuring the Default Gateway on the Management Interface Configuration Effect

Configure the default gateway on the management interface. A default route is generated, with the outbound interface being the management interface and the next hop being the configured gateway.

## Notes

The configuration is supported only on the management interface.

## **Configuration Steps**

## Configuring the Default Gateway on the Management Interface

- Optional.
- To configure a default route and the next hop for the management interface, run the **ipv6 gateway** command.

## Verification

Run the show running-config command to check whether the configuration is correct.

## **Related Commands**

Configuring the Default Gateway on the Management Interface

| Command                  | ipv6 gateway <b>ipv6-address</b> |
|--------------------------|----------------------------------|
| Parameter<br>Description | N/A                              |
| Command                  | Interface configuration mode     |
| Mode                     |                                  |





Usage Guide

This command is supported only on the management interface.

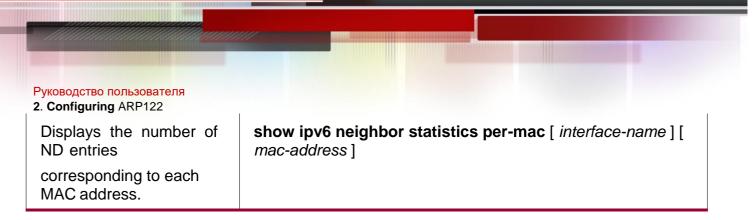
## **Configuration Example**

Configuring the Default Gateway on the Management Interface

| Configuration<br>Steps | Sett the default gateway of the management interface to 2000::1.                                             |  |
|------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                        | QTECH(config)# interface mgmt 0                                                                              |  |
|                        | QTECH(config-mgmt)# ipv6 gateway 2000::1                                                                     |  |
|                        | Run the <b>show running-config interface vlan 2</b> command to check whether the configuration takes effect. |  |
| Verification           |                                                                                                              |  |
| Verification           |                                                                                                              |  |

## 3.5 Monitoring

## Clearing


Running the **clear** commands may lose vital information and thus interrupt services.

| Description                            | Command                                                       |
|----------------------------------------|---------------------------------------------------------------|
| Clearsthedynamicallylearn edneighbors. | clrear ipv6 neighbors [ vrf vrf-name ] [ oob ] [interface-id] |

## Displaying

| Description                                | Command                                                                                                                                   |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Displays IPv6 information of an interface. | <pre>show ipv6 interface [[interface-id] [ra-info] ] [brief [interface-<br/>id]]</pre>                                                    |
| Displays neighbor information.             | <b>show ipv6 neighbors [vrf</b> <i>vrf-name</i> ] [ <b>verbose</b> ] [ <i>interface-id</i> ]<br>[ <i>ipv6-address</i> ] [static]<br>[oob] |





## Debugging

System resources are occupied when debugging information is output. Therefore, disable the debugging switch immediately after use.

| Description               | Command       |
|---------------------------|---------------|
| Debugs ND entry learning. | debug ipv6 nd |



## **4** Configuring DHCP

## 4.1 Overview

The Dynamic Host Configuration Protocol (DHCP) is a LAN protocol based on the User Datagram Protocol (UDP) for dynamically assigning reusable network resources, for example, IP addresses.

The DHCP works in Client/Server mode. A DHCP client sends a request message to a DHCP server to obtain an IP address and other configurations. When a DHCP client and a DHCP server are not in a same subnet, they need a DHCP relay to forward DHCP request and reply packets.

## **Protocols and Standards**

- RFC2131: Dynamic Host Configuration Protocol
- RFC2132: DHCP Options and BOOTP Vendor Extensions
- RFC3046: DHCP Relay Agent Information Option

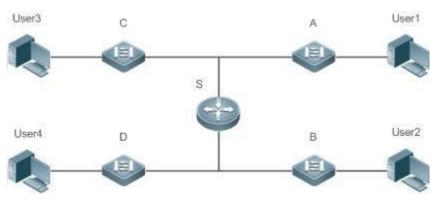
## 4.2 Applications

| Application                                 | Description                                                                      |
|---------------------------------------------|----------------------------------------------------------------------------------|
| Providing DHCP Service in a LAN             | Assigns IP addresses to clients in a LAN.                                        |
| Enabling DHCP Client                        | Enable DHCP Client.                                                              |
| Applying AM Rule on DHCP<br>Server          | Apply DHCP Server in Super VLAN environment.                                     |
| Deploying DHCP Relay in<br>Wired<br>Network | In a wired network, users from different network segments requests IP addresses. |
| Applying AM Rule on DHCP<br>Relay           | In a Super VLAN, users from different network segments requests IP addresses.    |

## 4.2.1 Providing DHCP Service in a LAN

## Scenario






## 2. Configuring ARP124

Assign IP addresses to four users in a LAN.

For example, assign IP addresses to User 1, User 2, User 3 and User 4, as shown in the following figure.

The four users are connected to Server S through A, B, C and D. .



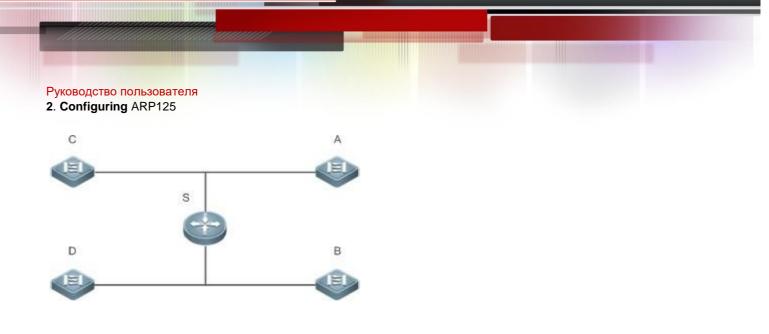
| Remarks | S is an egress gateway working as a DHCP server.          |
|---------|-----------------------------------------------------------|
|         | A, B, C and D are access switches achieving layer-2       |
|         | transparent transmission. User 1, User 2, User 3 and User |
|         | 4 are LAN users.                                          |

## Deployment

- Enable DHCP Server on S.
- Deploy layer-2 VLAN transparent transmission on A, B, C and D. .
- User 1, User 2, User 3 and User 4 initiate DHCP client requests.

## **4.2.2** Enabling DHCP Client

## Scenario


Access switches A, B, C and D in a LAN request server S to assign IP addresses.

For example, enable DHCP Client on the interfaces of A, B, C and D to request IP addresses, as shown in the following figure.

Figure 4-2



## Figure 4-1



# RemarksS is an egress gateway working as a DHCP server.A, B, C and D are access switches with DHCP Client enabled on the<br/>interfaces.

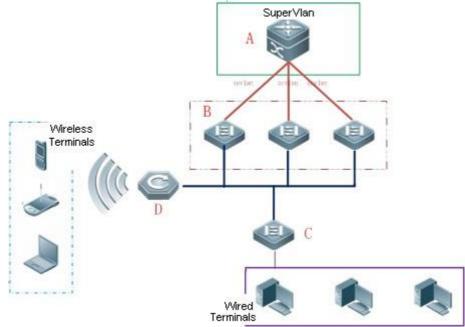
## Deployment

- Enable DHCP Server on S.
- Enable DHCP Client on the interfaces of A, B, C and D.
- 4.2.3 Applying AM Rule on DHCP Server

## Scenario

As shown in Figure 4-3, create a Super VLAN, configure an AM rule and enable DHCP Server on the core switch A. B is an aggregation switch, C an access switch, and D a wireless access device. The requirements are listed as follows:

- Assign IP addresses dynamically based on the VLAN and port;
- Assign IP addresses statically based on the VLAN;




Руководство пользователя

#### 2. Configuring ARP126

Assign IP addresses dynamically

based on the default AM rule. Figure 4-3



Applying AM Rule on a DHCP Server

| Remarks | A is a core device.                                     |
|---------|---------------------------------------------------------|
|         | B is an aggregation device. C is a wired access device. |
|         | D is a wireless access device.                          |

## Deployment

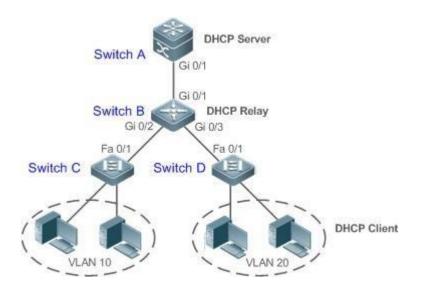
- Configure an AM rule, enable DHCP Server and create a Super VLAN on A.
- Create VLANs on B and C to transparently transmit DHCP packets from wired users to A to request IP addresses.
- Enable the wireless function on D to transparently transmit DHCP packets from wireless users to A to request IP addresses.

4.2.4 Applying Class Rules on the DHCP Server

## Scenario

In the same LAN, STAs accessed through different devices are assigned with addresses in varied network segments to facilitate the management of STA IP addresses and physical locations.






## Руководство пользователя

## 2. Configuring ARP127

As shown in the following figure, each of VLAN 10 and VLAN 20 connects to two PCs. Switch C and Switch D function as access devices. Each of the two switches is configured with snooping and option82. Switch B functions as the relay and transfers packets to the DHCP server. Switch A, the DHCP server, is configured with the address pool and class rules. An STA can match the corresponding class rule on the DHCP server to obtain an IP address in a specified network segment based on the option82 information injected by the access device.

Figure 4-4 Topology



| Remarks | Switch C and Switch D function as access devices. Switch B functions as the gateway. |
|---------|--------------------------------------------------------------------------------------|
|         | Switch A functions as the core device.                                               |

## Deployment

- Configure Switch A as the DHCP server and specify class rules.
- Configure Switch B as the DHCP relay.
- Configure Switch C as the access device and add DHCP snooping and option82.

**4.2.5** Deploying DHCP Relay in Wired Network

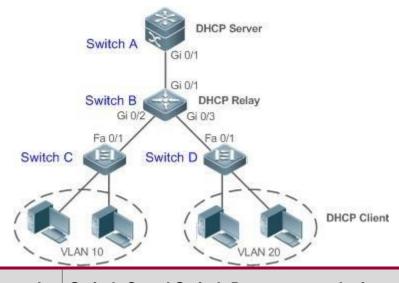
## Scenario

As shown in the following figure, Switch C and Switch D are access devices for the users in VLAN 10 and VLAN 20 respectively. Switch B is a gateway, and Switch A a core device. The requirements are listed as follows:





#### 2. Configuring ARP128


Switch A works as a DHCP server to assign IP addresses of different network

segments dynamically to users in different VLANs.

Users in VLAN 10 and VLAN 20 obtain

IP addresses dynamically. Figure 4-5

**DHCP** Relay



RemarksSwitch C and Switch D are access devices. Switch B is a gateway.Switch A is a core device.

## Deployment

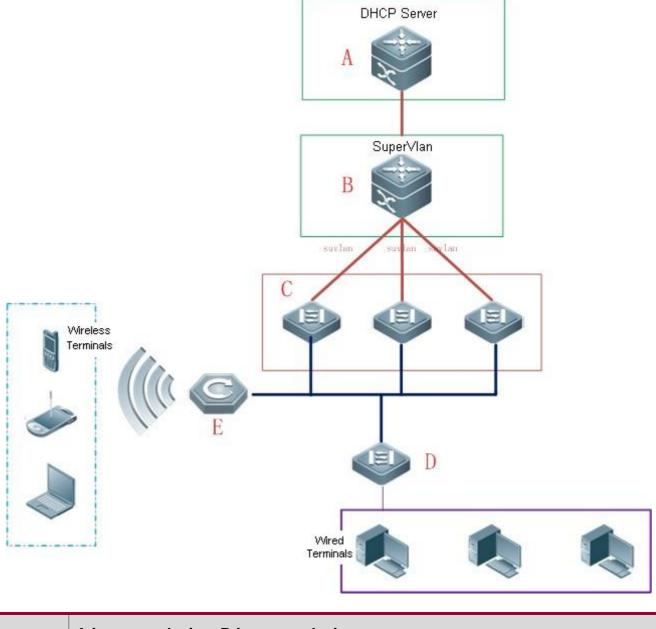
- Configure layer-2 communication between Switch B and Switch C as well as between Switch B and Switch D.
- On Switch B, specify a DHCP server address and enable DHCP Relay.
- On Switch A, create DHCP address pools for VLAN 10 and VLAN 20 respectively, and enable DHCP Server.
- **4.2.6** Applying AM Rule on DHCP Relay

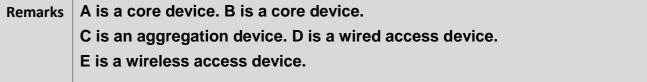
## Scenario

As shown in Figure 4-6, A is a DHCP server, B a core switch configured with Super VLAN, an AM rule and DHCP Relay, C an aggregation switch, D an access switch, and E a wireless access device. The requirements are listed as follows:

Based on the VLAN-port AM rule, the DHCP relay agent chooses a subnet







## 2. Configuring ARP129

address as Giaddress of relay packets and forwards them to the DHCP server to request an IP address for the client.

Based on default AM rule, the DHCP relay agent chooses a subnet address as Giaddress of relaying packets and forwards them to the DHCP server to request an IP address for the client.

Figure 4-6 Applying AM Rule on DHCP Relay









## Deployment

- Enable DHCP Server on A.
- Configure an AM rule, enable DHCP Relay and create a Super VLAN on B.
- Create VLANs on C and D to transparently transmit DHCP packets from wired users to B to request IP addresses.
- Enable the wireless function on E to transparently transmit DHCP packets from wireless users to B to request IP addresses.

## 4.3 Features

## **Basic Concepts**

## DHCP Server

Based on the RFC 2131, QTECH DHCP server assigns IP addresses to clients and manages these IP addresses.

## DHCP Client

DHCP Client enables a device to automatically obtain an IP address and configurations from a DHCP server.

## **DHCP** Relay

When a DHCP client and a DHCP server are not in a same subnet, they need a DHCP relay to forward DHCP request and reply packets.

## ✤ Lease

Lease is a period of time specified by a DHCP server for a client to use an assigned IP address. An IP address is active when leased to a client. Before a lease expires, a client needs to renew the lease through a server. When a lease expires or is deleted from a server, the lease becomes inactive.

## Excluded Address

An excluded address is a specified IP address not assigned to a client by a DHCP server.



#### Address Pool

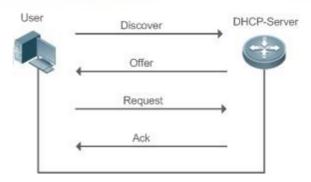
An address pool is a collection of IP addresses that a DHCP server may assign to clients.

## Option Type

An option type is a parameter specified by a DHCP server when it provides lease service to a DHCP client. For example, a public option include the IP addresses of a default gateway (router), WINS server and a DNS server. DHCP server allows configuration of other options. Though most options are defined in the RFC 2132, you can add user-defined options.

## Overview

| Feature                           | Description                                                                                                               |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| DHCP Server                       | Enable DHCP Server on a device, and it may assign IP addresses dynamically and pushes configurations to DHCP clients.     |
| Feature                           | Description                                                                                                               |
| <u>DHCP Relay</u><br><u>Agent</u> | Enable DHCP Relay on a device, and it may forward DHCP request<br>and reply packets across<br>different network segments. |
| DHCP Client                       | Enable DHCP Client on a device, and it may obtain IP addresses and configurations automatically from a DHCP server.       |
| AM Rule                           | Enable an AM rule on a device, and it may assign IP addresses according to the rule.                                      |
| Class Rule                        | Enable the class rule function on a device to assign addresses based on class rules.                                      |


## 4.3.1 DHCP Server

## **Working Principle**

## ✤ DHCP Working Principle

Figure 4-7





A host requests an IP address through DHCP as follows:

- 1. A host broadcasts a DHCP discover packet to find DHCP servers in a network.
- DHCP servers unicast/broadcast (based on the property of the host packet)
   DHCP offer packets to the host, containing an IP address, a MAC address, a domain name and a lease.
- 3. The host broadcasts a DHCP request packet to formally request an IP address.
- 4. A DHCP server sends a DHCP ACK unitcast packet to the host to acknowledge the request.
- A DHCP client may receive DHCPOFFER packets from multiple DHCP servers, but usually it accepts only the first DHCPOFFER packet. Besides, the address specified in a DHCPOFFER packet is not necessarily assigned. Instead, it

is retained by the DHCP server until a client sends a formal request.

To formally request an IP address, a client broadcasts a DHCPREQUEST packet so that all DHCP servers sending DHCPOFFER packets may receive the packet and release OFFER IP addresses.

If a DHCPOFFER packet contains invalid configuration parameters, a client will send a DHCPDECLINE packet to the server to decline the configuration.

During the negotiation, if a client does not respond to the DHCPOFFER packets in time, servers will send DHCPNAK packets to the client and the client will reinitiate the process.

During network construction, QTECH DHCP servers have the following features:

- Low cost. Usually the static IP address configuration costs more than DHCP configuration.
- Simplified configuration. Dynamic IP address assignment dramatically simplifies device configuration
- Centralized management. You can modify the configuration for multiple subnets by simply modifying the DHCP server configuration.





## \* Address Pool

After a server receives a client's request packet, it chooses a valid address pool, determines an available IP address from the pool through PING, and pushes the pool and address configuration to the client. The lease information is saved locally for validity check upon lease renewal.

An address pool may carry various configuration parameters as follows:

- An IP address range, which is the range of IP addresses that are available.
- A gateway address. A maximum of 8 gateway addresses are supported.
- A DNS address. A maximum of 8 DNS addresses are supported.
- A lease period notifying clients of when to age an address and request a lease renewal.

## ✤ IP Address Assignment Based on VLANs, Ports and IP Range

After an IP address pool is deployed, the specified IP address range is assigned based on VLANs and ports. There are three scenarios. 1. Global configuration. 2. Configuration based on VLANs, ports and IP range. 3. Both 1 and 2. In scenario 1, the addresses are assigned globally. In scenario 2, the addresses in the specified IP range are assigned only to the clients of the specified VLANs and ports. In scenario 3, the clients of the specified VLANs and ports are assigned the addresses in the specified IP range, and the other clients are configured with default global addresses.

## ARP-Based Offline Detection

QTECH devices enabled with DHCP provide a command to enable ARP-based offline detection. After this function is enabled, a DHCP server will receive an ARP aging notification when a client gets offline, and start retrieving the client's address. If the client does not get online within a period of time (5 minutes by default), the DHCP server will retrieve the address and assign it to another client. If the client gets online again, the address is still valid.

## \* Adding Pseudo Server Detection

If a DHCP server is deployed illegally, a client interacts with this server while requesting an IP address and a wrong address will be assigned to the client. This server is a pseudo server. QTECH devices enabled with DHCP provides a command to enable pseudo server detection. After it is enabled, DHCP packets are checked for Option 54 (Server Identifier Option). If the content of Option 54 is different from the actual DHCP server identifier, the IP address of the pseudo server and port receiving the packets will be recorded. The pseudo server detection is only an after-event security function and cannot prevent an illegal DHCP server from assigning IP addresses to clients.

## ✤ ARP Entry Check

The ARP entry check function is a supplement to the ping conflict detection function. If there is an STA with a static IP address and L2 isolation in the environment and the ping conflict detection function becomes invalid (for example, the firewall is enabled on the STA), an STA that applies for a dynamic address may be assigned with this IP address, resulting in IP conflict. If the ARP entry check function is enabled, ARP entries of the local host are queried after ping conflict detection is performed for the assigned IP address. If an ARP entry exists for the IP address to be assigned and the ARP entry is different from the MAC address of the



#### Руководство пользователя

#### 2. Configuring ARP134

STA for which the IP address is to be assigned, it is regarded that this IP address has been occupied and cannot be assigned to another STA.

If ARP attacks exist in the environment, it is recommended that the ARP entry check function be disabled. Otherwise, the DHCP assignment service is affected. As a result, it takes a long time for an STA to apply for an IP address or the STA cannot apply for an IP address.

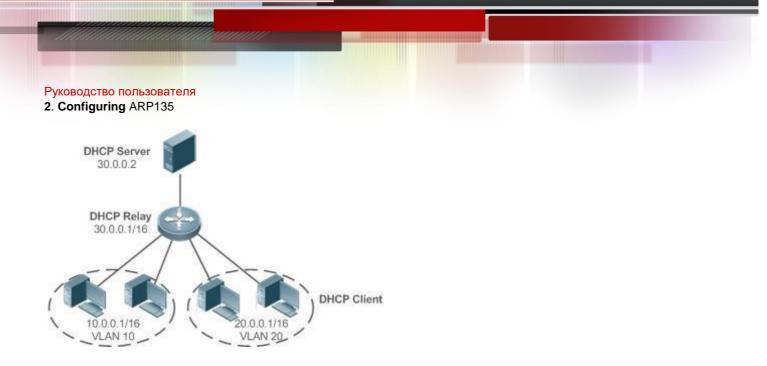
## **Related Configuration**

## Enabling DHCP Server Globally

- By default, DHCP Server is disabled.
- Run the **service dhcp** command to enable the DHCP Server.
- Run the **service dhcp** command globally to enable DHCP service.

## **Configuring Address Pool**

- By default, no address pool is configured.
- Run the **ip dhcp pool** command to configure an IP address range, a gateway and a DNS.
- If no address pool is configured, no addresses will be assigned.


## 4.3.2 DHCP Relay Agent

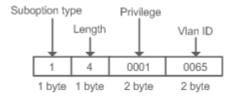
## Working Principle

The destination IP address of DHCP request packets is 255.255.255.255, and these packets are forwarded within a subnet. To achieve IP address assignment across network segments, a DHCP relay agent is needed. The DHCP relay agent unicasts DHCP request packets to a DHCP server and forwards DHCP reply packets to a DCHP client. The DHCP relay agent serves as a repeater connecting a DHCP client and a DHCP server of different network segments by forwarding DHCP request packets and DHCP reply packets. The Client-Relay-Server mode achieves management of IP addresses across multiple network segments by only one DHCP server. See the following figure.

Figure 4-8 DHCP Relay Scenario



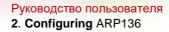


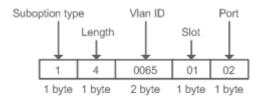

VLAN 10 and VLAN 20 correspond to the segments 10.0.0.1/16 and 20.0.0.1/16 respectively. A DHCP server with IP address 30.0.0.2 is in segment 30.0.0.1/16. To achieve management of dynamic IP addresses in VLAN 10 and VLAN 20 by the DHCP server, you only need to enable DHCP Relay on a gateway and configure IP address 30.0.0.2 for the DHCP server.

## DHCP Relay Agent Information (Option 82)

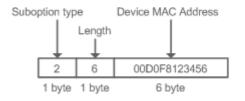
As defined in RFC3046, an option can be added to indicate a DHCP client's network information when DHCP Relay is performed, so that a DHCP server may assign IP addresses of various privileges based on more accurate information. The option is called Option 82. Currently, QTECH devices support four schemes of relay agent information, which are described respectively as follows:

Relay agent information option dot1x: This scheme should be implemented with 802.1X authentication and the RG-SAM products. Specifically, RG-SAM products push the IP privilege during 802.1X authentication. A DHCP relay agent forms a Circuit ID sub-option based on the IP privilege and the VLAN ID of a DHCP client. The option format is shown in the following figure.


## Figure 4-9 Option Format

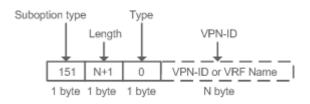



Relay agent information option82: This scheme serves without correlation with other protocol modules. A DHCP relay agent forms an Option 82 based on the physical port receiving DHCP request packets and the MAC address of the device. The option format is shown in the following figure.


Figure 4-10 Agent Circuit ID

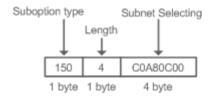







## Figure 4-11 Agent Remote ID




Relay agent information option VPN: This scheme should be implemented with MPLS VPN functions.

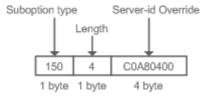
## Figure 4-12 VPN-ID



Subnet-Selection: In conventional DHCP Relay, the information of a client network and the addresses of a DHCP server and a DHCP relay agent are indicated by the **gateway address**[**giaddr**] field. In MPLS VPN environment, set **giaddr** to the IP address of the interface of a DHCP relay agent connected to a DHCP server, so that the server may communicate directly with the relay agent. Besides, the information of the client subnet is indicated by a Subnet-Selection option. The option format is shown in the following figure.

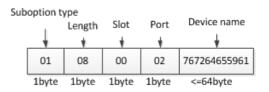
Figure 4-13 Subnet-Selection






## Руководство пользователя

- 2. Configuring ARP137
  - Server-Identifier-Override: In MPLS VPN environment, request packets from a DHCP client cannot be sent directly to a DHCP server. A DHCP relay agent use this option to carry the information of the interface connecting the relay agent and the DHCP server. When the server sends a reply message, this option overrides the Server-Identifier option. In this way, the DHCP client sends packets to DHCP relay agent, and the DHCP relay agent forwards them to the DHCP


server. The option format is shown in the following figure.

## Figure 4-14 Server-Identifier-Override



 Relay agent information option82: This scheme serves without correlation with other protocol modules. Compared with previous Option 82, this option supports user-defined content, which may change. By default, a DHCP relay agent forms Option 82 according to the information of the physical port receiving DHCP packets, device MAC address and device name. The option format is shown in the following figure.

## Figure 4-15 Option 82.1-circuit-id



## Figure 4-16 Option82-remote-id

| Sub | boption type |        |              |         |              |         |
|-----|--------------|--------|--------------|---------|--------------|---------|
|     | 1            | Length | Mac          | lfxtype | Port name    | Vlan id |
|     |              | *      |              |         |              |         |
|     | 01           | 08     | 00d008223301 | 02      | 767264655961 | 08      |
|     | 1byte        | 1byte  | 6byte        | 4byte   | <=64byte     | 1byte   |





## DHCP Relay Check Server-ID

In DHCP environment, multiple DHCP servers are deployed for a network, achieving server backup to ensure uninterrupted network operation. After this function is enabled, the DHCP request packet sent by a client contains a server-id option specifying a DHCP server. In alleviating the burden on servers in specific environments, you need to enable this function on a relay agent to send a packet to a specified DHCP server rather than all DHCP servers.

## DHCP Relay suppression

After you configure the **ip DHCP Relay suppression** command on an interface, DHCP request packets received on the interface will be filtered, and the other DHCP request packets will be forwarded.

## **Related Configuration**

## Enabling DHCP Relay

- By default, DHCP Relay is disabled.
- You may run the **service dhcp** command to enable DHCP Relay.
- You need to enable DHCP Relay before it works.

## Configuring IP Address for DHCP Server

- By default, no IP address is configured for a DHCP server.
- You may run the **ip helper-address** command to configure an IP address for a DHCP server. The IP address can be configured globally or on a layer-3 interface. A maximum of 20 IP addresses can be configured for a DHCP server.
- When an interface receives a DHCP request packet, the DHCP server configuration on the interface prevails over that configured globally. If the interface is not configured with DHCP server addresses, the global configuration takes effect.

## Enabling DHCP Option 82

- By default, DHCP Option 82 is disabled.
- You may run the **ip dhcp relay information option82** command to enable DHCP Option 82.
- Enabling DHCP Relay Check Server-ID
- By default, DHCP Relay check server-id is disabled.
- You may run the **ip dhcp relay check server-id** command to enable DHCP Relay check server-id.





#### 2. Configuring ARP139

- Enabling DHCP Relay Suppression
- By default, DHCP Relay suppression is disabled on all interfaces.
- You may run the **ip dhcp relay suppression** command to enable it on an interface.

## 4.3.3 DHCP Client

## Working Principle

A DHCP client broadcasts a DHCP discover packet after entering the Init state. Then it may receive multiple DHCP offer packets. It chooses one of them and responds to the corresponding DHCP server. After that, it sends lease renewal request packets in the Renew and Rebind processes of an aging period to request lease renewal.

## **Related Configuration**

## Enabling DHCP Client on Interface

- By default, DHCP Client is disabled.
- In interface configuration mode, you may run the **ip address dhcp** command to enable DHCP Client.
- You need to enable DHCP Client to enable DHCP service.
- The configuration takes effect on a layer-3 interface, for example, an SVI or a routed port.

## 4.3.4 AM Rule

## Working Principle

An AM rule defines the range of IP addresses assigned to DHCP clients in different VLANs and ports. It can be used to quickly identify the VLAN and port of a faulty DHCP client and effectively assign addresses. After an AM rule is configured, all DHCP clients from the set VLAN and ports may obtain IP addresses. If no AM rule is configured, there are two following

cases: If a default AM rule is configured, the client obtains an IP address from the default range; if no default AM rule is configured, the client cannot obtain an IP address.

## **Related Configuration**

- Configuring AM Rule in Global Configuration Mode
- In global configuration mode, run the address-manage command to enter AM rule configuration mode.
- Run the **match ip default** command to configure a default AM rule.
- Run the **match ip** command to configure an AM rule based on VLAN & port or port.



## **Working Principle**

When STAs apply for IP addresses from different APs, the option82 information carried by the STAs is different. The class rules are used to match the option82 information to assign IP addresses in different network segments to STAs.

## **Related Configuration**

- Configuring Class Rules in Global Configuration Mode
- Run the **ip dhcp class** command to add class rules.
- Run the relay agent information command to enter the option82 information configuration mode.
- Run the **relay-information hex** command to configure matched option82 content.
- Associating Configured Class Rules in Address Pool Configuration Mode
- Run the **class** command to associate class rules.
- Run the address range command to configure assigned IP address segments after class rules are matched.

## 4.4 Configuration

## \* Configuring DHCP Server

| Configuration          | Description and Command                                                                |                                                                             |  |
|------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|                        | (Mandatory) It is used to enable DHCP Server to achieve dynamic IP address assignment. |                                                                             |  |
| Configuring Dynamic IP | service dhcp                                                                           | Enables DHCP Server.                                                        |  |
| Address                | ip dhcp pool                                                                           | Configures an address pool.                                                 |  |
|                        | network                                                                                | Configures the network number<br>and subnet<br>mask of a DHCP address pool. |  |
|                        | (Optional) It is used to configure the properties of an address pool.                  |                                                                             |  |
|                        | default-router                                                                         | Configures a default gateway of a client.                                   |  |



| 2. Configuring ARP141 |                                    |                                             |
|-----------------------|------------------------------------|---------------------------------------------|
|                       | lease                              | Configures an address lease.                |
|                       | next-server                        | Configures a TFTP server address            |
|                       | bootfile                           | Configures a boot file of a client.         |
|                       | domain-name                        | Configures a domain name of a client.       |
|                       | dns-server                         | Configures a domain name server.            |
|                       | netbios-name-server                | Configures a NetBIOS WINS server.           |
|                       | netbios-node-type                  | Configures a NetBIOS node type on a client. |
|                       | lease-threshold                    | Configures an alarm threshold of an address |
|                       |                                    | pool.                                       |
|                       | option                             | Configures a user-defined option.           |
|                       | pool-status                        | Enables or disables an address pool.        |
|                       | force-no-router                    | Refrains from assigning a gateway address.  |
|                       | class                              | Configures associated class rules.          |
|                       | address range                      | Configures assigned IP network segments     |
|                       |                                    | after class rules are matched.              |
|                       | (Optional) It is used to a client. | statically assign an IP address to          |
| Configuring Static IP | ip dhcp pool                       | Configures an address pool name and         |
| Address               |                                    | enters address pool configuration mode.     |



| 2. Configuring ARP142                        |                                                                  |                                                                   |  |  |
|----------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
|                                              | host                                                             | Configures the IP address and<br>subnet mask<br>of a client host. |  |  |
|                                              |                                                                  | of a client host.                                                 |  |  |
|                                              | hardware-address                                                 | Configures a client hardware address.                             |  |  |
|                                              | client-identifier                                                | Configures a unique client identifier.                            |  |  |
|                                              | client-name                                                      | Configures a client name.                                         |  |  |
|                                              | (Optional) It is used to a DHCP server.                          | configure the properties of a                                     |  |  |
|                                              | ip dhcp excluded-<br>address                                     | Configures an excluded IP address.                                |  |  |
| Configuring Global Properties of DHCP Server | ip dhcp force-send-nak                                           | Configures Compulsory NAK<br>reply by a<br>DHCP server.           |  |  |
|                                              | in dhen ninn nechata                                             |                                                                   |  |  |
|                                              | ip dhcp ping packets                                             | Configures ping times.                                            |  |  |
|                                              | ip dhcp ping timeout                                             | Configures a ping timeout.                                        |  |  |
|                                              | ip dhcp server arp-<br>detect                                    | Configures a DHCP server to detect user offline.                  |  |  |
|                                              | ip dhcp server detect                                            | Configures pseudo server detection.                               |  |  |
|                                              | ip dhcp arp-probe                                                | Configures ARP entry check.                                       |  |  |
| Configuring AM Rule for<br>DHCP Server       | (Optional) It is used to configure the AM rule of a DHCP server. |                                                                   |  |  |
|                                              | match ip default                                                 | Configures a default AM rule.                                     |  |  |
|                                              | match ip ip-address                                              | Configures an AM rule based on the VLAN                           |  |  |
|                                              |                                                                  | and port.                                                         |  |  |

✤ Configuring DHCP Relay



| 2. Configuring ARP143                             |                                                                                                                                                                                                                          |                                                                                             |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Configuration                                     | Description and Command                                                                                                                                                                                                  |                                                                                             |  |
|                                                   | (Mandatory) It is used to enable DHCP Relay.                                                                                                                                                                             |                                                                                             |  |
| ConfiguringBasicDHCPRel<br>ay Functions           | service dhcp Enables DHCP Relay.                                                                                                                                                                                         |                                                                                             |  |
|                                                   | ip helper-address                                                                                                                                                                                                        | Configures an IP Address of a DHCP                                                          |  |
|                                                   |                                                                                                                                                                                                                          | Server.                                                                                     |  |
| <u>Configuring DHCP Relay</u><br><u>Option 82</u> | (Optional) It is used to assign IP addresses of different privileges to clients in combination with the information of a physical port. This function cannot be used together with the <b>dhcp option dot1x</b> command. |                                                                                             |  |
|                                                   | ipdhcprelayinformation<br>option82                                                                                                                                                                                       | Enables DHCP option82.                                                                      |  |
| ConfiguringDHCPRelayCh                            | (Optional) It is used to enable a DHCP Relay agent to send DHCP request packets only to a specified server.                                                                                                              |                                                                                             |  |
| eck Server-ID                                     | ip dhcp relay check<br>server-id                                                                                                                                                                                         | Enables a DHCP Relay agent<br>to send<br>DHCP request packets only to a<br>specified server |  |
| Configuring DHCP Relay<br>Suppression             | (Optional) It is used to a an interface.                                                                                                                                                                                 | shield DHCP request packets on                                                              |  |
|                                                   | ip dhcp relay<br>suppression                                                                                                                                                                                             | Enables DHCP Relay<br>Suppression.                                                          |  |

## \* Configuring DHCP Client

| Configuration | Description and Command                       |  |
|---------------|-----------------------------------------------|--|
|               | (Mandatory) It is used to enable DHCP Client. |  |



| D                                                 |                 |                                                                                                                                     |
|---------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Руководство пользователя<br>2. Configuring ARP144 |                 |                                                                                                                                     |
| <u>Configuring DHCP</u><br><u>Client</u>          | ip address dhcp | Enables an Ethernet interface,<br>a PPP/HDLC-encapsulatedor<br>FR-encapsulated interface to<br>obtain IP<br>addresses through DHCP. |

## Configuring Class Rules

| Configuration                                                         | Description and Command                         |                                                                   |
|-----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|
| <u>Configuring Class</u><br><u>Rules of the DHCP</u><br><u>Server</u> | (Optional) It is used to configure class rules. |                                                                   |
|                                                                       | ip dhcp class                                   | Configures global class rules.                                    |
|                                                                       | relay agent information                         | Enterstheoption82information configuration mode.                  |
|                                                                       | relay-information hex                           | Configurestheoption82informati<br>on<br>matched with class rules. |

## 4.4.1 Configuring Dynamic IP Address

## **Configuration Effect**

Provide all DHCP clients with DHCP service including assigning IP addresses and gateways.

## Notes

A DHCP server and a DHCP relay share the **service dhcp** command, but a device cannot function as a DHCP server and relay at the same time. When a device is configured with a valid address pool, it acts as a server and forwards packets. Otherwise, it serves as a relay agent.

## **Configuration Steps**

## \* Enabling DHCP Server

- Mandatory. It achieves dynamic IP address assignment.
- Run the **service dhcp** command in global configuration mode.



## Configuring Address Pool

- Mandatory. It is used to create an IP address pool.
- Run the **ip dhcp pool** command in global configuration mode.

#### Configuring Network Number and Subnet Mask of DHCP Address Pool

- Mandatory. It defines a range of dynamically assigned addresses.
- Run the **network** command in DHCP address pool configuration mode.

#### Configuring Default Gateway of Client

- Optional. It is used to configure a gateway address.
- Run the **default-router** command in DHCP address pool configuration mode.

#### Configuring Address Lease

- Optional. It is used to configure an IP address lease, which is 24h by default.
- Run the **lease** command in DHCP address pool configuration mode.

#### Configuring TFTP Server Address

- Optional. It is used to configure a TFTP server address.
- Run the **next-server** command in DHCP address pool configuration mode.

#### Configuring Domain Name of Client

- Optional. It is used to configure the domain name of a client.
- Run the **domain-name** command in DHCP address pool configuration mode.

#### Configuring DNS

- Optional. It is used to configure a DNS address.
- Run the **dns** command in DHCP address pool configuration mode.

#### Configuring NetBIOS WINS Server

- Optional. It is used to configure a NetBIOS WINS server address.
- Run the **netbios-name-server** command in DHCP address pool configuration mode.

#### Configuring NetBIOS Node Type on Client

- Optional. It is used to configure a NetBIOS node type.
- Run the **netbios-name-type** command in DHCP address pool configuration mode.



## Configuring Alarm Threshold of Address Pool

- Optional. It is used to manage the number of leases. When a threshold (90% by default) is reached, an alarm will be printed.
- Run the **lease-threshold** command in DHCP address pool configuration mode.

#### Configuring User-Defined Option

- Optional. It is used to configure user-defined options.
- Run the **option** command in DHCP address pool configuration mode.

#### Enabling or Disabling Address Pool

- Optional. It is used to enable or disable an address pool. It is enabled by default.
- Run the **pool-status** command in DHCP address pool configuration mode.

#### Refraining from Assigning Gateway Address

- Optional. It is used to refrain from assigning a gateway while assigning IP address to a client. It is disabled by default.
- Run the **force-no-router** command in DHCP address pool configuration mode.

#### Verification

Connect a DHCP client and a DHCP server.

• Check whether the client obtains configurations on the server.

#### **Related Commands**

#### Enabling DHCP Server

| Command                  | service dhcp                                                                                                                                                            |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                     |
| Command<br>Mode          | Global configuration mode                                                                                                                                               |
| Usage Guide              | Enable DHCP Server and DHCP Relay. A DHCP server and a DHCP relay share the <b>service dhcp</b> command. When a device is configured with a valid address pool, it acts |



Руководство пользователя

2. Configuring ARP147

as a server and forwards packets. Otherwise, it serves as a relay agent.

## \* Configuring Address Pool

| Command                  | ip dhcp pool <i>dhcp-pool</i>                                                                                                          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | pool-name: Indicates the name of an address pool.                                                                                      |
| Command<br>Mode          | Global configuration mode                                                                                                              |
| Usage Guide              | Before assigning an IP address to a client, you need to configure an address pool name and enter DHCP address pool configuration mode. |

## ✤ Configuring Network Number and Subnet Mask of DHCP Address Pool

| Command                  | network network-number mask [low-ip-address high-ip-address]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>network-number:</i> Indicates the network number of an IP address pool.<br><i>mask:</i> Indicates the subnet mask of an IP address pool. If no subnet<br>mask is defined, the natural subnet mask is applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Usage Guide              | To configure dynamic address assignment, you need to configure a<br>network number and subnet mask of an address pool to provide a<br>DHCP server with a range of addresses. The IP addresses in a pool are<br>assigned in order. If an address is assigned or exists in the target<br>network segment, the next address will be checked until a valid address<br>is assigned.<br>QTECH wireless products provide available network segments by<br>specifying start and end addresses. The configuration is optional. If the<br>start and end address are not specified, all IP addresses in the network<br>segment are assignable.<br>For QTECH products, addresses are assigned based on the client's |



| 2. Configuring ARP148 |                                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------|
|                       | physical address and ID. Therefore, one client will not be assigned two                                   |
|                       | leases from one address pool. In case of topological redundancy                                           |
|                       | between a client and a server, address assignment may fail.                                               |
|                       | To avoid such failures, a network administrator needs to prevent path redundancy in network construction, |
|                       | for example, by adjusting physical links or network paths.                                                |

## \* Configuring Default Gateway of Client

| Command                  | default-router address [address2address8]                                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>address</i> : Indicates the IP address of a default gateway. Configure at least one IP address.<br><i>ip-address2…ip-address8:</i> (Optional) A maximum of 8 gateways can be |
|                          | configured.                                                                                                                                                                     |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                                                                            |
| Usage Guide              | Configure a default gateway of a client, and a server will push the gateway configuration to the client. The IP                                                                 |
|                          | addresses of the default gateway and the client should be in a same network.                                                                                                    |

## \* Configuring Address Lease

| Command     | lease { <b>days [hours] [ minutes]  </b> infinite}                                                                                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Parameter   | days: Defines a lease in the unit of day.                                                                                            |
| Description | <i>hours:</i> (Optional) Defines a lease in the unit of hour. Please define <i>days</i> before <i>hours</i> .                        |
|             | <i>minutes:</i> (Optional) Defines a lease in the unit of minute. Please define <i>days</i> and <i>hours</i> before <i>minutes</i> . |
|             | infinite: Defines an unlimited lease.                                                                                                |
| Command     | DHCP address pool configuration mode                                                                                                 |
| Mode        |                                                                                                                                      |
| Usage Guide | The default lease of an IP address assigned by a DHCP server is 1 day.<br>When a lease is expiring soon, a                           |
|             | client needs to request a lease renewal. Otherwise the IP address cannot be used after the lease is expired.                         |



\* Configures Boot File on Client

| Command                  | bootfile <i>filename</i>                                                                                                  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | file-name: Defines a boot file name.                                                                                      |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                      |
| Usage Guide              | A boot file is a bootable image file used when a client starts up. The file is usually an OS downloaded by a DHCP client. |

## **Configuring Domain Name of Client**

| Command                  | domain-name <i>domain</i>                                                                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | domain-name: Defines a domain name of a DHCP client.                                                                                                                      |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                                                                      |
| Usage Guide              | You may define a domain name for a client. When the client accesses network through the host name, the domain name will be added automatically to complete the host name. |

## Configuring DNS

| Command         | dns-server {    ip-address [    ip-address2ip-address8 ] }                                                                     |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| Parameter       | <i>ip-address:</i> Defines an IP address of a DNS server. Configure at least one IP address.                                   |
| Description     | <i>ip-address2…ip-address8:</i> (Optional) A maximum of 8 DNS servers can be configured.                                       |
| Command<br>Mode | DHCP address pool configuration mode                                                                                           |
| Usage Guide     | If a client accesses network resources through the domain name, you need to configure a DNS server to resolve the domain name. |



## \* Configuring NetBIOS WINS Server

| Command                  | netbios-name-server address [address2address8]                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | address: Defines an IP address of a WINS server. Configure at least one IP address.                                                                                                                                                                                                                                                                                                                 |
|                          | <i>ip-address2…ip-address8:</i> (Optional) A maximum of 8 WINS servers can be configured.                                                                                                                                                                                                                                                                                                           |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                                                                                                                                                                                                                                                                                                |
| Usage Guide              | WINS is a domain name service through which a Microsoft TCP/IP<br>network resolves a NetNBIOS name to an IP address. A WINS server is<br>a Windows NT server. When a WINS server starts, it receives a<br>registration request from a WINS client. When the client shuts down, it<br>sends a name release message, so that the<br>computers in the WINS database and on the network are consistent. |

## \* Configuring NetBIOS Node Type on Client

| Command     | netbios-node-type <i>type</i>                                                        |
|-------------|--------------------------------------------------------------------------------------|
| Parameter   | type: Defines a NetBIOS node type with one of the following approaches.              |
| Description | 1. A hexadecimal number, ranging from 0 to FF. Only followings values are available. |
|             | - b-node                                                                             |
|             | - p-node                                                                             |
|             | <ul> <li>m-node</li> </ul>                                                           |
|             | <ul> <li>8 for h-node</li> </ul>                                                     |
|             | 2. A character string.                                                               |
|             | <ul> <li>b-node for a broadcast node;</li> </ul>                                     |
|             | <ul> <li>p-node for a peer-to-peer node;</li> </ul>                                  |
|             | <ul> <li>m-node for a mixed node;</li> </ul>                                         |
|             | <ul> <li>h-node for a hybrid mode.</li> </ul>                                        |
| Command     | DHCP address pool configuration mode                                                 |
| Mode        |                                                                                      |



| Usage Guide | There are four types of NetBIOS nodes of a Microsoft DHCP client. 1) A  |
|-------------|-------------------------------------------------------------------------|
|             | broadcast node. For such a node, NetBIOS name resolution is             |
|             | requested through broadcast.2) A peer-to-peer node. The client sends a  |
|             | resolution request to the WINS server. 3) A mixed node. The client      |
|             | broadcasts a resolution request and sends the resolution request to the |
|             | WINS server 4) A hybrid node. The client sends a resolution request to  |
|             | the WINS server. If no reply is received, the client will broadcast the |
|             | resolution request. By default, a Microsoft operating system is a       |
|             | broadcast or hybrid node. If no WINS server is configured, it is a      |
|             | broadcast                                                               |
|             | node. Otherwise, it is a hybrid node.                                   |

## Configuring User-Defined Option

| Command                  | option <i>code</i> { ascii <i>string</i>   hex <i>string</i>   ip <i>ip-address</i> }                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>code:</i> Defines a DHCP option code.<br><b>ascii</b> <i>string:</i> Defines an<br>ASCII character string. <b>hex</b><br><i>string:</i> Defines a<br>hexadecimal character<br>string. <b>ip</b> <i>ip-address:</i><br>Defines an IP address.                                                                                                                                                                                                                                                                    |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Usage Guide              | The DHCP allows transmitting configuration information to a host via<br>a TCP/IP network. DHCP packets contain the option field of definable<br>content. A DHCP client should be able to receive a DHCP packet<br>carrying at least 312 bytes option. Besides, the fixed data field in a<br>DHCP packet is also called an option.<br>In a WLAN, a DHCP client on an AP dynamically requests the IP<br>address of an AC. You may configure on a<br>DHCP server the <b>option</b> command specifying the AC address. |

## Enabling or Disabling Address Pool



| Command                  | pool-status {enable   disable}                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | enable: Enables an address pool.<br>disable:<br>Disable an<br>address pool.<br>It is enabled<br>by default. |
| Command<br>Mode          | DHCP address pool configuration mode                                                                        |
| Usage Guide              | A QTECH wireless product provides a command for you to enable/disable a DHCP address pool.                  |

## ✤ Refraining from Assigning Gateway Address

| Command                  | force-no-router                                                                                                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                               |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                                                                              |
| Usage Guide              | If a client requests an IP address as well as a gateway address, a DHCP server assigns an IP address and a gateway address to the client. After configuration, no gateway address |
|                          | is sent to the client.                                                                                                                                                            |

## **Configuration Example**

## \* Configuring Address Pool

| Configuration<br>Steps | <ul> <li>Define an address pool net172.</li> <li>The network segment is 172.16.1.0/24.</li> <li>The default gateway is 172.16.1.254.</li> <li>The address lease is 1 day.</li> <li>xcluded addresses range from 172.16.1.2 to 172.16.1.100.</li> </ul> |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH(config)# ip dhcp excluded-address 172.16.1.2 172.16.1.100<br>QTECH(dhcp-config)# ip dhcp pool net172<br>QTECH(dhcp-config)# network 172.16.1.0 255.255.255.0 QTECH(dhcp-<br>config)# default-router 172.16.1.254 QTECH(dhcp-config)# lease 1     |



| 2. Comigunity Arti 100 |                                                                                                                                     |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Verification           | Run the <b>show run</b> command to display the configuration.                                                                       |
|                        | QTECH(config)#show run   begin ip dhcp                                                                                              |
|                        | ip dhcp excluded-address 172.16.1.2 172.16.1.100 ip dhcp pool net172<br>network 172.16.1.0 255.255.255.0default-router 172.16.1.254 |
|                        | lease 1                                                                                                                             |

## 4.4.2 Configuring Static IP Address

## **Configuration Effect**

Assign specific IP addresses and push configuration to specific DHCP clients.

## Notes

N/A

## **Configuration Steps**

## Configuring Address Pool Name and Entering Address Pool Configuration Mode

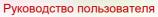
- Mandatory. It is used to create an IP address pool.
- Run the **ip dhcp pool** command in global configuration mode.

## Configuring IP Address and Subnet Mask of Client

- Mandatory. It is used to configure a static IP address and a subnet mask.
- Run the **host** command in DHCP address pool configuration mode.

## \* Configuring Hardware Address of Client

- Optional. It is used to configure a MAC address.
- Run the **hardware** command in DHCP address pool configuration mode.


## Configures Unique Client Identifier

- Optional. It is used to configure a static user identifier (UID).
- Run the **client-identifier** command in DHCP address pool configuration mode.

## Configuring Client Name

• Optional. It is used to configure a static client name.





- 2. Configuring ARP154
  - Run the **host-name** command in DHCP address pool configuration mode.

## Verification

Check whether the client obtains the IP address when it is online.

#### **Related Commands**

#### Configuring Address Pool

| Command                  | ip dhcp pool <i>dhcp-pool</i>                                                                                                     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | pool-name: Indicates the name of an address pool.                                                                                 |
| Command<br>Mode          | Global configuration mode                                                                                                         |
| Usage Guide              | Before assigning an IP address to a client, you need to configure an address pool name and enter address pool configuration mode. |

## \* Manual IP Address Binding

| Command                  | host <i>ip-address</i> [ <i>netmask</i> ]<br>client-identifier <i>unique-identifier</i><br>client-name <i>name</i>                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>ip-address:</i> Defines the IP address of a DHCP client.<br><i>netmask:</i> Defines the subnet mask of a DHCP client.<br><i>unique-identifier:</i> Defines the hardware address (for example,<br>aabb.bbbb.bb88) and identifier (for example, 01aa.bbbb.bbbb.88) of a<br>DHCP client.<br><i>name:</i> (Optional) It defines a client name using ASCII characters. The<br>name excludes a domain name. For<br>example, name a host <b>mary</b> rather than <b>mary.rg.com</b> . |
| Command<br>Mode          | DHCP address pool configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| Usage GuideAddress binding means mapping between an IP address and a<br>client's MAC address. There are two kind of address binding. 1)<br>Manual binding. Manual binding can be deemed as a special DHCP<br>address pool with only one address. 2) Dynamic binding. A DHCP<br>server dynamically assigns an IP address from a pool to a client<br>when it receives a DHCP request, creating mapping between the IP<br>address and the client's MAC address.<br>To configure manual binding, you need to define a host pool and then<br>specify a DHCP client's IP address and hardware address or<br>identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the Address<br>Resolution Protocol Parameters | 2. Configuring ARP 155 |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------|
| Manual binding. Manual binding can be deemed as a special DHCP<br>address pool with only one address. 2) Dynamic binding. A DHCP<br>server dynamically assigns an IP address from a pool to a client<br>when it receives a DHCP request, creating mapping between the IP<br>address and the client's MAC address.<br>To configure manual binding, you need to define a host pool and then<br>specify a DHCP client's IP address and hardware address or<br>identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                       | Usage Guide            | Address binding means mapping between an IP address and a             |
| address pool with only one address. 2) Dynamic binding. A DHCP<br>server dynamically assigns an IP address from a pool to a client<br>when it receives a DHCP request, creating mapping between the IP<br>address and the client's MAC address.<br>To configure manual binding, you need to define a host pool and then<br>specify a DHCP client's IP address and hardware address or<br>identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                         |                        | client's MAC address. There are two kind of address binding. 1)       |
| server dynamically assigns an IP address from a pool to a client<br>when it receives a DHCP request, creating mapping between the IP<br>address and the client's MAC address.<br>To configure manual binding, you need to define a host pool and then<br>specify a DHCP client's IP address and hardware address or<br>identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                                                                                           |                        | Manual binding. Manual binding can be deemed as a special DHCP        |
| <ul> <li>when it receives a DHCP request, creating mapping between the IP address and the client's MAC address.</li> <li>To configure manual binding, you need to define a host pool and then specify a DHCP client's IP address and hardware address or identifier. A hardware address is a MAC address. A client identifier includes a network medium type and a MAC address. A Microsoft client is usually identified by a client identifier rather than a MAC address. For the codes of medium types, refer to the <i>Address</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                       |                        | address pool with only one address. 2) Dynamic binding. A DHCP        |
| address and the client's MAC address.<br>To configure manual binding, you need to define a host pool and then<br>specify a DHCP client's IP address and hardware address or<br>identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | server dynamically assigns an IP address from a pool to a client      |
| To configure manual binding, you need to define a host pool and then<br>specify a DHCP client's IP address and hardware address or<br>identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | when it receives a DHCP request, creating mapping between the IP      |
| specify a DHCP client's IP address and hardware address or<br>identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | address and the client's MAC address.                                 |
| identifier. A hardware address is a MAC address. A client identifier<br>includes a network medium type and a MAC address. A Microsoft<br>client is usually identified by a client identifier rather than a MAC<br>address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | To configure manual binding, you need to define a host pool and then  |
| includes a network medium type and a MAC address. A Microsoft client is usually identified by a client identifier rather than a MAC address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | specify a DHCP client's IP address and hardware address or            |
| client is usually identified by a client identifier rather than a MAC address. For the codes of medium types, refer to the <i>Address</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | identifier. A hardware address is a MAC address. A client identifier  |
| address. For the codes of medium types, refer to the Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | includes a network medium type and a MAC address. A Microsoft         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | client is usually identified by a client identifier rather than a MAC |
| Resolution Protocol Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | address. For the codes of medium types, refer to the Address          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | Resolution Protocol Parameters                                        |
| section in the RFC 1700. The Ethernet type is <b>01</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | section in the RFC 1700. The Ethernet type is <b>01</b> .             |

## **Configuration Example**

## Dynamic IP Address Pool

| Configuration<br>Steps | <ul> <li>Configure address pool VLAN 1 with IP address 20.1.1.0 and<br/>subnet mask 255.255.255.0.</li> </ul> |
|------------------------|---------------------------------------------------------------------------------------------------------------|
| Ctope                  | <ul> <li>The default gateway is 20.1.1.1.</li> </ul>                                                          |
|                        | <ul> <li>The lease time is 1 day.</li> </ul>                                                                  |
|                        | QTECH(config)# ip dhcp pool vlanl                                                                             |
|                        | QTECH(dhcp-config)# network 20.1.1.0 255.255.255.0                                                            |
|                        | QTECH(dhcp-config)# default-router 20.1.1.1                                                                   |
|                        | QTECH(dhcp-config)# lease 1 0 0                                                                               |
| Verification           | Run the <b>show run</b> command to display the configuration.                                                 |



 PykoBogCTBO ПОЛЬЗОВАТЕЛЯ

 2. Configuring ARP156

 QTECH(config)#show run | begin ip dhcp ip dhcp pool vlan1

 network 20.1.1.0 255.255.255.0

 default-router 20.1.1.1

 lease 1 0 0

## ✤ Manual Binding

| Configuration<br>Steps | <ul> <li>The host address is 172.16.1.101 and the subnet mask is 255.255.255.0.</li> <li>The host name is Billy.rg.com.</li> <li>The default gateway is 172.16.1.254.</li> <li>The MAC address is 00d0.df34.32a3.</li> </ul> |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH(config)# ip dhcp pool Billy                                                                                                                                                                                            |
|                        | QTECH(dhcp-config)# host 172.16.1.101 255.255.255.0 QTECH(dhcp-config)# client-name Billy                                                                                                                                    |
|                        | <pre>QTECH(dhcp-config)# hardware-address 00d0.df34.32a3 Ethernet</pre>                                                                                                                                                      |
|                        | QTECH(dhcp-config)# default-router 172.16.1.254                                                                                                                                                                              |
| Verification           | Run the <b>show run</b> command to display the configuration.                                                                                                                                                                |
|                        | QTECH(config)#show run   begin ip dhcp ip dhcp pool Billy<br>host 172.16.1.101 255.255.255.0                                                                                                                                 |
|                        | client-name Billy<br>hardware-address 00d0.df34.32a3 Ethernet default-router 172.16.1.254                                                                                                                                    |

## 4.4.3 Configuring AM Rule for DHCP Server

## **Configuration Effect**

Assign IP addresses according to an AM rule based on a port and a VLAN.

## Notes

QTECH products support AM rule configuration on Ethernet, GB, FR, PPP and HDLC interfaces.



#### Руководство пользователя 2. Configuring ARP157 Configuration Steps

#### Configuring Address Management

- Mandatory. Enter address management mode.
- Run the **address-manage** command in address management configuration mode.

#### Configuring AM Rule

- Mandatory. Configure an AM rule based on a port and a VLAN.
- Run the **match ip** command in address management configuration mode.

#### Verification

Check whether clients in different VLANs and ports obtain the valid IP addresses.

#### **Related Commands**

#### Configuring Default Range

| Command                  | match ip default <i>ip-address netmask</i>                                                                                                                                                                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>ip-address:</i> Defines an IP address.<br><i>netmask:</i> Defines a subnet mask.                                                                                                                              |
| Command<br>Mode          | Address management mode                                                                                                                                                                                          |
| Usage Guide              | After configuration, all DHCP clients are assigned IP addresses from the default range based on the VLAN and port. If this command is not configured, IP addresses will be assigned through the regular process. |

#### Assigning Dynamic IP Address Based on VLAN and Port

| Command     | match ip <i>ip-address netmask interface</i> [add/remove] vlan <i>vlan-list</i> |
|-------------|---------------------------------------------------------------------------------|
| Parameter   | <i>ip-address:</i> Defines                                                      |
| Description | an IP address.                                                                  |
|             | netmask: Defines a                                                              |
|             | subnet mask.                                                                    |
|             | <i>interface:</i> Defines                                                       |
|             | an interface name.                                                              |
|             | add/remove: Adds or deletes a specific VLAN.                                    |



| 2. Configuring ARP158 |                                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|
|                       | <i>vlan-list:</i> Indicates a VLAN index.                                                                              |
| Command<br>Mode       | Address management mode                                                                                                |
| Usage Guide           | After configuration, DHCP clients are assigned IP addresses from the default address range based on the VLAN and port. |

## ✤ Assigning Static IP Address Based on VLAN

| Command                  | match ip <i>ip-address netmask</i> [add/remove] vlan <i>vlan-list</i>                                                                                                                                                                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>ip-address:</i> Defines an IP address.<br><i>netmask:</i> Defines a<br>subnet mask.<br><i>add/remove:</i> Adds or<br>deletes a specific VLAN.<br><i>vlan-list:</i> Indicates a<br>VLAN index.                                                                                                                                            |
| Command<br>Mode          | Address management mode                                                                                                                                                                                                                                                                                                                     |
| Usage Guide              | In a Super VLAN, a client may be assigned a fixed static address no<br>matter which Super VLAN the client resides in. You do not need to<br>configure an AM rule for this IP address based on all sub-VLANs and<br>ports,<br>but only configure an AM rule based on the VLAN. This rule takes effect<br>for only static address assignment. |

## **Configuration Example**

## Configuring AM Rule

| Configuration | <ul> <li>Configure a default rule.</li> </ul>                                              |
|---------------|--------------------------------------------------------------------------------------------|
| Steps         | <ul> <li>Configure a rule based on a specific VLAN, port and address<br/>range.</li> </ul> |
|               | <ul> <li>Configure a rule based on a specific VLAN and address range.</li> </ul>           |



| Руководство пользоват<br>2. Configuring ARP159 | Руководство пользователя<br>2. Configuring ARP159                                |  |
|------------------------------------------------|----------------------------------------------------------------------------------|--|
|                                                | QTECH(config)# address-manage                                                    |  |
|                                                | QTECH(config-address-manage)# match ip default 172.50.128.0<br>255.255.128.0     |  |
|                                                | QTECH(config-address-manage)# match ip 10.1.5.0 255.255.255.0 Gi5/3 vlan<br>1005 |  |
|                                                | QTECH(config-address-manage)# match ip 10.1.6.0 255.255.255.0 vlan 1006          |  |
| Verification                                   | 1: Run the <b>show run</b> command to display the configuration.                 |  |
|                                                | address-manage                                                                   |  |
|                                                | match ip default 172.50.128.0 255.255.128.0                                      |  |
|                                                | match ip 10.1.5.0 255.255.255.0 Gi5/3 vlan 1005                                  |  |
|                                                | match ip 10.1.6.0 255.255.255.0 vlan 1006                                        |  |

## 4.4.4 Configuring Global Properties of DHCP Server

## **Configuration Effect**

Enable a server with specific functions, for example, ping and compulsory NAK.

## Notes

Configuring the command may cause exceptions on other servers.

## **Configuration Steps**

- Configuring Excluded IP Address
- Optional. Configure some addresses or address ranges as unavailable.
- Run the **ip dhcp excluded-address** command in global configuration mode.

## Configuring Compulsory NAK Reply

- Optional. A server replies to a wrong address request with a NAK packet.
- Run the **ip dhcp force-send-nak** command in global configuration mode.
- Configuring Ping Times
- Optional. Check the address reachability with the **ping** command. The default is 2.
- Run the **ip dhcp ping packet** command in global configuration mode.



### Configuring Ping Timeout

- Optional. Check the address reachability with the **ping** command. The default is 500 ms.
- Run the **ip dhcp ping timeout** command in global configuration mode.

#### Configuring ARP Entry Check

- Optional. This function is a supplement to the ping conflict detection function. After ping conflict detection is completed, ARP entries of the local device are queried if the ARP entry check function is enabled.
- Run the **ip dhcp arp-probe** command in global configuration mode.

#### Detecting User Offline Detection

- Configure a DHCP server to detect whether the client is offline or not. If a client does not get online after being offline for a period, the address assigned to the client will be retrieved.
- Run the **ip dhcp server arp-detect** command in global configuration mode.

### Configuring Pseudo Server Detection

- Optional. Enable this function to log a pseudo server.
- Run the **ip dhcp server detect** command in global configuration mode.

## Verification

Run the **dhcp-server** command, and check the configuration during address assignment.

#### **Related Commands**

#### Configuring Excluded IP Address

| Command                  | ip dhcp excluded-address <i>low-ip-address</i> [ <i>high-ip-address</i> ]                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>low-ip-address:</i> Indicates a start IP address.<br><i>high-ip-address:</i> Indicates an end IP address. |
| Command<br>Mode          | Global configuration mode                                                                                    |



| Usage Guide | Unless otherwise specified, a DHCP server assigns all the addresses      |
|-------------|--------------------------------------------------------------------------|
|             | from an IP address pool to DHCP clients. To reserve some addresses       |
|             | (e.g., addresses already assigned to the server or devices), you need to |
|             | configure these addresses as excluded addresses. To configure a DHCP     |
|             | server, it is recommended to configure excluded addresses to avoid       |
|             | address conflict and shorten detection time during address               |
|             | assignment.                                                              |

## Configuring Compulsory NAK Reply

| Command     | ip dhcp force-send-nak                                                      |
|-------------|-----------------------------------------------------------------------------|
| Parameter   | N/A                                                                         |
| Description |                                                                             |
| Command     | Global configuration mode                                                   |
| Mode        |                                                                             |
| Usage Guide | In a WLAN, a DHCP client often moves from one network to another.           |
|             | When a DHCP server receives a lease renewal request from a client but       |
|             | finds that the client crosses the network segment or that the lease is      |
|             | expired, it replies with a NAK packet to require the client to obtain an IP |
|             | address again. This prevents the client from sending request packets        |
|             | continually before obtaining an IP address again after timeout.             |
|             | The server sends a NAK packet only when it finds the client's lease         |
|             | record. When a DHCP client crosses the network, a DHCP server cannot        |
|             | find lease record of the client and will not reply with a NAK packet. The   |
|             | client sends request packets continually before obtaining an IP address     |
|             | again after timeout. Consequently, it takes a long to obtain an IP address. |
|             | This also occurs when a DHCP server loses a lease after restart and a       |
|             | client requests lease renewal. In this case, you may configure a command    |
|             | to force the DHCP server to reply with a NAK packet even though it          |
|             | cannot find the lease record so that the client may obtain an IP address    |
|             | rapidly. Please note that the command is disabled by default. To enable     |
|             | it, only one DHCP server can be                                             |



Руководство пользователя

#### 2. Configuring ARP162

configured in a broadcast domain.

## Configuring Ping Times

| Command                  | ip dhcp ping packets <b>[ <i>number</i> ]</b>                                                                                                                                                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>number:</i> (Optional) Ranges from 0 to 10. 0 indicates the ping function is disabled. The default is two pings.                                                                                                                                                                                                          |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                    |
| Usage Guide              | By default, when a DHCP server assigns an IP address from a pool, it<br>runs the <b>Ping</b> command twice (one packet per time). If there is no reply,<br>the server takes the address as idle and assigns it to a client. If there is<br>a reply, the server takes the address as occupied and assigns another<br>address. |

## Configuring Ping Timeout

| Command                  | ip dhcp ping timeout <i>milliseconds</i>                                                                                                                                             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>milli-seconds:</i> Indicates the time that it takes for a DHCP server to wait for a ping reply. The value ranges from 100 ms to 10,000 ms.                                        |
| Command<br>Mode          | Global configuration mode                                                                                                                                                            |
| Usage Guide              | By default, if a DHCP server receives no Ping reply within 500 ms, the IP address is available. You may adjust the ping timeout to change the time for a server to wait for a reply. |

## Configuring ARP Entry Check

| Command                  | ip dhcp arp-probe         |
|--------------------------|---------------------------|
| Parameter<br>Description | N/A                       |
| Command<br>Mode          | Global configuration mode |



| Usage Guide | This function is a supplement to the ping conflict detection function. If  |
|-------------|----------------------------------------------------------------------------|
|             | there is an STA with a static IP address and L2 isolation in the           |
|             | environment and ping conflict detection function becomes invalid (for      |
|             | example, the firewall is enabled on the STA), an STA that applies for a    |
|             | dynamic IP address may be assigned with this IP address, resulting in      |
|             | IP conflict. If the ARP entry check function is enabled, ARP entries of    |
|             | the local host are queried after ping conflict detection is performed for  |
|             | the assigned IP address. If an ARP entry exists for the IP address to be   |
|             | assigned and the ARP entry is different from the MAC address of the        |
|             | STA for which the IP address is to be assigned, it is regarded that this   |
|             | IP address has been occupied and cannot be assigned to another STA.        |
|             | If ARP attacks exist in the environment, it is recommended that the ARP    |
|             | entry check function be disabled. Otherwise, the DHCP assignment           |
|             | service is affected. As a result, it takes a long time for an STA to apply |
|             | for an IP address or the STA cannot apply for an IP address.               |
|             |                                                                            |

## Configuring ARP-Based Offline Detection

| Command                  | ip dhcp server arp-detect                                                                                                                                                                                                                                                                                   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                                                                                         |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                   |
| Usage Guide              | By default, DHCP server does not detect whether a client is offline or not<br>based on ARP. After configuration,<br>a DHCP server may perform the detection. If a client does not get online<br>again after a period (5 minutes by default), a DHCP server retrieves the<br>address assigned to the client. |

## ✤ Configuring Pseudo Server Detection

| Command     | ip dhcp server detect |
|-------------|-----------------------|
| Parameter   | N/A                   |
| Description |                       |



| Command<br>Mode | Global configuration mode                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| Usage Guide     | By default, pseudo server detection is disabled on a DHCP server. Run this command to enable pseudo server detection. |

## **Configuration Example**

## Configuring Ping

| Configuration<br>Steps | <ul> <li>Set ping times to 5.</li> <li>Set ping timeout to 800ms.</li> </ul>             |
|------------------------|------------------------------------------------------------------------------------------|
|                        | QTECH(config)# ip dhcp ping packet 5                                                     |
|                        | QTECH(config)# ip dhcp ping timeout 800                                                  |
| Verification           | Run the <b>show run</b> command to display the configuration.                            |
|                        | QTECH(config)#show run   begin ip dhcp ip dhcp ping packet 5<br>ip dhcp ping timeout 800 |

## Configuring Excluded IP Address

| Configuration<br>Steps | Configure the excluded IP address from 192.168.0.0 to 192.168.255.255. |
|------------------------|------------------------------------------------------------------------|
|                        | QTECH(config)# ip dhcp excluded-address 192.168.0.0 192.168.255.255    |
| Verification           | Run the <b>show run</b> command to display the configuration.          |
|                        | QTECH(config)#show run   begin ip dhcp                                 |
|                        | ip dhcp excluded-address 192.168.0.0 192.168.255.255                   |

## 4.4.5 Configuring Basic DHCP Relay Functions

## **Configuration Effect**

 Deploy dynamic IP management in Client–Relay–Server mode to achieve communication between a DHCP client and a DHCP server, which are in different network segments.





#### Notes

• To enable DHCP Relay, you need to configure IPv4 unicast routing in a network.

## **Configuration Steps**

- Enabling DHCP Relay
- Mandatory.
- Unless otherwise specified, you need to enable DHCP Relay on a device.

## Configuring IP Address for DHCP Server

- Mandatory.
- You need to configure an IP address for a DHCP server.

## Verification

• Check whether a client obtains an IP address through DHCP Relay.

#### **Related Commands**

Enabling DHCP Relay

| Command                  | service dhcp              |
|--------------------------|---------------------------|
| Parameter<br>Description | N/A                       |
| Command<br>Mode          | Global configuration mode |
| Usage Guide              | N/A                       |

## \* Configuring IP Address for DHCP Server

| Command                  | ip helper-address { cycle-mode   [ vrf { vrf-name }] A.B.C.D }                                                                                                                                                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>cycle-mode</i> : Indicates that DHCP request packets are forwarded to all DHCP servers.<br><i>vrf-name</i> : Indicates a VPN Routing & Forwarding (VRF) name.<br><i>A.B.C.D</i> : Indicates the IP address of a server. |
| Command<br>Mode          | Global configuration mode/interface configuration mode                                                                                                                                                                     |



Usage Guide

You may configure the function on a layer-3 interface, such as a routed port, a L3 AP port, SVI and loopback interface.

The configured interface must be accessible via IPv4 unicast routing.

## **Configuration Example**

## Configuring DHCP Relay in Wired Connection

| Scenario<br>Figure 4-18 | G0/1 G0/2<br>DHCP Client DHCP Relay Agent DHCP Server                                                                                                                                                       |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration           | <ul> <li>Enable a client with DHCP to obtain an IP address.</li> </ul>                                                                                                                                      |
| Steps                   | <ul> <li>Enable the DHCP Relay function on a DHCP relay agent.</li> <li>Configure DHCP Server.</li> </ul>                                                                                                   |
| Α                       | Enable a client with DHCP to obtain an IP address.                                                                                                                                                          |
| В                       | Enable DHCP Relay.                                                                                                                                                                                          |
|                         | <pre>QTECH(config)# service dhcp Configure a global IP address of a DHCP<br/>server.<br/>QTECH(config)# ip helper-address 172.2.2.1 Configure an IP address for<br/>the port connected to the client.</pre> |
|                         | QTECH(config)# interface gigabitEthernet 0/1 QTECH(config-if)# ip<br>address 192.1.1.1 255.255.0                                                                                                            |
|                         | Configure an IP address for the port connected to the server.<br>QTECH(config)# interface gigabitEthernet 0/2                                                                                               |
|                         | QTECH(config-if-gigabitEthernet 0/2) # ip address 172.2.2.2 255.255.0                                                                                                                                       |
| С                       | Enable DHCP Server.                                                                                                                                                                                         |
|                         | <pre>QTECH(config)# service dhcp Configure an address pool.<br/>QTECH(config)# ip dhcp pool relay</pre>                                                                                                     |
|                         | QTECH (dhcp-config)#network 192.1.1.0 255.255.255.0                                                                                                                                                         |
|                         | QTECH (dhcp-config)#default-router 192.1.1.1                                                                                                                                                                |
|                         | Configure an IP address for the port connected to the relay agent.<br>QTECH(config)# interface gigabitEthernet 0/1<br>QTECH(config-if-gigabitEthernet 0/2)# ip address 172.2.2.1 255.255.255.0              |



| 2. Configuring ARP167 |                                                                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification          | <ul> <li>Check whether the client obtains an IP address.</li> <li>Check whether the client obtains an IP address.</li> <li>Check the DHCP Relay configuration.</li> </ul> |
| Α                     | The user device obtains an IP address.                                                                                                                                    |
| В                     | After login to the DHCP relay agent, run the <b>show running-config</b> command in privileged EXEC mode to display DHCP Relay configuration.                              |
|                       | QTECH# show running-config service dhcp<br>ip helper-address 172.2.2.1<br>!                                                                                               |
|                       | interface GigabitEthernet 0/1                                                                                                                                             |
|                       | ip address 192.1.1.1 255.255.0                                                                                                                                            |
|                       | !                                                                                                                                                                         |
|                       | interface GigabitEthernet 0/2                                                                                                                                             |
|                       | ip address 172.2.2.2 255.255.0                                                                                                                                            |
|                       | !                                                                                                                                                                         |

## **Common Errors**

- IPv4 unicast routing configuration is incorrect.
- DHCP Relay is disabled.
- No routing between DHCP relay agent and DHCP server is configured.
- No IP address is configured for the DHCP server.

## 4.4.6 Configuring DHCP Relay Option 82

## **Configuration Effect**

 Through a DHCP relay agent, a server may assign IP addresses of different privileges to the clients more accurately based on the option information.

## Notes



#### Руководство пользователя

- 2. Configuring ARP168
  - You need to enable the DHCP Relay function.

#### **Configuration Steps**

- Enabling Basic DHCP Relay Functions
- Mandatory.
- Unless otherwise specified, you need to enable DHCP Relay on a device.

#### **Enables DHCP Option82**

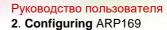
- By default, DHCP Option 82 is disabled.
- You may run the **ip dhcp relay information option82** command to enable or disable DHCP Option 82.

#### Verification

Check whether the client obtains an IP address based on Option 82.

#### **Related Commands**

Enabling DHCP Option 82


| Command     | ip dhcp relay information option82 |
|-------------|------------------------------------|
| Parameter   | N/A                                |
| Description |                                    |
| Command     | Global configuration mode          |
| Mode        |                                    |
| Usage Guide | N/A                                |

#### **Configuration Example**

## Enabling DHCP Option 82

| Configuration<br>Steps | Enable DHCP Option 82.                                                                                                                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH(config) # ip dhcp relay information option82                                                                                           |
| Verification           | After login to the DHCP relay agent, run the <b>show running-config</b> command in privileged EXEC mode to display DHCP Relay configuration. |





QTECH#show ru | incl ip dhcp relay

```
ip dhcp relay information option82
```

#### **Common Errors**

Basic DHCP Relay functions are not configured.

## 4.4.7 Configuring DHCP Relay Check Server-ID

#### **Configuration Effect**

 After you configure the **ip dhcp relay check server-id**, a DHCP Relay agent will forward DHCP request packets only to the server specified by the **option server-id** command. Otherwise, they are forwarded to all DHCP servers.

#### Notes

• You need to enable basic DHCP Relay functions.

## **Configuration Steps**

- Enabling DHCP Relay Check Server-ID
- By default, DHCP Relay check server-id is disabled.
- You may run the **ip dhcp relay check server-id** command to enable DHCP Relay check server-id.

## Verification

Check whether a DHCP Relay agent sends DHCP request packets only to the server specified by the **option server-id** command.

#### **Related Commands**

## Configuring DHCP Relay Check Server-ID

| Command                  | ip dhcp relay check server-id |
|--------------------------|-------------------------------|
| Parameter<br>Description | N/A                           |
| Command<br>Mode          | Global configuration mode     |
| Usage Guide              | N/A                           |





Configuring DHCP Relay Check Server-ID

| Configuration<br>Steps | <ul> <li>Enable DHCP Relay.</li> <li>Enable DHCP Relay check server-id on an interface.</li> </ul>                                           |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH# configure terminal<br>QTECH(config)# ip dhcp relay check server-id                                                                    |
| Verification           | After login to the DHCP relay agent, run the <b>show running-config</b> command in privileged EXEC mode to display DHCP Relay configuration. |
|                        | QTECH# show running-config   include check server-id ip dhcp relay check<br>server-id<br>QTECH#                                              |

#### **Common Errors**

Basic DHCP Relay functions are not configured.

## 4.4.8 Configuring DHCP Relay Suppression

#### **Configuration Effect**

 After you configure the **ip DHCP Relay suppression** command on an interface, DHCP request packets received on the interface will be filtered, and the other DHCP requests will be forwarded.

#### Notes

• You need to enable basic DHCP Relay functions.

## **Configuration Steps**

Enabling DHCP Relay Suppression

By default, DHCP Relay suppression is disabled on all interfaces.

You may run the **ip dhcp relay suppression** command to enable DHCP Relay suppression.

#### Verification

• Check whether the DHCP request packets received on the interface are filtered.





### Configuring DHCP Relay Suppression

| Command                  | ip dhcp relay suppression    |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Interface configuration mode |
| Usage Guide              | N/A                          |

## **Configuration Example**

## Configuring DHCP Relay Suppression

| Configuration<br>Steps | <ul> <li>Configure basic DHCP Relay functions.</li> <li>Configure DHCP Relay suppression on an interface.</li> </ul>                                                                                              |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | <pre>QTECH# configure terminal<br/>QTECH(config)# interface gigabitEthernet 0/1<br/>QTECH(config-if-GigabitEthernet 0/1)# ip dhcp relay suppression<br/>QTECH(config-if-GigabitEthernet 0/1)#end<br/>QTECH#</pre> |
| Verification           | After login to the DHCP relay agent, run the <b>show running-config</b> command in privileged EXEC mode to display DHCP Relay configuration.                                                                      |
|                        | QTECH# show running-config   include relay suppression<br>ip dhcp relay suppression QTECH#                                                                                                                        |

#### **Common Errors**

Basic DHCP Relay functions are not configured.

## 4.4.9 Configuring DHCP Client

## **Configuration Effect**





#### 2. Configuring ARP172

Enable DHCP Client on a device so that it obtains IP addresses and configurations dynamically.

#### Notes

QTECH products support DHCP Client configuration on Ethernet, FR, PPP and HDLC interfaces.

#### **Configuration Steps**

Run the **ip address dhcp** command on an interface.

#### Verification

Check whether the interface obtains an IP address.

#### **Related Commands**

#### Configuring DHCP Client

| Command                  | ip address dhcp                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                             |
| Command<br>Mode          | Interface configuration mode                                                                                    |
| Usage Guide              | <ul> <li>QTECH products support dynamic IP address obtainment by an<br/>Ethernet interface.</li> </ul>          |
|                          | <ul> <li>QTECH products support dynamic IP address obtainment by a PPP-<br/>encapsulated interface.</li> </ul>  |
|                          | <ul> <li>QTECH products support dynamic IP address obtainment by an FR-<br/>encapsulated interface.</li> </ul>  |
|                          | <ul> <li>QTECH products support dynamic IP address obtainment by an<br/>HDLC-encapsulated interface.</li> </ul> |

### **Configuration Example**

### \* Configuring DHCP Client

| Configuration | 1: Enable port FastEthernet 0/0 with DHCP to obtain an IP address. |
|---------------|--------------------------------------------------------------------|
| Steps         |                                                                    |





| 2. Configuring ARP173 |                                                                  |
|-----------------------|------------------------------------------------------------------|
|                       | QTECH(config) # interface FastEthernet0/0                        |
|                       | QTECH(config-if-FastEthernet 0/0)#ip address dhcp                |
| Verification          | 1: Run the <b>show run</b> command to display the configuration. |
|                       |                                                                  |
|                       | QTECH(config)#show run   begin ip address dhcp                   |

## 4.4.10 Configuring Class Rules of the DHCP Server

## **Configuration Effect**

After class rules are configured, the DHCP server can assign IP addresses in different network segments to STAs based on the option82 information carried by the STAs.

#### Notes

The configured class rules take effect only after they are associated with corresponding address pools.

## **Configuration Steps**

- Configuring Class Rules
  - Run the **ip dhcp class** command to add class rules.
  - Run the relay agent information command to enter the option82 information configuration mode.
  - Run the **relay-information hex** command to configure matched option82 content.

## ✤ Associating Class Rules with Address Pools

- Run the class command to associate class rules.
- Run the address range command to configure assigned IP address segments after class rules are matched.

## Verification

Run the **show run** command to check whether the configuration is successful.

## **Related Commands**

Configuring Class Rules



| 2. Configuring ARP174    |                                                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Command                  | ip dhcp class <i>class-name</i>                                                                                                                                         |
| Parameter<br>Description | N/A                                                                                                                                                                     |
| Command<br>Mode          | Configuration mode                                                                                                                                                      |
| Usage Guide              | This command is used for server configuration. Configure class rules if IP addresses in different network segments need to be assigned based on the option information. |

## Entering the option82 Information Configuration Mode

| Command                  | relay agent information                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                     |
| Command<br>Mode          | Configuration mode                                                                                      |
| Usage Guide              | This command is used for server configuration and to enter the option82 information configuration mode. |

## Configuring the option82 Information Matched with Class Rules

| Command                  | relay-information hex                                                                                             |
|--------------------------|-------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                               |
| Command<br>Mode          | Configuration mode                                                                                                |
| Usage Guide              | This command is used for server configuration and to configure the option82 information matched with class rules. |

## ✤ Associating Class Rules with Address Pools

| Command class <i>class-name</i> |
|---------------------------------|
|---------------------------------|



| 2. Configuring ARP175 |                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
| Parameter             | N/A                                                                                                                   |
| Description           |                                                                                                                       |
| Command               | Configuration mode                                                                                                    |
| Mode                  |                                                                                                                       |
| Usage Guide           | This command is used for server configuration and to associate configured class rules with destination address pools. |

## Configuring the IP Address Range Matched with a Class Rule

| Command                  | address range <b>start-ip end-ip</b>                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                         |
| Command<br>Mode          | Configuration mode                                                                                                                          |
| Usage Guide              | This command is used for server configuration and to configure the range of the IP address assigned to an STA when a class rule is matched. |

## **Configuration Example**

## Configuring Class Rules

| Configuration | 1: Create a global class rule, for example, test-class. |
|---------------|---------------------------------------------------------|
| Steps         |                                                         |



| Руководство пользова  | теля                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------|
| 2. Configuring ARP176 |                                                                                           |
|                       | QTECH(config)# ip dhcp class test-class                                                   |
|                       |                                                                                           |
|                       | 2: Enter the relay-agent-info configuration mode.                                         |
|                       |                                                                                           |
|                       | QTECH(config-dhcp-class) # relay agent information                                        |
|                       | 3: Add the option82 information sent from a specified port as the matching rule.          |
|                       |                                                                                           |
|                       | QTECH(config-dhcp-class-relayinfo)#relay-information hex<br>0104001002010203010020        |
|                       |                                                                                           |
|                       | 4: Associate the class rule with an address pool and specify the address network segment. |
|                       | QTECH(config)#ip dhcp pool test-pool                                                      |
|                       |                                                                                           |
|                       | QTECH(dhcp-config)#class test-class                                                       |
|                       | QTECH(config-dhcp-pool-class)#address range 1.1.1.10 1.1.1.20                             |
| Verification          | Run the <b>show run</b> command to check whether the configuration is successful.         |
|                       | ip dhcp class test-class relay agent information                                          |
|                       | relay-information hex 0104001002010203010020                                              |
|                       |                                                                                           |
|                       | !                                                                                         |
|                       |                                                                                           |
|                       | ip dhcp pool test-pool class test-class                                                   |
|                       | address range 1.1.1.10 1.1.1.20                                                           |
|                       |                                                                                           |

## 4.5 Monitoring

Running the clear commands may lose vital information and interrupt services.

## Clearing

| Description                         | Command                                          |
|-------------------------------------|--------------------------------------------------|
| Clears DHCP address binding.        | <pre>clear ip dhcp binding { address   *}</pre>  |
| Clears DHCP address conflict.       | <pre>clear ip dhcp conflict { address   *}</pre> |
| Clears statistics of a DHCP server. | clear ip dhcp server statistics                  |



| Clears statistics of a DHCP relay.                  | clear ip dhcp relay statistics |
|-----------------------------------------------------|--------------------------------|
| Clears statistics of DHCP<br>server<br>performance. | clear ip dhcp server rate      |
| Clearsinformationof a<br>DHCP<br>pseudo server.     | clear ip dhcp server detect    |

## Displaying

| Description                             | Command                       |
|-----------------------------------------|-------------------------------|
| Displays DHCP lease.                    | show dhcp lease               |
| Displays DHCP sockets.                  | show ip dhcp socket           |
| Displays assigned IP addresses.         | show ip dhcp binding          |
| Displays created address pools.         | show ip dhcp pool             |
| Displays statistics of DHCP Server.     | show ip dhcp server statistic |
| Displays statistics of DHCP Relay.      | show ip dhcp relay statistic  |
| Displays conflicted addresses.          | show ip dhcp conflict         |
| Displays DHCP lease history.            | show ip dhcp history          |
| Displays the address pool ID and        | show ip dhcp identifier       |
| address utilization of a DHCP server.   |                               |
| Displays the DHCP pseudo server.        | show ip dhcp server detect    |
| Displays database backup status of DHCP | show ip dhcp database         |





## Debugging

System resources are occupied when debugging information is output. Therefore, disable debugging immediately after use.

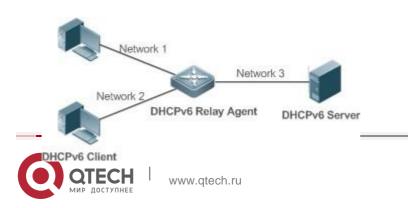
| Description                | Command                    |
|----------------------------|----------------------------|
| Debugs DHCP agent.         | debug ip dhcp server agent |
| Debugs DHCP hot backup.    | debug ip dhcp server ha    |
| Debugs DHCP address pools. | debug ip dhcp server pool  |
| Debugs all DHCP servers.   | debug ip dhcp server all   |
| Debugs DHCP packets.       | debug ip dhcp client       |
| Debugs DHCP Relay events.  | debug ip dhcp relay        |



# **5 Configuring DHCPv6**

## 5.1 Overview

The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) is a protocol that allows a DHCP server to transfer configurations (such as IPv6 addresses) to IPv6 nodes.


As compared with other IPv6 address allocation methods, such as manual configuration and stateless automatic address configuration, DHCPv6 provides the address allocation, prefix delegation, and configuration parameter allocation.

- DHCPv6 is a stateful protocol for automatically configuring addresses and flexibly adding and reusing network addresses, which can record allocated addresses and enhance network manageability.
- By using the prefix delegation of DHCPv6, uplink network devices can allocate address prefixes to downlink network devices, which implements flexible station-level automatic configuration and flexible control of station address space.
- The DHCPv6 configuration parameter allocation solves the problem that parameters cannot be obtained through a stateless automatic address configuration protocol and allocates DNS server addresses and domain names to hosts.

DHCPv6 is a protocol based on the client/server model. A DHCPv6 client is used to obtain various configurations whereas a DHCPv6 server is used to provide various configurations. If the DHCPv6 client and DHCPv6 server are not on the same network link (the same network segment), they can interact with each other by using a DHCPv6 relay agent.

The DHCPv6 client usually discovers the DHCPv6 server by reserving multicast addresses within a link; therefore, the DHCPv6 client and DHCPv6 server must be able to directly communicate with each other, that is, they must be deployed within the same link. This may cause management inconvenience, economic waste (a DHCPv6 server is deployed for each subnet) and upgrade inconvenience. The DHCPv6 relay agent function can solve these problems by enabling a DHCPv6 client to send packets to a DHCPv6 server on a different link. The DHCP relay agent is often deployed within the link where a DHCPv6 client resides and is used to relay interaction packets between the DHCPv6 client and DHCPv6 server. The DHCP relay agent is transparent to the DHCPv6 client.

Figure 5-1





#### **Protocols and Standards**

- RFC3315: Dynamic Host Configuration Protocol for IPv6
- RFC3633: IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) Version 6
- RFC3646: DNS Configuration Options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
- RFC3736: Stateless DHCP Service for IPv6
- RFC5417: Control And Provisioning of Wireless Access Points (CAPWAP) Access Controller DHCP Option

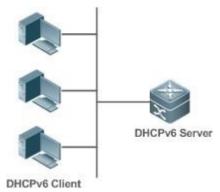
#### 5.2 Applications

| Application                                                           | Description                                                                                                                                                                                               |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requesting/Allocating<br>Addresses and<br>Configuration<br>Parameters | A DHCPv6 client requests addresses from a DHCPv6 server. The DHCPv6 server allocates addresses and configuration parameters to the DHCPv6 client.                                                         |
| Requesting/Allocating<br>Prefixes                                     | The DHCPv6 client requests a prefix from the DHCPv6 server.<br>The DHCPv6 server allocates a prefix to the DHCPv6 client and<br>then the DHCPv6 client configures IPv6<br>addresses by using this prefix. |
| Relay Service                                                         | The DHCPv6 relay is used to enable communication between the DHCPv6 client and DHCPv6 server on different links.                                                                                          |

**5.2.1** Requesting/Allocating Addresses and Configuration Parameters

#### Scenario

In a subnet, a DHCPv6 client requests addresses from a DHCPv6 server. The DHCPv6 server allocates addresses and configuration parameters to the DHCPv6 client.


As shown in Figure 5-2:

 The DHCPv6 server is configured with IPv6 addresses, DNS servers, domain names and other configuration parameters to be allocated.



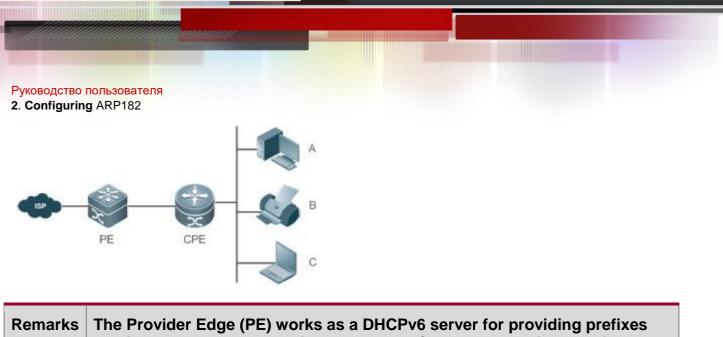
- 2. Configuring ARP181
  - A host works as a DHCPv6 client to request an IPv6 address from the DHCPv6 server. After receiving the request, the DHCPv6 server selects an available address and allocates the address to the host.
  - The host can also request a DNS server, domain name and other

configuration parameters from the DHCPv6 server. Figure 5-2



# Deployment

- Run the DHCPv6 client on a host in the subnet to obtain an IPv6 address and other parameters.
- Run the DHCPv6 server on a device and configure the IPv6 address and other parameters to allocate the IPv6 address and parameters.
- **5.2.2** Requesting/Allocating Prefixes


### Scenario

As shown in Figure 5-3, an uplink device (PE) allocates an IPv6 address prefix for a downlink device (CPE). The CPE generates a new address prefix for the internal subnet based on the obtained prefix. Hosts in the internal subnet of the CPE are configured with addresses through Router Advertisement (RA) by using the new address prefix.

- The PE provides the prefix delegation service as a DHCPv6 server.
- The CPE requests an address prefix from the PE as a DHCPv6 client. After obtaining the address prefix, the CPE generates a new address prefix for the internal subnet and sends an RA message to hosts in the internal subnet.
- The hosts in the internal subnet where CPE resides configure their addresses based on the RA message sent by the CPE.

Figure 5-3





and is also called a delegating router. The Customer Premises Equipment (CPE) works as a DHCPv6 client for requesting prefixes and is also called a requesting router.

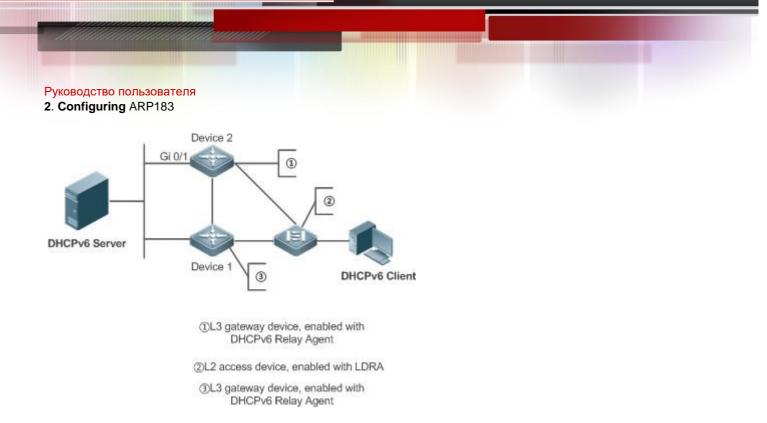
A, B and C are various hosts.

# Deployment

- Run the DHCPv6 server on the PE to implement the prefix delegation service.
- Run the DHCPv6 client on the CPE to obtain address prefixes.
- Deploy IPv6 ND between the CPE and the hosts to configure the host addresses in the subnet through RA.

# 5.2.3 Relay Service

# Scenario


The DHCPv6 relay agent provides the relay service for the DHCPv6 client ad DHCPv6 server on different links to enable communication between them.

As shown in Figure 5-4:

- Device 1 is enabled with the DHCPv6 relay agent and destined to 3001::2.
- Device 2 wants to forward packets to other servers through a next-level relay service. Enable the DHCPv6 relay agent on Device 2, set the destination address to FF02::1:2 (all servers and Relay multicast addresses) and specify the egress interface as the layer-3 interface gi 0/1.

Figure 5-4





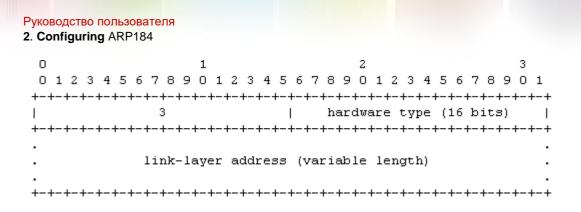
# Deployment

- Enable the DHCPv6 relay agent on device 1 and specify the address as 3000::1.
- Enable the DHCPv6 relay agent on device 2 and specify the address as FF02::1:2.

# 5.3 Features

# **Basic Concept**

# DUID


The DHCP Unique Identifier (DUID) identifies a DHCPv6 device. As defined in RFC3315, each DHCPv6 device (DHCPv6 client, relay or server) must have a DUID, which is used for mutual authentication during DHCPv6 message exchange.

RFC3315 defines three types of DUIDs:

- DUID Based on Link-Layer address plus Time (DUID-LLT).
- DUID Assigned by Vendor Based on Enterprise Number (DUID-EN).
- Link-Layer address (DUID-LL).

QTECH DHCPv6 devices use DUID-LLs. The structure of a DUID-LL is as follows:





The values of *DUID-LL*, *Hardware type*, and *Link-layer address* are 0x0003, 0x0001 (indicating the Ethernet), and MAC address of a device respectively.

# Identity Association (IA)

A DHCPv6 server allocates IAs to DHCPv6 clients. Each IA is uniquely identified by an identity association identifier (IAID). IAIDs are generated by DHCPv6 clients. A one-to-one mapping is established between IAs and clients. An IA may contain several addresses, which can be allocated by the client to other interfaces. An IA may contain one of the following types of addresses:

- Non-temporary Addresses (NAs), namely, globally unique addresses.
- Temporary Addresses (TAs), which are hardly used.
- Prefix Delegation (PD).

Based on the address type, IAs are classified into IA\_NA, IA\_TA, and IA\_PD (three IA-Types). QTECH DHCPv6 servers support only IA\_NA and IA\_PD.

# Sinding

A DHCPv6 binding is a manageable address information structure. The address binding data on a DHCPv6 server records the IA and other configurations of every client. A client can request multiple bindings. The address binding data on a server is present in the form of an address binding table with DUID, IA-Type and IAID as the indexes. A binding containing configurations uses DUID as the index.

# ✤ DHCPv6 Conflict

When an address allocated by a DHCPv6 client is in conflict, the client sends a Decline packet to notify the DHCPv6 server that the address is rebound. Then, the server adds the address to the address conflict queue. The server will not allocate the addresses in the address conflict queue. The server supports viewing and clearing of address



**2.** Configuring ARP185 information in the address conflict queue.

# Packet Type

RFC3315 stipulates that DHCPv6 uses UDP ports 546 and 547 for packet exchange. Specifically, a DHCPv6 client uses port 546 for receiving packets, while a DHCPv6 server and DHCPv6 relay agent use port 547 for receiving packets. RFC3315 defines the following types of packets that can be exchanged among the DHCPv6 server, client, and relay agent:

- Packets that may be sent by a DHCPv6 client to a DHCPv6 server include Solicit, Request, Confirm, Renew, Rebind, Release, Decline, and Informationrequest.
- Packets that may be sent by a DHCPv6 server to a DHCPv6 client include Advertise, Reply, and Reconfigure.
- Packets that may be sent by a DHCPv6 relay agent to another DHCPv6 relay agent or a DHCPv6 server include Relay-forward.
- Packets that may be sent by a DHCPv6 relay agent to another DHCPv6 relay agent or a DHCPv6 server include Relay-reply.
- QTECH DHCPv6 servers do not support the Reconfigure packet.
- $\bigcirc$  QTECH DHCPv6 clients do not support the Confirm and Reconfigure packets.

| Feature                            | Description                                                                                    |
|------------------------------------|------------------------------------------------------------------------------------------------|
| Requesting/Allocating<br>Addresses | Dynamically obtains/allocates IPv6 addresses in a network in the client/server mode.           |
| Requesting/Allocating<br>Prefixes  | Dynamically obtains/allocates IPv6 prefixes in a network in the client/server mode.            |
| Stateless Service                  | Provides stateless configuration service for hosts in a network.                               |
| Relay Service                      | Provides the DHCPv6 server service for hosts in different networks by using the relay service. |

# Overview



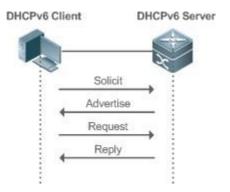
2. Configuring ARP186

### 5.3.1 Requesting/Allocating Addresses

A DHCPv6 client can request IPv6 addresses from a DHCPv6 server.

After being configured with available addresses, a DHCPv6 server can provide IPv6 addresses to hosts in the network, record the allocated addresses and improve the network manageability.

### **Working Principle**


Network hosts serve as DHCPv6 clients and DHCPv6 servers to implement address allocation, update, confirmation, release and other operations through message exchange.

### Four-Message Exchange

Figure 5-5 shows the four-

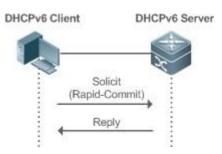
message exchange process.

```
Figure 5-5
```



- A DHCPv6 client sends a Solicit message whose destination address is FF02::1:2 and destination port number is 547 within the local link to request address, prefix and configuration parameter allocation. All DHCPv6 servers or DHCPv6 relay agents within the link will receive the Solicit message.
- After receiving the Solicit message, a DHCPv6 server will send an Advertise message in the unicast mode if it can provide the information requested in the Solicit message. The Advertise message includes the address, prefix and configuration parameters.
- The DHCPv6 client may receive the Advertise message from multiple DHCPv6




#### 2. Configuring ARP187

servers. After selecting the most suitable DHCPv6 server, the DHCPv6 client sends a Request message whose destination address is FF02::1:2 and destination port number is 547 to request address, prefix and configuration parameter allocation.

 After receiving the Request message, the DHCPv6 server creates a binding locally and sends a Reply message in the unicast mode. The Reply message includes the address, prefix and configuration parameters that the DHCPv6 server will allocate to the DHCPv6 client. The DHCPv6 client obtains address, prefix or configuration parameters based on the information in the Reply message.

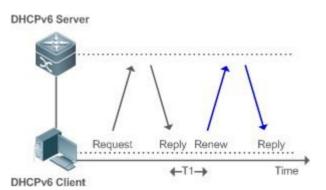
### Two-Message Exchange

Two-message exchange can be used to complete address, prefix and parameter configuration for DHCPv6 clients more quickly.





- A DHCPv6 client sends a Solicit message whose destination address is FF02::1:2 and destination port number is 547 within the local link to request address, prefix and configuration parameter allocation. The Solicit message contains Rapid Commit.
- If a DHCPv6 server supports the Rapid Commit option, the DHCPv6 server creates a binding locally and sends a Reply message in the unicast mode. The Reply message includes the address, prefix and configuration parameters to be


allocated to the DHCPv6 client. The DHCPv6 client completes configuration based on the information in the Reply message.

### Update and Rebinding



2. Configuring ARP188 The DHCPv6 server provides the control address and the updated T1 and T2 in the IA of the message sent to the DHCPv6 client.

# Figure 5-7



The DHCPv6 client will send a Renew multicast message to the DHCPv6 server for updating the address and prefix after T1 seconds. The Renew message contains the DUID of the DHCPv6 server and the IA information to be updated.

After receiving the Renew message, the DHCPv6 server checks whether the DUID value in the Renew message is equal to the DUID value of the local device. If yes, the DHCPv6 server updates the local binding and sends a Reply message in the unicast mode. The Reply message contains the new T1 and other parameter s.

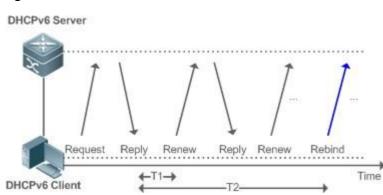
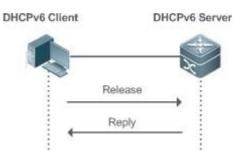



Figure 5-8

- If no response is received after the DHCPv6 client sends a Renew message to the DHCPv6 server, the DHCPv6 client will send a Rebind multicast message to the DHCPv6 server for rebinding the address and prefix after T2 expires.
- After receiving the Rebind message, the DHCPv6 server (perhaps a new





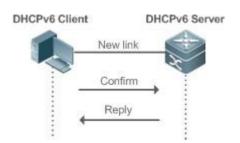

2. Configuring ARP189

DHCPv6 server) sends a Reply message according to the content of the Rebind message.

Release

If a DHCPv6 client needs to release an address or a prefix, the DHCPv6 client needs to send a Release message to a DHCPv6 server to notify the DHCPv6 server of the released addresses or prefixes. In this way, the DHCPv6 server can allocate these addresses and prefixes to other DHCPv6 clients.

# Figure 5-9




 After receiving the Release message, the DHCPv6 server removes the corresponding bindings based on the addresses or prefixes in the Release message, and sends a Reply message carrying the state option to the DHCPv6 client.

# Confirmation


After moving to a new link (for example, after restart), a DHCPv6 client will send a Confirm message to the DHCPv6 server on the new link to check whether the original addresses are still available.

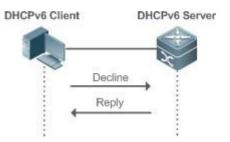
# Figure 5-10



 After receiving the Confirm message, the DHCPv6 server performs confirmation based on the address information in the Confirm message, and sends a Reply message carrying the state option to the DHCPv6 client. If the confirmation






#### 2. Configuring ARP190

fails, the DHCPv6 client may initiate a new address allocation request.

# DHCPv6 Conflict

If the DHCPv6 client finds that the allocated addresses have been used on the link after address allocation is completed, the DHCPv6 client sends a Decline message to notify the DHCPv6 server of the address conflict.

Figure 5-11



- The DHCPv6 client includes the IA information of the conflicted addresses in the Decline message.
- After receiving the Decline message, the DHCPv6 server marks the addresses in the Decline message as "declined" and will not allocate these addresses. Then, the DHCPv6 server sends a Reply message carrying the state option to the DHCPv6 client. You can manually clear addresses marked as "declined" to facilitate re-allocation.

# **Related Configuration**

# Enabling the DHCPv6 Server Function on an Interface

- By default, an interface is not enabled with the DHCPv6 server function.
- You can run the **ipv6 dhcp server** command to enable the DHCPv6 server function for the interface.

The DHCPv6 server function must be enabled on a layer-3 interface.

# Allocating Addresses Through the DHCPv6 Server

- By default, the DHCPv6 server has no configuration pool and is not configured with addresses to be allocated.
- You can run the **ipv6 dhcp pool** command to create a configuration pool.
- You can run the iana-address command to configure addresses to be allocated and the preferred lifetime and valid lifetime values.



2. Configuring ARP191

- Clearing Conflicted Addresses Through the DHCPv6 Server
- By default, the DHCPv6 server does not clear conflicted addresses that are detected.
- You can run the clear ipv6 dhcp conflict command to clear conflicted addresses so that these addresses can be reused.
- Enabling the DHCPv6 Client Address Request Function on an Interface
- By default, an interface is not enabled with the DHCPv6 client address request function.
- You can run the **ipv6 dhcp client ia** command to enable the DHCPv6 client address request function for the interface.

The DHCPv6 client address request function is effective only on a layer-3 interface.

## 5.3.2 Requesting/Allocating Prefixes

Configure available prefixes on the DHCPv6 server. By using the prefix delegation of DHCPv6, uplink network devices can allocate address prefixes to downlink network devices, which implements flexible station-level automatic configuration and flexible control of station address space.

## **Working Principle**

Downlink network devices serve as DHCPv6 clients to exchange messages with the DHCPv6 server to implement address allocation, update, release and other operations. Downlink network devices obtain, update, rebind and release prefixes by using the four-/two-message exchange mechanism similar to that for allocating addresses. However, prefix allocation is different from address allocation in the following aspects:

- In message exchange using the prefix delegation, the Confirm and Decline messages are not used.
- If a DHCPv6 client moves to a new link and needs to check whether the prefix information is available, it performs confirmation through Rebind and Reply message exchange.
- The IA type in various messages is IA\_PD.

For the message exchange using the prefix delegation, refer to the section "Requesting/Allocating Addresses".



- Enabling the DHCPv6 Server Function on an Interface
- By default, an interface is not enabled with the DHCPv6 server function.
- You can run the **ipv6 dhcp server** command to enable the DHCPv6 server function for the interface.

The DHCPv6 server function is effective only on a layer-3 interface.

# Prefix Delegation of the DHCPv6 Server

- By default, the DHCPv6 server has no configuration pool and is not configured with prefixes.
- You can run the **ipv6 dhcp pool** command to create a configuration pool.
- You can run the prefix-delegation command to allocate specified prefixes to a specific DHCPv6 client.
- You can run the prefix-delegation pool command to configure a prefix pool so that all prefixes requested by the DHCPv6 client are allocated from this pool.

# Enabling the DHCPv6 Client Prefix Request Function on an Interface

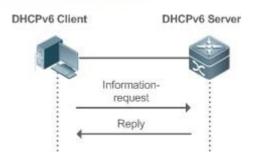
By default, an interface is not enabled with the DHCPv6 client prefix request function.

You can run the **ipv6 dhcp client pd** command to enable or disable the DHCPv6 client prefix request function for the interface.

The DHCPv6 client prefix request function is effective only on a layer-3 interface.

# 5.3.3 Stateless Service

When a DHCPv6 client needs only configuration parameters, the DHCPv6 stateless service can be used to obtain related configuration parameters which cannot be obtained through a stateless automatic address configuration protocol, such as the DNS server address.


# **Working Principle**

Network hosts serve as DHCPv6 clients to exchange messages with the DHCPv6 server to obtain and update configuration parameters.

# \* Message Exchange Using the Stateless Service

Figure 5-12





- A DHCPv6 client sends an Information-request message to a DHCPv6 server to request stateless messages. Usually, this message does not contain the DUID of the specified DHCPv6 server.
- The DHCPv6 server sends a Reply message containing the configuration parameters to the DHCPv6 client.

## **Related Configuration**

## Enabling the DHCPv6 Server Function on an Interface

- By default, an interface is not enabled with the DHCPv6 server function.
- You can run the **ipv6 dhcp server** command to enable or disable the DHCPv6 server function for the interface.

The DHCPv6 server function is effective only on a layer-3 interface.

### Stateless Service of a DHCPv6 Server

- By default, the DHCPv6 server has no configuration pool and is not configured with configuration parameters.
- You can run the **ipv6 dhcp pool** command to create a configuration pool.
- You can run the **dns-server** command to add a DNS server.
- You can run the **domain-name** command to add a domain name.
- You can run the **option52** command to add the IPv6 address of the CAPWAP AC.

### Stateless Service of a DHCPv6 Client

- By default, an interface is not enabled with the stateless service of the DHCPv6 client.
- If a host receives an RA message containing the O flag, it will enable the stateless service.

### 5.3.4 Relay Service

When the DHCPv6 client and DHCPv6 server are on different links, the DHCPv6 client

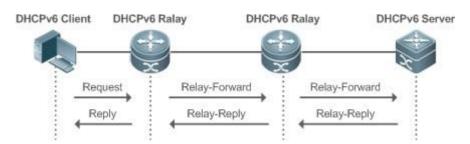


2. Configuring ARP194

can relay related messages to the DHCPv6 server through the DHCPv6 relay agent. The DHCPv6 server also relays the response to the DHCPv6 client through the relay agent.

## **Working Principle**

When receiving a message from the DHCPv6 client, the DHCPv6 relay agent creates a Relay-forward message. This message contains the original message from the DHCPv6 client and some options added by the relay agent. Then, the relay agent sends the Relay-forward message to a specified DHCPv6 server or a specified multicast address FF05::1:3.


After receiving the Relay-forward message, the DHCPv6 server extracts the original message from the DHCPv6 client f for processing. Then, the DHCPv6 server constructs a response to the original message, encapsulates the response in a Relay-reply message, and then sends the Relay-reply message to the DHCPv6 relay agent.

After receiving the Relay-reply message, the DHCPv6 relay agent extracts the original message from the DHCPv6 server for processing, and forwards the message to the DHCPv6 client.

Multi-level relay agents are allowed between the DHCPv6 client and DHCPv6 server.

# DHCPv6 Relay Agent

Figure 5-13



 The DHCPv6 relay agent performs message encapsulation and decapsulation between the DHCPv6 client and DHCPv6 server to enable communication between the DHCPv6 client and DHCPv6 server on different links.

# 5.4 Configuration



| 2. Configuring ARP195                                | ſ                              |                                                                            |
|------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|
| Configuration                                        | Description and Command        |                                                                            |
|                                                      | (Mandatory) It is used to cr   | eate a configuration pool.                                                 |
| <u>ConfiguringtheDHC</u><br><u>Pv6</u> <u>Server</u> | ipv6 dhcp pool                 | Configures a configuration pool for<br>a DHCPv6<br>server.                 |
|                                                      | (Optional) It is used to alloc | cate addresses.                                                            |
|                                                      | iana-address prefix            | Configures the address prefixes to be allocated on the DHCPv6 server.      |
|                                                      | (Optional) It is used to alloc | cate prefixes.                                                             |
|                                                      | prefix-delegation              | Configures prefixes of statically bound addresses on the DHCPv6 server.    |
|                                                      | prefix-delegation pool         | Configures the DHCPv6 server to allocate                                   |
|                                                      | ipv6 local pool                | prefixes from a local prefix pool.<br>Configures a local IPv6 prefix pool. |
|                                                      |                                | cate configuration parameters.                                             |
|                                                      | dns-server                     | Configures the DNS server on the DHCPv6                                    |
|                                                      |                                | server.                                                                    |
|                                                      | domain-name                    | Configures the domain name of the DHCPv6                                   |
|                                                      |                                | server.                                                                    |
|                                                      | option52                       | Configures the IPv6 address of the CAPWAP AC                               |
|                                                      |                                | on the DHCPv6 server.                                                      |
|                                                      | (Mandatory) It is used to er   | nable the DHCPv6 server service.                                           |



| 2. Configuring ARP196                                |                                                                                                                            |                                                                                                                                      |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | ipv6 dhcp server                                                                                                           | Enables the DHCPv6 server service on an interface.                                                                                   |
| ConfiguringtheDHC<br>Pv6 Relay                       | (Mandatory) It is used to enable the DHCPv6 relay agent service.                                                           |                                                                                                                                      |
|                                                      | ipv6 dhcp relay destination                                                                                                | Configures the DHCPv6 relay agent function.                                                                                          |
|                                                      | (Mandatory) It is used to re                                                                                               | quest addresses or prefixes.                                                                                                         |
|                                                      | ipv6 dhcp client ia                                                                                                        | Enables the DHCPv6 client and requests IANA addresses.                                                                               |
| <u>ConfiguringtheDHC</u><br><u>Pv6</u> <u>Client</u> | ipv6 dhcp client pd                                                                                                        | Enables the DHCPv6 client and requests address prefixes.                                                                             |
|                                                      | (Optional) It is used to enable a host that receives an RA message to request stateless service through the DHCPv6 client. |                                                                                                                                      |
|                                                      | ipv6 nd other-config-flag                                                                                                  | Sets the O flag in the RA message<br>on the device that sends the RA<br>message so that the host that<br>receives the RA message can |
|                                                      |                                                                                                                            | request stateless service through the DHCPv6 client.                                                                                 |

# 5.4.1 Configuring the DHCPv6 Server

# **Configuration Effect**

 An uplink device can automatically allocate DHCPv6 addresses, prefixes and configuration parameters to a downlink device.

# Notes

• To provide the DHCPv6 server service, you must specify a DHCPv6 server



#### 2. Configuring ARP197

configuration pool.

- The name of the configuration pool cannot be too long.
- When enabling the DHCPv6 server service, you must specify a configuration pool.
- Only the Switch Virtual Interface (SVI), routed port and L3 aggregate port (AP) support this configuration.

## **Configuration Steps**

## Configuring a DHCPv6 Server Configuration Pool

- Mandatory.
- Unless otherwise specified, you should configure a DHCPv6 server configuration pool on all devices that need to provide the DHCPv6 server service.
- Configuring the Address Prefixes to Be Allocated on the DHCPv6 Server
- Optional.
- To provide the address allocation service, you should configure address prefixes to be allocated on all devices that need to provide the DHCPv6 server service.

### Configuring Prefixes of Static Addresses on the DHCPv6 Server

- Optional.
- To provide the prefix delegation service for statically bound addresses, you should configure prefixes of statically bound addresses on all devices that need to provide the DHCPv6 server service.

### Configuring the DHCPv6 Server to Allocate Prefixes from a Local Prefix Pool

- Optional.
- To provide the prefix delegation service, you should specify a local prefix pool on all devices that need to provide the DHCPv6 server service.

### Configuring a Local IPv6 Prefix Pool

- Optional.
- To provide the prefix delegation service through a prefix pool, you should specify a local prefix pool on all devices that need to provide the DHCPv6 server service.
- **Configuring the DNS Server on the DHCPv6 Server**



- 2. Configuring ARP198
  - Optional.
  - To allocate DNS servers, you should configure the DNS server on all devices that need to provide the DHCPv6 server service.
  - Configuring Domain Names on the DHCPv6 Server
  - Optional.
  - To allocate domain names, you should configure domain names on all devices that need to provide the DHCPv6 server service.
  - Configuring the IPv6 Address of the CAPWAP AC on the DHCPv6 Server
  - Optional.
  - To allocate CAPWAP AC information, you should configure the IPv6 address of the CAPWAP AC on all devices that need to provide the DHCPv6 server service.

### Enabling the DHCPv6 Server Service

- Mandatory.
- Unless otherwise specified, you should enable the DHCPv6 server service on specific interfaces of all devices that need to provide the DHCPv6 server service.

### Verification

The DHCPv6 server allocates addresses, prefixes or configuration parameters for the DHCPv6 client.

- The DHCPv6 client obtains the required information.
- The DHCPv6 server successfully creates a local binding.

### **Related Commands**

### **Configuring a DHCPv6 Server Configuration Pool**

| Command                  | ipv6 dhcp pool <b>poolname</b>                                                    |
|--------------------------|-----------------------------------------------------------------------------------|
| Parameter<br>Description | <b>poolname</b> : Indicates the name of a user-defined DHCPv6 configuration pool. |
| Command                  | Global configuration mode                                                         |



| Mode        |                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Usage Guide | Run the <b>ipv6 dhcp pool</b> command to create a DHCPv6 server<br>configuration pool. After configuring this command, you may enter the<br>DHCPv6 pool configuration mode, in which you can configure the pool<br>parameters such as the prefix and DNS server.<br>After creating a DHCPv6 server configuration pool, you can run the <b>ipv6</b><br><b>dhcp server</b> command to |
|             | associate the configuration pool with the DHCPv6 server service on an interface.                                                                                                                                                                                                                                                                                                    |

# ✤ Configuring the IA\_NA Address Prefix for the DHCPv6 Server

| Command         | <pre>iana-address prefix ipv6-prefix/prefix-length [ lifetime { valid-lifetime   preferred-lifetime } ]</pre>                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter       | <i>ipv6-prefix/prefix-length</i> : Indicates an IPv6 address prefix and the prefix length.                                                                                                                                                                                                                                                                                                                                                                               |
| Description     | <b>lifetime</b> : Sets the valid time of the address allocated to a client. This keyword must be configured together with <i>valid-lifetime</i> and <i>preferred-lifetime</i> .<br><i>valid-lifetime</i> : Indicates the valid time of the address allocated to a client.<br><i>preferred-lifetime</i> : Indicates the time when an address is preferentially allocated to a client.                                                                                     |
| Command<br>Mode | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Usage Guide     | Run the <b>iana-address prefix</b> command to configure IA_NA address<br>prefixes for a DHCPv6 server, some of which are allocated to the client.<br>When receiving an IA_NA address request from a client, the DHCPv6<br>server selects an available address according to the IA_NA address<br>range and allocates the address to the client. When the client does not<br>use<br>this address, the DHCPv6 server marks this address as available for<br>another client. |

# \* Configuring Prefixes of Statically Bound Addresses on the DHCPv6 Server



2. Configuring ARP200

| Command                  | prefix-delegation ipv6-prefix/prefix-length client-DUID [ lifetime ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>ipv6-prefix/prefix-length</i> : Indicates an IPv6 address prefix and the prefix length.<br><i>client-DUID</i> : Indicates the DUID of a client.<br><i>lifetime</i> : Sets the time when the client can use this prefix.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Command<br>Mode          | DHCPv6 pool configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Usage Guide              | You can run the <b>prefix-delegation</b> command to manually configure a<br>prefix list for an IA_PD of a client and specify the valid time of these<br>prefixes.<br>Use the <i>client-DUID</i> parameter to specify the client to which the address<br>prefix is allocated. The address prefix will be allocated to the first IA_PD of<br>the client.<br>After receiving a request for the address prefix from the client, the<br>DHCPv6 server checks whether a static binding is available. If yes, the<br>DHCPv6 server directly returns the static binding. If not, the DHCPv6<br>server<br>allocates the address prefix from another prefix source. |

# ✤ Configuring the DCHPv6 Server to Allocate Prefixes from a local prefix pool

| Command                  | prefix-delegation pool <i>poolname</i> [lifetime { <i>valid-lifetime</i>   <i>preferred-lifetime</i> } ]                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <ul> <li><i>poolname</i>: Indicates the name of a user-defined local prefix pool.</li> <li><i>lifetime</i>: Sets the valid time of the prefix allocated to a client. This keyword must be configured together with <i>valid-lifetime</i> and <i>preferred-lifetime</i>.</li> <li><i>valid-lifetime</i>: Indicates the valid time of the prefix allocated to the client.</li> <li><i>preferred-lifetime</i>: Indicates the time when a prefix is preferentially allocated to a client.</li> </ul> |
| Command<br>Mode          | DHCPv6 pool configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Usage Guide | Run the prefix-delegation pool command to configure a prefix pool for a  |
|-------------|--------------------------------------------------------------------------|
|             | DHCPv6 server to allocate prefixes to clients. The ipv6 local pool       |
|             | command is used to configure a prefix pool.                              |
|             | When receiving a prefix request from a client, the DHCPv6 server selects |
|             | an available prefix from the prefix pool and allocates the prefix to the |
|             | client. When the client does not use this prefix, the DHCPv6 server      |
|             | retrieves the prefix .                                                   |

# ✤ Configuring a Local IPv6 Prefix Pool

| Command                  | ipv6 local pool poolname prefix/prefix-length assigned-length                                                                                                                                                                                                                          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>poolname</i> : Indicates the name of a local prefix pool.<br><i>prefix/prefix-length</i> : Indicates the prefix and prefix length.<br><i>assigned-length</i> : Indicates the length of the prefix allocated to a user.                                                              |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                              |
| Usage Guide              | Run the <b>ipv6 local pool</b> command to create a local prefix pool. If the DHCPv6 server needs prefix delegation, you can run the <b>prefix-delegation pool</b> command to specify a local prefix pool. Afterwards, prefixes will be allocated from the specified local prefix pool. |

# \* Configuring the DNS Server on the DHCPv6 Server

| Command                  | dns-server <i>ipv6-address</i>                                                                                                                                                 |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | ipv6-address: Indicates the IPv6 address of the DNS server.                                                                                                                    |
| Command<br>Mode          | DHCPv6 pool configuration mode                                                                                                                                                 |
| Usage Guide              | You can run the <b>dns-server</b> command for multiple times to configure multiple DNS server addresses. A new DNS server address will not overwrite old DNS server addresses. |

# Configuring Domain Names on the DHCPv6 Server



| Z. Configuring ARF20     |                                                                                                                                                       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Command                  | domain-name <i>domain</i>                                                                                                                             |
| Parameter<br>Description | domain: Defines a domain name to be allocated to a user.                                                                                              |
| Command<br>Mode          | DHCPv6 pool configuration mode                                                                                                                        |
| Usage Guide              | You can run the <b>domain-name</b> command for multiple times to create multiple domain names. A new domain name will not overwrite old domain names. |

# ✤ Configuring the option52 on the DHCPv6 Server

| Command                  | option52 <i>ipv6-address</i>                                                                                                                                         |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | ipv6-address: Specifies the IPv6 address of the CAPWAP AC.                                                                                                           |
| Command<br>Mode          | DHCPv6 pool configuration mode                                                                                                                                       |
| Usage Guide              | You can run the <b>option52</b> command to configure IPv6 addresses for the multiple CAPWAP ACs. A new CAPWAP AC IPv6 address will not overwrite old IPv6 addresses. |

# \* Enabling the DHCPv6 Server Service

| Command                  | ipv6 dhcp server <b>poolname</b> [rapid-commit] [preference <b>value</b> ]                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>poolname</i> : Indicates the name of a user-defined DHCPv6 configuration pool.                                                                                                                   |
| Description              | <b>rapid-commit:</b> Permits the two-message exchange process.<br><b>preference</b> <i>value</i> : Configures the priority of the advertise message, ranging from 0 to 255. The default value is 0. |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                        |



| Z. Configuring ARP203 |                                                                                                               |
|-----------------------|---------------------------------------------------------------------------------------------------------------|
| Usage Guide           | Run the <b>ipv6 dhcp server</b> command to enable the DHCPv6 service on an interface.                         |
|                       | When the rapid-commit keyword is configured, the two-message                                                  |
|                       | exchange with a client is permitted during allocation of address prefixes                                     |
|                       | and other configurations. After this keyword is configured, if the Solicit                                    |
|                       | message from a client contains the <b>rapid-commit</b> option, the DHCPv6                                     |
|                       | server will send a Reply message directly.                                                                    |
|                       | If <b>preference</b> is set to a non-0 value, the advertise message sent by the                               |
|                       | DHCPv6 server contains the preference option. The preference field                                            |
|                       | affects the server selection by a client. If an advertise message does not                                    |
|                       | contain this field, the value of <b>preference</b> is considered <b>0</b> . If the value of                   |
|                       | preference received by the client is 255, the client sends a request to                                       |
|                       | the server immediately to obtain configurations.                                                              |
|                       | The DHCPv6 client, server, and relay functions are mutually exclusive.<br>An interface can be configured with |
|                       | only one function at a time.                                                                                  |

# **Configuration Example**

# ✤ Configuring the DHCPv6 Server

| Configuration<br>Steps | <ul> <li>Configure a configuration pool named "pool1".</li> <li>Configure the IA_NA address prefix for the DHCPv6 server.</li> </ul>                                                                       |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01693                  | <ul> <li>Configure prefixes of statically bound addresses on the<br/>DHCPv6 server.</li> </ul>                                                                                                             |
|                        | Configure two DNS servers.                                                                                                                                                                                 |
|                        | <ul> <li>Configure the domain name.</li> </ul>                                                                                                                                                             |
|                        | - Enable the DHCPv6 server service on an interface.                                                                                                                                                        |
|                        | QTECH# configure terminal QTECH(config)# ipv6 dhcp pool pool1                                                                                                                                              |
|                        | <pre>QTECH(config-dhcp)# iana-address prefix 2008:50::/64 lifetime 2000 1000<br/>QTECH(config-dhcp)# prefix-delegation 2008:2::/64 0003000100d0f82233ac<br/>QTECH(config-dhcp)# dns-server 2008:1::1</pre> |
|                        | <pre>QTECH(config-dhcp)# dns-server 2008:1::2 QTECH(config-dhcp)# domain-name<br/>example.com QTECH(config-dhcp)#exit</pre>                                                                                |
|                        | QTECH(config)# interface GigabitEthernet 0/1                                                                                                                                                               |
|                        | QTECH(config-if)# ipv6 dhcp server pool1                                                                                                                                                                   |



| Verification | Run the <b>show ipv6 dhcp pool</b> command to display the created configuration pool. |
|--------------|---------------------------------------------------------------------------------------|
|              | QTECH# show ipv6 dhcp pool DHCPv6 pool: pool1<br>Static bindings:                     |
|              | Binding for client 0003000100d0f82233ac                                               |
|              | IA PD prefix: 2008:2::/64                                                             |
|              | preferred lifetime 3600, valid lifetime 3600                                          |
|              | IANA address range: 2008:50::1/64 -> 2008:50::ffff:ffff:ffff:ffff/64                  |
|              | preferred lifetime 1000, valid lifetime 2000                                          |
|              | DNS server: 2008:1::1                                                                 |
|              | DNS server: 2008:1::2                                                                 |
|              | Domain name: example.com                                                              |

# **Common Errors**

- The specified pool name is too long.
- The number of the configuration pools exceeds the system limit (256).
- The configuration is performed on other interfaces than the Switch Virtual Interface (SVI), routed port and L3 AP port.
- The number of interfaces configured with the DHCPv6 server service exceeds the system limit (256).
- The specified value of **valid lifetime** is smaller than that of **preferred lifetime**.
- An invalid IA\_NA address is specified.
- The number of address ranges exceeds the system limit (20).
- When prefixes of statically bound addresses are configured, the specified DUIDs are too long.
- The number of prefixes of statically bound addresses exceeds the system limit (1024).
- When a local prefix pool is configured, the specified value of valid lifetime is smaller than that of preferred lifetime.
- The number of DNS servers exceeds the system limit (10).
- The number of domain names exceeds the system limit (10).





#### 2. Configuring ARP205

The number of option52 addresses exceeds the system limit (10).

### **5.4.2** Configuring the DHCPv6 Relay

### **Configuration Effect**

 A DHCPv6 relay agent can be configured for address allocation, prefix delegation and parameter allocation to enable communication between the DHCPv6 client and server on different links.

### Notes

 A destination address must be specified. If the destination address is a multicast address (such as FF05::1:3), you also need to specify an egress interface.

### **Configuration Steps**

- Configuring the DHCPv6 Relay Agent Function
- Mandatory.
- Unless otherwise specified, you should configure the DHCPv6 relay agent function on all devices that need to provide the DHCPv6 relay agent service.

### Verification

The DHCPv6 client and DHCPv6 server exchange messages through the relay agent.

- Check whether the interface is enabled with the DHCPv6 relay.
- Check whether the DHCPv6 relay agent can receive and send messages.

## **Related Commands**

Configuring the DHCPv6 Relay Agent Function

| Command                  | ipv6 dhcp relay destination <i>ipv6-address</i> [ <i>interface-type interface-</i><br><i>number</i> ]                                                                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>ipv6-address</i> : Specifies the destination address of the relay agent.<br><i>interface-type</i> : Specifies the type of the destination interface (optional).<br><i>interface-number</i> . Specifies the destination interface number (optional). |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                           |



| Usage Guide | All DHCPv6 packets from clients received by an interface enabled with the                         |
|-------------|---------------------------------------------------------------------------------------------------|
|             | DHCPv6 relay function will be encapsulated and sent to a specified                                |
|             | destination address (or multiple destination addresses) through a specified interface (optional). |

## **Configuration Example**

# Configuring the DHCPv6 Relay

| Configuration<br>Steps | Specify an interface enabled with the relay service to forward received DHCPv6 client packets to a specified destination address through the specified interface (optional).                                                                                       |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | <pre>QTECH#configure terminal<br/>Enter configuration commands, one per line. End with CNTL/Z.<br/>QTECH(config)#interface vlan 1<br/>QTECH(config-if)#ipv6 dhcp relay destination 3001::2<br/>QTECH(config-if)#ipv6 dhcp relay destination ff02::1:2 vlan 2</pre> |
| Verification           | Run the <b>show ipv6 dhcp relay destination all</b> command to display the configured destination addresses.                                                                                                                                                       |
|                        | Interface:VLAN 1<br>Destination address(es) Output Interface 3001::2<br>ff02::1:2 VLAN 2                                                                                                                                                                           |

### **Common Errors**

The configuration is performed on other interfaces than the Switch Virtual Interface (SVI), routed port and L3 AP port.

5.4.3 Configuring the DHCPv6 Client

# **Configuration Effect**

 Enable a device to automatically request IPv6 addresses or related parameters from a server.

### Notes

• The configuration must be performed on layer-3 interfaces.

# **Configuration Steps**



#### 2. Configuring ARP207

- Enabling the DHCPv6 Client and Requesting IANA Addresses
- Mandatory.
- Unless otherwise specified, you should enable the DHCPv6 client address request function on all devices that need to request addresses.
- Enabling the DHCPv6 Client and Requesting Address Prefixes
- Mandatory.
- Unless otherwise specified, you should enable the DHCPv6 client prefix request function on all devices that need to request prefixes.
- Enabling the Stateless Service of the DHCPv6 Client
- It is mandatory if the DHCPv6 client needs to obtain configuration parameters.

### Verification

Check whether the interface is enabled with the DHCPv6 client and check the addresses, prefixes and other configuration obtained on the interface.

### **Related Commands**

### Enabling the DHCPv6 Address Request Function

| Command                  | ipv6 dhcp client ia [ rapid-commit ]                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | rapid-commit: Permits the simplified message exchange process.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Usage Guide              | If the DHCPv6 client mode is not enabled, this command will enable the DHCPv6 client mode on the interface.<br>After the <b>ipv6 dhcp client ia</b> command is configured, an IANA address request will be sent to the DHCPv6 server.<br>The <b>rapid-commit</b> keyword permits the two-message exchange process between the client and server. If this keyword is configured, the Solicit message sent by the client contains the <b>rapid-commit</b> option. |

# Enabling the DHCPv6 Client Prefix Request



2. Configuring ARP208

| Command                  | ipv6 dhcp client pd <b>prefix-name</b> [ rapid-commit ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>prefix-name</i> : Indicates a IPv6 general prefix.<br><b>rapid-commit:</b> Permits the simplified message exchange process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Command<br>Mode          | Interface configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Usage Guide              | If the DHCPv6 client mode is not enabled, this command will enable the<br>DHCPv6 client mode on the interface.<br>After the <b>ipv6 dhcp client pd</b> command is configured, a prefix request<br>will be sent to the DHCPv6 server. After receiving the prefix, the client<br>will save the prefix in the IPv6 general prefix pool. Then, other<br>commands and applications can use this prefix.<br>The <b>rapid-commit</b> keyword permits the two-message exchange process<br>between the client and server. If<br>this keyword is configured, the Solicit message sent by the client<br>contains the <b>rapid-commit</b> option. |

# \* Configuring Stateless Service

| Command                  | ipv6 nd other-config-flag                                                                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | -                                                                                                                                                                         |
| Command<br>Mode          | Interface configuration mode                                                                                                                                              |
| Usage Guide              | Configure this command on a host that sends the RA message. Then,<br>the host that receives the RA<br>message obtains stateless configurations through the DHCPv6 client. |

# **Configuration Example**

Enabling the DHCPv6 Address Request Function



|              | QTECH(config)# interface GigabitEthernet 0/1                                                                         |  |
|--------------|----------------------------------------------------------------------------------------------------------------------|--|
|              | QTECH(config-if)# ipv6 dhcp client ia                                                                                |  |
| Verification | Run the <b>show ipv6 dhcp interface</b> command to display whether the interface is enabled with the DHCPv6 client.  |  |
|              | QTECH#show ipv6 dhcp interface GigabitEthernet 0/1 GigabitEthernet 0/1<br>is in client mode<br>Rapid-Commit: disable |  |

# \* Enabling the DHCPv6 Client Prefix Request

| Configuration<br>Steps | Configure the DHCPv6 client prefix request function on an interface.                                                 |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|                        | QTECH(config)# interface GigabitEthernet 0/1                                                                         |  |
|                        | QTECH(config-if)# ipv6 dhcp client pd pd_name                                                                        |  |
| Verification           | Run the <b>show ipv6 dhcp interface</b> command to display whether the interface is enabled with the                 |  |
|                        | DHCPv6 client.                                                                                                       |  |
|                        | QTECH#show ipv6 dhcp interface GigabitEthernet 0/1 GigabitEthernet 0/1<br>is in client mode<br>Rapid-Commit: disable |  |

# Enabling the DHCPv6 Stateless Service

| Configuration<br>Steps | Configure this command on an interface that sends the RA message.                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH# configure terminal<br>QTECH(config)# interface GigabitEthernet 0/1 QTECH(config-if)# ipv6 nd<br>other-config-flag      |
| Verification           | Run the <b>show ipv6 dhcp interface</b> command to display whether an interface of the host obtains configuration parameters. |





# **Common Errors**

- The DHCPv6 client address request is enabled on non-layer-3 interfaces.
- The DHCPv6 address request is enabled on interfaces enabled with the DHCPv6 relay or DHCPV6 server.
- The DHCPv6 client prefix request is enabled on non-layer-3 interfaces.
- The DHCPv6 prefix request is enabled on interfaces enabled with the DHCPv6 relay or DHCPV6 server.

# 5.5 Monitoring

## Clearing

Running the **clear** commands may lose vital information and thus interrupt services

| Description                                                                                                                | Command                                                  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Clears DHCPv6 bindings.                                                                                                    | clear ipv6 dhcp binding [ ipv6-address ]                 |
| Clears DHCPv6 server statistics.                                                                                           | clear ipv6 dhcp server statistics                        |
| Clears conflicted<br>addresses on the<br>DHCPv6 server.                                                                    | <pre>clear ipv6 dhcp conflict { ipv6-address   * }</pre> |
| Clears the statistics on<br>sent and received<br>packets after the<br>DHCPv6 relay is enabled<br>on the current<br>device. | clear ipv6 dhcp relay statistics                         |
| Restarts the DHCPv6 client.                                                                                                | clear ipv6 dhcp client interface-type interface-number   |



#### Руководство пользователя 2. Configuring ARP211 Displaying

| Description                                                                                                     | Command                                                                               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Displays the DUID of a device.                                                                                  | show ipv6 dhcp                                                                        |
| Displays address bindings<br>on the<br>DHCPv6 server.                                                           | show ipv6 dhcp binding [ ipv6-address ]                                               |
| Displays DHCPv6 interface.                                                                                      | show ipv6 dhcp interface [ interface-name ]                                           |
| Displays DHCPv6 pool.                                                                                           | show ipv6 dhcp pool [ poolname ]                                                      |
| DisplaysconflictedDHCPv6<br>addresses.                                                                          | show ipv6 dhcp conflict                                                               |
| Displaysthestatisticsonthe DHCPv6 server.                                                                       | show ipv6 dhcp server statistics                                                      |
| Displays the destination<br>address of<br>the DHCPv6 relay agent.                                               | <pre>show ipv6 dhcp relay destination { all   interface-type interface-number }</pre> |
| Displays the statistics on<br>sent and<br>received packets after the<br>DHCPv6 relay is enabled<br>on a device. | show ipv6 dhcp relay statistics                                                       |
| Displays the local IPv6<br>prefix pool.                                                                         | show ipv6 local pool [ poolname ]                                                     |

# Debugging

System resources are occupied when debugging information is output. Therefore, disable debugging immediately after use.

| Description    | Command                    |
|----------------|----------------------------|
| Debugs DHCPv6. | debug ipv6 dhcp [ detail ] |



# 6 Configuring DNS

### 6.1 Overview

A Domain Name System (DNS) is a distributed database containing mappings between domain names and IP addresses on the Internet, which facilitate users to access the Internet without remembering IP strings that can be directly accessed by computers. The process of obtaining an IP address through the corresponding host name is called domain name resolution (or host name resolution).

### **Protocols and Standards**

- RFC1034: DOMAIN NAMES CONCEPTS AND FACILITIES
- RFC1035: DOMAIN NAMES IMPLEMENTATION AND SPECIFICATION

## 6.2 Applications

| Application                       | Description                                                                                                        |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Static Domain Name<br>Resolution  | Performs domain name resolution directly based on the mapping between a domain name and an IP address on a device. |
| Dynamic Domain Name<br>Resolution | Obtains the IP address mapped to a domain name dynamically from a DNS server on the network.                       |

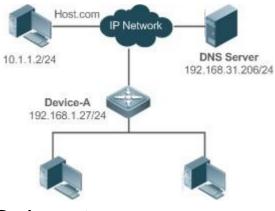
### 6.2.1 Static Domain Name Resolution

### Scenario

- Preset the mapping between a domain name and an IP address on a device.
- When you perform domain name operations (such as Ping and Telnet) through application programs, the system can resolve the IP address without being connected to a server on the network.

### Deployment

- Preset the mapping between a domain name and an IP address on a device.
- 6.2.2 Dynamic Domain Name Resolution


### Scenario

DNS Server is deployed on the network to provide the domain name service.



- 2. Configuring ARP213
  - Domain name "host.com" is deployed on the network.
  - Device-A applies to DNS Server for domain name "host.com".

Figure 6-1 Dynamic Domain Name Resolution



### Deployment

Deploy DNS Server as the DNS server of Device-A.

## 6.3 Features

### **Basic Concepts**

### ✤ DNS

The DNS consists of a resolver and a DNS server. The DNS server stores the mappings between domain names and IP addresses of all hosts on the network, and implements mutual conversion between the domain names and IP addresses. Both the TCP and UDP port IDs of DNS are 53, and generally a UDP port is used.

### Features

| Feature                   | Description                                                                  |
|---------------------------|------------------------------------------------------------------------------|
| Domain Name<br>Resolution | IP addresses are obtained based on domain names from a DNS server or a local |
|                           | database.                                                                    |

### 6.3.1 Domain Name Resolution

### **Working Principle**

### Static Domain Name Resolution

Static domain name resolution means that a user presets the mapping between a domain name and an IP address on a device. When you perform domain name operations (such as



#### 2. Configuring ARP214

Ping and Telnet) through application programs, the system can resolve the IP address without being connected to a server on the network.

### Dynamic Domain Name Resolution

Dynamic domain name resolution means that when a user perform domain name operations through application programs, the DNS resolver of the system queries an external DNS server for the IP address mapped to the domain name.

The procedure of dynamic domain name resolution is as follows:

- 1. A user application program (such as Ping or Telnet) requests the IP address mapped to a domain name from the DNS resolver of the system.
- The DNS resolver queries the dynamic cache at first. If the domain name on the dynamic cache does not expire, the DNS resolver returns the domain name to the application program.
- 3. If all domain names expire, the DNS resolver initiates a request for domain name-IP address conversion to the external DNS server.
- 4. After receiving a response from the DNS server, the DNS resolver caches and transfers the response to the application program.

### **Related Configuration**

### Enabling Domain Name Resolution

- By default, domain name resolution is enabled.
- Run the **ip domain-lookup** command to enable domain name resolution.
- Configuring the IP Address Mapped to a Static Domain Name
- By default, no mapping between a domain name and an IP address is configured.
- Run the **ip host** command to specify the IPv4 address mapped to a domain name.
- Run the **ipv6 host** command to specify the IPv6 address mapped to a domain name.

### Configuring a DNS Server

- By default, no DNS server is configured.
- Run the **ip name-server** command to configure a DNS server.

### 6.4 Configuration



| 2. Configuring ARP215                                                | [                       |                                                            |
|----------------------------------------------------------------------|-------------------------|------------------------------------------------------------|
| Configuration                                                        | Description and Command |                                                            |
| <u>Configuring Static</u><br><u>Domain Name</u><br><u>Resolution</u> | Optional.               |                                                            |
|                                                                      | ip domain-lookup        | Enables domain name resolution.                            |
|                                                                      | ip host                 | Configures the IPv4 address<br>mapped to a<br>domain name. |
|                                                                      | ipv6 host               | Configures the IPv6 address<br>mapped to a<br>domain name. |
| Configuring                                                          | Optional.               |                                                            |
| Dynamic Domain<br>Name Resolution                                    | ip domain-lookup        | Enables domain name resolution.                            |
|                                                                      | ip name-server          | Configures a DNS server.                                   |

# 6.4.1 Configuring Static Domain Name Resolution

### **Configuration Effect**

The system resolver resolves the IP address mapped to a domain name on a local device.

# **Configuration Steps**

### Enabling Domain Name Resolution

- The domain name resolution function is enabled by default.
- If this function is disabled, static domain name resolution does not take effect.

# Configuring the IP Address Mapped to a Domain Name

 (Mandatory) Domain names to be used must be configured with mapped IP addresses.

### Verification

- Run the **show run** command to check the configuration.
- Run the **show hosts** command to check the mapping between the domain name and the IP address.





2. Configuring ARP216 Related Commands

Configuring the IPv4 Address Mapped to a Domain Name

| Command                  | ip host <b>host-name ip-address</b>                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>host-name</i> : indicates a domain name.<br><i>ip-address</i> : indicates a mapped IPv4 address. |
| Command<br>Mode          | Global configuration mode                                                                           |
| Usage Guide              | N/A                                                                                                 |

# Configuring the IPv6 Address Mapped to a Domain Name

| Command                  | ipv6 host <b>host-name ipv6-address</b>                                                               |
|--------------------------|-------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>host-name</i> : indicates a domain name.<br><i>ipv6-address</i> : indicates a mapped IPv6 address. |
| Command<br>Mode          | Global configuration mode                                                                             |
| Usage Guide              | N/A                                                                                                   |

# **Configuration Example**

# ✤ Configuring Static Domain Name Resolution

| Configuration<br>Steps | <ul> <li>Set the IP address of static domain name www.test.com to 192.168.1.1 on a device.</li> <li>Set the IP address of static domain name www.testv6.com to 2001::1 on a device.</li> </ul> |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | <pre>QTECH#configure terminal<br/>QTECH(config)# ip host www.test.com 192.168.1.1 QTECH(config)# ipv6 host<br/>www.testv6.com 2001::1 QTECH(config)# exit</pre>                                |
| Verification           | Run the <b>show hosts</b> command to check whether the static domain name entry is configured.                                                                                                 |



| Руководство пользоват<br>2. Configuring ARP217 |                            | servers a | are:    |          |              |
|------------------------------------------------|----------------------------|-----------|---------|----------|--------------|
|                                                | Host<br>static 192.168.1.1 | type      | Address | TTL(sec) | www.test.com |
|                                                | www.testv6.com             | static    | 2001::1 |          |              |

# 6.4.2 Configuring Dynamic Domain Name Resolution

# **Configuration Effect**

The system resolver resolves the IP address mapped to a domain name through a DNS server.

# **Configuration Steps**

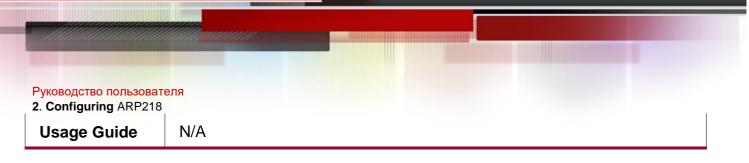
## Enabling Domain Name Resolution

- Domain name resolution is enabled by default.
- If this function is disabled, dynamic domain name resolution does not take effect.

# **Configuring a DNS Server**

 (Mandatory) To use dynamic domain name resolution, you must configure an external DNS server.

## Verification


• Run the **show run** command to check the configuration.

# **Related Commands**

Configuring a DNS Server

| Command                  | ip name-server [ oob ] { <i>ip-address</i>   <i>ipv6-address</i> } [ via <i>mgmt-name</i> ]                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <ul> <li><i>ip-address</i>: indicates the IPv4 address of the DNS server.</li> <li><i>Ipv6-address</i>: indicates the IPv6 address of the DNS server.</li> <li><b>oob</b>: indicates that the DNS server supports an out-of-band management interface (interface of mgmt).</li> <li><i>via</i>: configures an egress management interface.</li> <li><i>mgmt-name:</i> specifies the egress management interface for packets in oob mode.</li> </ul> |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                           |





## **Configuration Example**

# Configuring Dynamic Domain Name Resolution

| Scenario<br>Figure 6-2 | Device 192.168.10.1                                                                           |
|------------------------|-----------------------------------------------------------------------------------------------|
|                        | Device resolves the domain name through the DNS server (192.168.10.1) on the network.         |
| Configuration<br>Steps | Set the IP address of the DNS server to 192.168.10.1 on the device.                           |
|                        | DEVICE#configure terminal<br>DEVICE(config)# ip name-server 192.168.10.1 DEVICE(config)# exit |
| Verification           | Run the <b>show hosts</b> command to check whether the DNS server is specified.               |
|                        | QTECH(config)#show hosts Name servers are: 192.168.10.1 static                                |
|                        | Host type Address TTL(sec)                                                                    |

# 6.4.3 Configuring the Source IP Address for DNS Query

# **Configuration Effect**

The prime IP address of the interface is configured as the source IP address of DNS query.

## **Configuration Steps**

- **Configuring the Source IP Address for DNS Query** 
  - (Optional) You can configure the source IP address of DNS query.
  - By default, no source IP address is specified for DNS query.

### Verification

Run the **show run** command to check the configuration.





### Configuring the Source IP Address for DNS Query

| Command                  | ip domain-lookup          |
|--------------------------|---------------------------|
| Parameter<br>Description | N/A                       |
| Command<br>Mode          | Global configuration mode |
| Usage Guide              | N/A                       |

### 6.5 Monitoring

### Clearing

Running the **clear** command during device operation may cause data loss or even interrupt services.

| Description                                     | Command                  |
|-------------------------------------------------|--------------------------|
| Clears the dynamic host<br>name cache<br>table. | clear host [ host-name ] |

## Displaying

| Description              | Command                  |
|--------------------------|--------------------------|
| Displays DNS parameters. | show hosts [ host-name ] |

### Debugging

System resources are occupied when debugging information is output. Therefore, disable debugging immediately after use.

| Description              | Command      |
|--------------------------|--------------|
| Debugs the DNS function. | debug ip dns |



2. Configuring ARP220

# 7 Configuring FTP Server

## 7.1 Overview

The File Transfer Protocol (FTP) server function enables a device to serve as an FTP server. In this way, a user can connect an FTP client to the FTP server and upload files to and download files from the FTP server through FTP.

A user can use the FTP server function to easily obtain files such as syslog files from a device and copy files to the file system of the device through FTP.

### **Protocols and Standards**

- RFC959: FILE TRANSFER PROTOCOL (FTP)
- RFC3659: Extensions to FTP
- RFC2228: FTP Security Extensions
- RFC2428: FTP Extensions for IPv6 and NATs
- RFC1635: How to Use Anonymous FTP

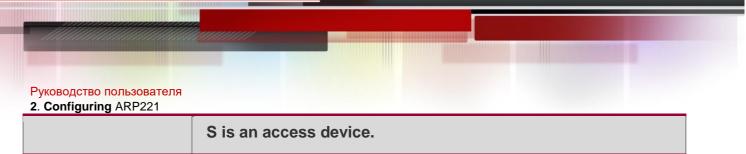
# 7.2 Applications

| Application                     | Description                                                                               |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Providing FTP Services in a LAN | Provides the uploading and downloading services for a user in a Local Area Network (LAN). |

## 7.2.1 Providing FTP Services in a LAN

### Scenario

Provide the uploading and downloading services for a user in a LAN. As shown in Figure 7-1, enable the FTP server function only in a LAN.


- G and S are enabled with the FTP server function and layer-2 transparent transmission function respectively.
- A user initiates a request for FTP uploading and downloading services. Figure 7-1



Remarks

G is an egress gateway device.





### Deployment

- G is enabled with the FTP server function.
- As a layer-2 switch, S provides the function of layer-2 transparent transmission.

## 7.3 Features

### **Basic Concepts**

### ✤ FTP

FTP is a standard protocol defined by the IETF Network Working Group. It implements file transfer based on the Transmission Control Protocol (TCP). FTP enables a user to transfer files between two networked computers and is the most important approach to transferring files on the Internet. A user can obtain abundant Internet for free through anonymous FTP. In addition, FTP provides functions such as login, directory query, file operation, and other session control. Among the TCP/IP protocol family, FTP is an application-layer protocol and uses TCP ports 20 and 21 for transmission. Port 20 is used to transmit data and port 21 is used to transmit control messages. Basic operations of FTP are described in RFC959.

### ✤ User Authorization

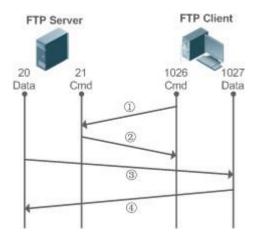
To connect an FTP client to an FTP server, you should have an account authorized by the FTP server. That is, a user can enjoy services provided by the FTP server after logging in to the FTP server with a user name and password. A maximum of

10 accounts can be configured, a maximum of 2 connections are allowed for each account, and a maximum of 10 connections are supported by the server.

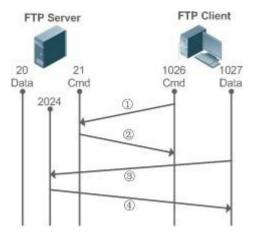
## ✤ FTP File Transmission Modes

FTP provides two file transmission modes:

- Text transmission mode (ASCII mode): It is used to transfer text files (such as .txt, .bat, and .cfg files). This mode is different from the binary mode in carriage return and line feed processing. In ASCII mode, carriage return and line feed are changed to local CRC characters, for example, \n in Unix, \r\n in Windows, and \r in Mac. Assume that a file being copied contains ASCII text. If a remote computer does not run Unix, FTP automatically converts the file format to suit the remote computer.
- Binary transmission mode: It is used to transfer program files (for example, .app, .bin and .btm files), including executable files, compressed files and image files without processing data. Therefore, Binary mode facilitates faster transfer of all files and more reliable transfer of ASCII files.




### 2. Configuring ARP222


### FTP Working Modes

FTP provides two working modes:

### Figure 7-2







- Figure 7-2 shows the active (PORT) mode. The FTP client uses port 1026 to connect to the FTP server through port 21. The client sends commands through this channel. Before receiving data, the client sends the **PORT** command on this channel. The **PORT** command contains information on the channel port (1027) of the client for receiving data. The server uses port 20 to connect to the client through port 1027 for establishing a data channel to receive and transmit data. The FTP server must establish a new connection with the client for data transmission.
- Figure 7-3 shows the passive (PASV) mode. The process for establishing a control channel is similar to that in the PORT mode. However, after the



#### 2. Configuring ARP223

connection is established, the client sends the **PASV** command rather than the **PORT** command. After receiving the **PASV** command, the FTP server enables a high-end port (2024) at random and notifies the client that data will be transmitted on this port. The client uses port 1027 to connect the FTP server through port 2024. Then, the client and server can transmit and receive data on this channel. In this case, the FTP server does not need to establish a new connection with the client.

### Supported FTP Commands

After receiving an FTP connection request, the FTP server requires the client to provide the user name and password for authentication.

If the client passes the authentication, the FTP client commands can be executed for operations. The available FTP client commands are listed as follows:

| ascii | delete | mdelet<br>e | mput    | quit   | send   |
|-------|--------|-------------|---------|--------|--------|
| bin   | dir    | mdir        | nlist   | recv   | size   |
| bye   |        | mget        |         | rename | system |
| cd    | get    | mkdir       | passive |        | type   |
| cdup  |        | mls         | put     | rmdir  | user   |
| close | ls     |             | pwd     |        |        |

For usage of these FTP client commands, please refer to your FTP client software document. In addition, many FTP client tools (such as CuteFTP and FlashFXP) provide the graphic user interface. These tools facilitate operations by freeing users from configuring FTP commands.

### Overview

| Feature                           | Description                                                                                                  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------|
| EnablingtheFTP<br>Server Function | Provides the functions of uploading, downloading, displaying, creating and deleting files for an FTP client. |

### 7.3.1 Enabling the FTP Server Function

### **Working Principle**



#### 2. Configuring ARP224

The basic working principle is described in the previous chapter. QTECH devices provide FTP services after the user name, password, and top-level directory are configured.

### **Related Configuration**

### **Enabling the FTP Server Function Globally**

The FTP server function is disabled by default.

Run the **ftp-server enable** command to enable the FTP server function. You must enable the FTP server function globally before using it.

### Configuring a User Name, Password, and Top-Level Directory

There is no authorized user or top-level directory by default.

### Run the ftp-server usernamepassword and ftp-server topdir commands to set an

authorized user and top-level directory. The three configurations above are mandatory;

otherwise, the FTP server function cannot be enabled.

## 7.4 Configuration

| Configuration     | Description and Command                         |                                                       |  |  |
|-------------------|-------------------------------------------------|-------------------------------------------------------|--|--|
|                   | (Mandatory) It is used to enable an FTP server. |                                                       |  |  |
|                   | ftp-server enable                               | Enables the FTP server function.                      |  |  |
| Configuring Basic | ftp-server login timeout                        | Configures Login timeout for an FTP session.          |  |  |
| Functions         | ftp-server login times                          | Configures the valid login count.                     |  |  |
|                   | ftp-server topdir                               | Configures the top-level directory of the FTP server. |  |  |
|                   | ftp-server username password                    | Configures a user name and password.                  |  |  |
|                   | Optional.                                       |                                                       |  |  |





# 7.4.1 Configuring Basic Functions

### **Configuration Effect**

• Create an FTP server to provide FTP services for an FTP client.

### Notes

- The user name, password, and top-level directory need to be configured.
- To enable the server to close an abnormal session within a limited period, you need to configure the idle timeout of a session.

## **Configuration Steps**

### Enabling the FTP Server Function

- Mandatory.
- Unless otherwise noted, enable the FTP server function on every router.

## Configuring a Top-Level Directory

- Mandatory.
- Unless otherwise noted, configure the top-level directory as the root directory on every router.

## Configuring a User Name and Password for Login

- Mandatory.
- The lengths of the user name and password are restricted.

## ✤ Configuring the Login Timeout for an FTP Session

- Optional.
- When the client is disconnected from the server due to an error or other abnormal causes, the FTP server may not know that the user is disconnected and continues to keep the connection. Consequently, the FTP connection is occupied for a long time and the server cannot respond to the login requests of other users. This configuration can ensure that other users can connect to the FTP server within a period of time upon an error.





Connect an FTP client to the FTP server.

- Check whether the client is connected.
- Check whether operations on the client are normal.

### **Related Commands**

Enabling the FTP Server Function

| Command                  | ftp-server enable                                                                                                                                                                                                                                                                                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | -                                                                                                                                                                                                                                                                                                                            |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                    |
| Usage Guide              | The client cannot access the FTP server unless the top-level directory,<br>user name and password are configured. Therefore, it is recommended<br>that you configure the top-level directory, user name and<br>password for login by referring to the subsequent chapters before<br>enabling the service for the first time. |

# ✤ Configuring the Valid Login Count

| Command                  | ftp-server login times <i>times</i>                                                                                                                                                                                                                                                      |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter<br>Description | times: Indicates the valid login count, ranging from 1 to 10.                                                                                                                                                                                                                            |  |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                |  |
| Usage Guide              | The valid login count refers to the number of times you can perform<br>account verification during an FTP session. The default value is 3,<br>which means that your session will be terminated if you enter an<br>incorrect user name or password for three times and other users can go |  |





# ✤ Configuring the Login Timeout for an FTP Session

| Command                  | ftp-server login timeout <i>timeout</i>                                                                                                                                                                                                             |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter<br>Description | <i>timeout</i> : Indicates the login timeout, ranging from 1 to 30 minutes.                                                                                                                                                                         |  |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                           |  |
| Usage Guide              | The login timeout refers to the maximum duration that the session lasts since being established. If you do not pass the password verification again during the login timeout, the session will be terminated to ensure that other users can log in. |  |

# Configuring the Top-Level Directory of the FTP Server

| Command                  | ftp-server topdir <i>directory</i>                                                                                                                                                                                                                                                        |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter<br>Description | directory: Indicates the user access path.                                                                                                                                                                                                                                                |  |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                 |  |
| Usage Guide              | If the top-level directory of the server is set to "/syslog", the FTP client can access only the files and directories in the "/syslog" directory on the device after login. Due to restriction on the top-level directory, the client cannot return to the upper directory of "/syslog". |  |

# ✤ Configuring a User Name and Password for Server Login

| Command | ftp-server username username password [type] password |  |
|---------|-------------------------------------------------------|--|
|         |                                                       |  |



| 2. Configuring ARP228 |                                                                                                             |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------|--|
| Parameter             | Username: Indicates a user name.                                                                            |  |
| Description           | <i>type</i> : 0 or 7. 0 indicates that the password is not encrypted (plaintext)                            |  |
|                       | and 7 indicates that the password is encrypted (cipher text).                                               |  |
|                       | password: Indicates a password.                                                                             |  |
| Command               | Global configuration mode                                                                                   |  |
| Mode                  |                                                                                                             |  |
| Usage Guide           | The FTP server does not support anonymous login; therefore, a user name must be configured.                 |  |
|                       | A user name consists of up to 64 characters including letters, half-width                                   |  |
|                       | digits and symbols without spaces. A password consists of only letters                                      |  |
|                       | or digits. Spaces at the beginning and end of the password are ignored.                                     |  |
|                       | Spaces inside the password are viewed as part of the password.                                              |  |
|                       | A plaintext password consists of 1 to 25 characters. A cipher text password consists of 4 to 52 characters. |  |
|                       | User names and passwords must match. A maximum of 10 users can be configured.                               |  |

# ✤ Configuring the Idle Timeout for an FTP Session

| Command                  | ftp-Server timeout <i>time</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | time: Indicates the idle timeout, ranging from 1 to 3,600 minutes.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Usage Guide              | The idle timeout of a session refers to the duration from the end of an<br>FTP operation to the start of the next FTP operation in an FTP session.<br>After the server responds to an FTP client command operation (for<br>example, after a file is completely transferred), the server starts to count<br>the idle time again, and stops when the next FTP client command<br>operation arrives. Therefore, the configuration of the idle timeout has no<br>effect<br>on some time-consuming file transfer operations. |

# Displaying Server Status



2. Configuring ARP229

| Command                  | show ftp-server                                |  |
|--------------------------|------------------------------------------------|--|
| Parameter<br>Description | N/A                                            |  |
| Command<br>Mode          | Privileged EXEC mode                           |  |
| Usage Guide              | Run this command to display FTP server status. |  |

# Debugging

| Command                  | debug ftp-server pro/err                                          |  |
|--------------------------|-------------------------------------------------------------------|--|
| Parameter<br>Description | N/A                                                               |  |
| Command<br>Mode          | Privileged EXEC mode                                              |  |
| Usage Guide              | Run this command to debug message/error events of the FTP server. |  |

# **Configuration Example**

# ✤ Creating an FTP Server on an IPv4 Network

| Scenario               | A TCP connection is established for transmission from a server to a client.                                                                                                                                                        |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Configuration<br>Steps | <ul> <li>Enable the FTP server function.</li> <li>Configure the top-level directory/syslog.</li> <li>Set the user name <b>user</b> and password to <b>password</b>.</li> <li>Set the session idle timeout to 5 minutes.</li> </ul> |  |
|                        | QTECH(config)#ftp-server username user QTECH(config)#ftp-server password<br>password QTECH(config)#ftp-server timeout 5 QTECH(config)#ftp-server<br>topdir /<br>QTECH(config)#ftp-server enable                                    |  |
| Verification           | Run the <b>show ftp-server</b> command to check whether the configuration takes effect.                                                                                                                                            |  |
|                        | QTECH#show ftp-server                                                                                                                                                                                                              |  |



| Руководство пользоват | теля                                                    |
|-----------------------|---------------------------------------------------------|
| 2. Configuring ARP230 |                                                         |
|                       |                                                         |
|                       | ftp-server information                                  |
|                       |                                                         |
|                       |                                                         |
|                       |                                                         |
|                       |                                                         |
|                       | enable : Y topdir : tmp:/ timeout: 10min                |
|                       |                                                         |
|                       | username:aaaa password:(PLAINT)bbbb connect num[2]      |
|                       |                                                         |
|                       |                                                         |
|                       | [0]trans-type:BINARY (ctrl)server IP:192.168.21.100[21] |
|                       |                                                         |
|                       | client IP:192.168.21.26[3927]                           |
|                       | CITENC IF.192.100.21.20[3927]                           |
|                       |                                                         |
|                       | [1]trans-type:ASCII (ctrl)server IP:192.168.21.100[21]  |
|                       |                                                         |
|                       |                                                         |
|                       | client IP:192.168.21.26[3929] username:a1               |
|                       | password: (PLAINT) bbbb connect num[0] username:a2      |
|                       | password: (PLAINT) bbbb connect num[0] username:a3      |
|                       | password:(PLAINT)bbbb connect num[0] username:a4        |
|                       | password:(PLAINT)bbbb connect num[0] username:a5        |
|                       | password:(PLAINT)bbbb connect num[0] username:a6        |
|                       | password:(PLAINT)bbbb connect num[0] username:a7        |
|                       | password:(PLAINT)bbbb connect num[0] username:a8        |
|                       | password: (PLAINT) bbbb connect num[0]                  |
|                       | username:a9 password:(PLAINT)bbbb connect num[0]        |
|                       |                                                         |

### **Common Errors**

- No user name is configured.
- No password is configured.
- No top-level directory is configured.

# 7.5 Monitoring

# Displaying

| Description                            | Command         |
|----------------------------------------|-----------------|
| Displays the FTP server configuration. | show ftp-server |

# Debugging

System resources are occupied when debugging information is output. Therefore, disable debugging immediately after use.



| Руководство пользователя<br>2. Configuring ARP231 |                      |
|---------------------------------------------------|----------------------|
| Description                                       | Command              |
| Debugs the FTP server error events.               | debug ftp-server err |
| Debugs the FTP server message events.             | debug ftp-server pro |



# 8 Configuring FTP Client

### 8.1 Overview

The File Transfer Protocol (FTP) is an application of TCP/IP. By establishing a connectionoriented and reliable TCP connection between the FTP client and server, a user can access a remote computer that runs the FTP server program.

An FTP client enables file transfer between a device and the FTP server over the FTP protocol. A user uses the client to send a command to the server. The server responds to the command and sends the execution result to the client. By means of command interaction, the user can view files in the server directory, copy files from a remote computer to a local computer, or transfer local files to a remote computer.

FTP is intended to facilitate sharing of program/data files and encourage remote operation (by using programs). Users do not need to be concerned with differences of different files systems on different hosts. Data is transmitted in an efficient and reliable manner. FTP enables remote file operation securely.

QTECH FTP clients are different from standard FTP clients that run interactive commands. Instead, you enter the **copy** command in CLI to perform control-connection instructions such as **open**, **user**, and **pass**. After a control connection is established, the file transfer process starts, and then a data connection is established to upload or download files. Id devices support TFTP. However, TFTP is used to transfer small files whereas FTP is used to transfer large files.

Implementing FTP on a device enables the file transfer between the local device and other clients or servers.

### **Protocols and Standards**

RFC959: FILE TRANSFER PROTOCOL (FTP)

## 8.2 Applications

| Application                                                          | Description                                                                                                       |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <u>Uploading a Local File to a</u><br><u>Remote</u><br><u>Server</u> | Local and remote files need to be shared, for example,<br>uploading a local file to a<br>remote server.           |
| Downloading a File from a<br>Remote Server to a Local<br>Device      | Local and remote files need to be shared, for example, downloading a file from a remote server to a local device. |

## 8.2.1 Uploading a Local File to a Remote Server



Руководство пользователя 2. Configuring ARP233 Scenario

Local and remote files need to be shared, for example, uploading

a local file to a remote server. As shown in Figure 8-1, resources

are shared only on the Intranet.

Figure 8-1



## Deployment

- Implement only communication on the Intranet.
- Enable file uploading on the FTP client.
- Enable file uploading on the FTP server.
- 8.2.2 Downloading a File from a Remote Server to a Local Device

### Scenario

Local and remote files need to be shared, for example, downloading a file from a remote server to a local device. As shown in Figure 8-2, resources are shared only on the Intranet.

### Figure 8-2



### Deployment

- Implement only communication on the Intranet.
- Enable file downloading on the FTP client.
- Enable file downloading on the FTP server.

## 8.3 Features

### **Basic Concepts**

Uploading FTP Files



2. Configuring ARP234

Upload files from an FTP client to an FTP server.

## Downloading FTP Files

Download files from an FTP server to an FTP client.

## FTP Connection Mode

An FTP client and an FTP server can be connected in the active or passive mode.

## ✤ FTP Transmission Mode

The transmission between an FTP client and an FTP server is available in two modes, namely, text (ASCII) and binary (Binary).

# Specifying the Source Interface IP Address for FTP Transmission

An FTP client is configured with a source IP address for communication with an FTP server.

### Overview

| Feature                                                                 | Description                                                                           |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <u>Uploading FTP</u><br><u>Files</u>                                    | Uploads files from an FTP client to an FTP server.                                    |
| <u>Downloading FTP</u><br><u>Files</u>                                  | Downloads files from an FTP server to an FTP client.                                  |
| FTP Connection<br>Mode                                                  | Specifies the connection mode between an FTP client and an FTP server.                |
| FTP Transmission<br>Mode                                                | Specifies the transmission mode between an FTP client and an FTP server.              |
| SpecifyingtheSour<br>ce Interface IP<br>Address for<br>FTP Transmission | Configures a source IP address of an FTP client for communication with an FTP server. |

# 8.3.1 Uploading FTP Files

FTP enables file uploading. Start the FTP client and FTP server simultaneously, and upload files from the FTP client to the FTP server.

# 8.3.2 Downloading FTP Files

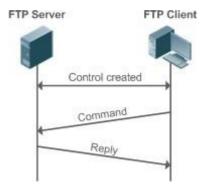




### 2. Configuring ARP235

FTP enables file downloading. Start the FTP client and FTP server simultaneously, and download files from the FTP server to the FTP client.

### **8.3.3** FTP Connection Mode


FTP needs to use two TCP connections: one is a control link (command link) that is used to transfer commands between the FTP client and server; the other one is a data link that is used to upload or download data.

1. Control connection: Some simple sessions are enabled with the control

connection only. A client sends a command to a server. After receiving the

command, the server sends a response. The process is shown in Figure 8-3.

### Figure 8-3 Control Connection



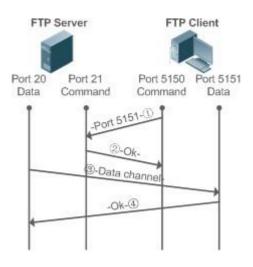
 Control connection and data connection: When a client sends a command for uploading or downloading data, both the control connection and data connection need to be established.

FTP supports two data connection modes: active (PORT) and passive (PASC). The two modes are different in establishing a data connection.

Active mode

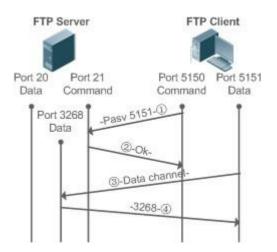
In this mode, an FTP server connects to an FTP client actively when a data connection is established. This mode comprises four steps:

1. The client uses source port 5150 to communicate with the server through port


21 as shown in Figure 8-4 to send a connection request and tell the server that

the port to be used is port 5151.

- 2 After receiving the request, the server sends a response OK(ACK). The client and server exchanges control signaling by console ports.
- 3. The server enables port 20 as the source port to send data to port 5151 of the client.
- 4. The client sends a response. Data transmission ends.




# Figure 8-4 Active (PORT) Mode



Passive mode

Figure 8-5 Passive (PASV) Mode



This mode is often set by the **passive** command. When a data connection is established, the FTP server is connected to the FPT client passively. This mode comprises four steps:

- In the passive mode, the client initializes the control signaling connection. The client uses source port 5150 to connect to the server through port 21 as shown in Figure 8-5, and runs the **passive** command to request the server to enter the PASV mode.
- The server agrees to enter the PASV mode, selects a port number greater than 1024 at random, and tells the port number to the client.



#### 2. Configuring ARP237

- 3. After receiving the message, the client uses port 5151 as shown in Figure 8-5 to communicate with the server through port 3268. Here, port 5151 is the source port and port 3268 is the destination port.
- 4. After receiving the message, the server sends data and responds an ACK(OK) response.

After the data connection is established, you can perform file uploading and downloading. Besides, you can perform some operations on the server file from the client.

The control connection for command and feedback transmission is always present whereas the data connection is established as required. Only an FTP client has the right to select and set the PASV or PORT mode. The FTP client

sends a command to establish a data connection. QTECH FTP clients use the PASV mode by default.

### 8.3.4 FTP Transmission Mode

FTP provides two transmission modes: text (ASCII) and binary (Binary). At present, QTECH FTP clients support both the ASCII and Binary modes and use the BINARY mode by default.

### ASCII mode

The difference between the ASCII and Binary modes lies in carriage return and line feed processing. In ASCII mode, carriage return and line feed are changed to a local Carriage Return Character (CRC), for example, \n in Unix, \r\n in Windows, and \r in Mac.

Binary mode

The Binary mode can be used to transfer executable files, compressed files and image files without processing data. For example, a text file needs to be transferred from Unix to Windows. When the Binary mode is used, the line breaks in Unix will not be converted from \r to \r\n; therefore in Windows, this file has no line feeds and displays many black squares. Therefore, Binary mode facilitates faster transfer of all files and more reliable transfer of ASCII files.

### **8.3.5** Specifying the Source Interface IP Address for FTP Transmission

An FTP client is configured with a source IP address for communication with an FTP server. In this way, the FTP client connects to the server and shares files with the server through the specified source IP address.

### 8.4 Configuration

Configuration

Description and Command



| (Mandatory) It is used to configure the functions of an FTP client.    |                                                                                                                                                             |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| copy flash                                                             | Uploads a file.                                                                                                                                             |
| copy ftp                                                               | Downloads a file.                                                                                                                                           |
| (Optional) It is used to configure the working mode of the FTP client. |                                                                                                                                                             |
| ftp-client port                                                        | Sets the connection mode to active (port).                                                                                                                  |
| ftp-client ascii                                                       | Sets the transmission mode to ASCII.                                                                                                                        |
| ftp-client source                                                      | Configures the source IP<br>address of the FTP<br>client.                                                                                                   |
| default ftp-client                                                     | Restores the default settings,<br>namely, connection mode set<br>to passive (PASV),<br>transmission mode to Binary<br>and source IP<br>address removed.     |
|                                                                        | copy flash         copy ftp         (Optional) It is used to configur<br>client.         ftp-client port         ftp-client ascii         ftp-client source |

# 8.4.1 Configuring Basic Functions

# **Configuration Effect**

Implement file uploading and downloading.

## Notes

• Pay attention to the command formats for uploading and downloading.

# **Configuration Steps**

# **Uploading a File**

- This configuration is mandatory when a file needs to be uploaded.
- Configure the FTP URL as the destination address of **copy** in Privileged EXEC mode.

# **Downloading a File**





- 2. Configuring ARP239
  - This configuration is mandatory when a file needs to be downloaded.
  - Configure the FTP URL as the source address of **copy** in Privileged EXEC mode.

### Verification

- Check whether the uploaded file exists on the FTP server.
- Check whether the downloaded file exists at the destination address.

### **Related Commands**

Uploading a File

| Command                  | copy flash: <b>[ local-directory/]local-file</b><br>ftp: //username:password@dest-address[ /remote-directory<br>]/remote-file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <ul> <li><i>local-directory:</i> Specifies a directory on the local device. If it is not specified, it indicates the current directory.</li> <li><i>local-file:</i> Specifies a local file to be uploaded.</li> <li><i>username</i>: Specifies a user name for accessing the FTP server, consisting of no more than 32 bytes and excluding delimiters such as /, :, @ and space. This parameter is mandatory.</li> <li><i>password:</i> Specifies a password for accessing the FTP server, consisting of no more than 32 bytes and excluding delimiters such as /, :, @ and space. This parameter is mandatory.</li> <li><i>dest-address:</i> Specifies an IP address for the FTP server. <i>remote-directory:</i> Specifies a directory on the server. <i>remote-file:</i> Renames the file on the server.</li> <li>The directory specified by the <i>local-directory</i> field must have been created on the device. This command will not automatically create a directory.</li> </ul> |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Usage Guide              | Run this command to upload a file from the flash of a local device to an FTP server.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### Downloading an FTP File

| Command | copy ftp://username:password@dest-address[ /remote-directory<br>]/remote-file |
|---------|-------------------------------------------------------------------------------|
|         | flash:[ local-directory/]local-file                                           |



| 2. Configuring ARP240 |                                                                                                                                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Parameter             | username: Specifies a user name for accessing the FTP server,                                                                  |
| Description           | consisting of no more than 32 bytes and excluding delimiters such as /, :,                                                     |
|                       | @ and space. This parameter is mandatory.                                                                                      |
|                       | password: Specifies a password for accessing the FTP server, consisting                                                        |
|                       | of no more than 32 bytes and excluding delimiters such as /, :, $@$ and                                                        |
|                       | space. This parameter is mandatory.                                                                                            |
|                       | dest-address: Specifies an IP address for the FTP server.                                                                      |
|                       | remote-directory: Specifies a directory on the server.                                                                         |
|                       | remote-file: Specifies a file to be downloaded.                                                                                |
|                       | <i>local-directory:</i> Specifies a directory on the local device. If it is not specified, it indicates the current directory. |
|                       | local-file: Renames the file in the local flash.                                                                               |
|                       | The directory specified by the local-directory field must have been                                                            |
|                       | created on the device. This command will not automatically create                                                              |
|                       | a directory.                                                                                                                   |
| Command               | Global configuration mode                                                                                                      |
| Mode                  |                                                                                                                                |
| Usage Guide           | Run this command to download a file from an FTP server to the flash of a local device.                                         |

# **Configuration Example**

# ✤ Uploading a File

| Configuration<br>Steps | Upload the local-file file in the home directory of a device to the root<br>directory of an FTP server whose user name is user, password is<br>pass and IP address is 192.168.23.69 and name the file as remote-<br>file. |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | QTECH# copy flash: home/local-file<br>ftp://user:pass@192.168.23.69/root/remote-file                                                                                                                                      |
| Verification           | Check whether the <b>remote-file</b> file exists on the FTP server.                                                                                                                                                       |

# ✤ Downloading a File



| Configuration<br>Steps | Download the remote-file file from the root directory of an FTP server<br>whose user name is user, password<br>is pass and IP address is 192.168.23.69 to the home directory of a<br>device and save the file as local-file. |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                        | QTECH# copy ftp://user:pass@192.168.23.69/root/remote-file flash:<br>home/local-file                                                                                                                                         |  |
| Verification           | Check whether the <b>remote-file</b> file exists in the <b>home</b> directory of the flash.                                                                                                                                  |  |

## **Common Errors**

- The command formats for uploading and downloading are incorrect.
- The user name or password is incorrect.
- 8.4.2 Configuring Optional Functions

## **Configuration Effect**

 Set the connection and transmission modes and configure a source IP address of the client for file uploading and download.

### Notes

If an FTP client needs to be configured based on VRF, specify a VRF first.

## **Configuration Steps**

- Setting the Connection Mode to Active (Port)
- Optional.
- Configure the connection mode of FTP.

## Setting the Transmission Mode to ASCII

- Optional.
- Configure the transmission mode of FTP.

## Configuring the Source IP Address of the FTP Client

- Optional.
- Configure the source IP address of the FTP client.

# Restoring the Default Settings

Optional.





- 2. Configuring ARP242
  - Restore the default settings of the FTP client.

# Verification

Run the **show run** command to check whether the configuration takes effect.

### **Related Commands**

### Setting the Connection Mode to Active (Port)

| Command                  | ftp-client [ vrf <i>vrf-name</i> ] port                                                                      |
|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <b>vrf</b> <i>vrf-name</i> : Specifies a VRF.                                                                |
| Command<br>Mode          | Global configuration mode                                                                                    |
| Usage Guide              | Run this command to set the connection mode to active (port). The default connection mode is passive (PASV). |

### \* Configuring the Source IP Address of the FTP Client

| Command                  | <pre>ftp-client [ vrf vrfname ] source { ip-address / ipv6-address / interface }</pre>                                                                                                                                                                    |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <b>vrf</b> <i>vrf-name</i> : Specifies a VRF.<br><i>ip-address:</i> Specifies the IPv4<br>address of a local interface. <i>ipv6-</i><br><i>address:</i> Specifies the IPv6<br>address of a local interface.<br><i>interface</i> : Specifies an interface. |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                 |
| Usage Guide              | Run this command to configure an interface IP address of the client for connection to the server. By default, the client is not configured with a local IP address. Instead, the route selects an IP address for the client.                              |

## \* Setting the Transmission Mode to ASCII



| Z. Configuring ARP243    |                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------|
| Command                  | ftp-client [ vrf <i>vrf-name</i> ] ascii                                                         |
| Parameter<br>Description | <b>vrf</b> <i>vrf-name</i> : Specifies a VRF.                                                    |
| Command<br>Mode          | Global configuration mode                                                                        |
| Usage Guide              | Run this command to set the transmission mode to ASCII. The default transmission mode is Binary. |

# ✤ Restoring the Default Settings

| Command                  | default ftp-client [ vrf vrf-name ]                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <b>vrf</b> <i>vrf-name</i> : Specifies a VRF.                                                                                                               |
| Command<br>Mode          | Global configuration mode                                                                                                                                   |
| Usage Guide              | Run this command to restore the default settings, namely, connection mode set to passive (PASV), transmission mode to Binary and source IP address removed. |

# **Configuration Example**

# Configuring Optional Functions

| Configuration | Set the connection mode of FTP to port.                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|
| Steps         | Set the transmission mode to ASCII.                                                                                                |
|               | Set the source IP address to 192.168.23.167.                                                                                       |
|               | Set the connection mode of vrf 123 to port.                                                                                        |
|               | Set the transmission mode of vrf 123 to ASCII.                                                                                     |
|               | QTECH# configure terminal QTECH(config)# ftp-client ascii QTECH(config)# ftp-client port                                           |
|               | QTECH(config)# ftp-client source 192.168.23.167 QTECH(config)# ftp-<br>client vrf 123 port QTECH(config)# ftp-client vrf 123 ascii |
|               | QTECH(config)# end                                                                                                                 |
| Verification  | Run the <b>show run</b> command on the device to check whether the                                                                 |



| 2. Configuring ARP244 | configuration takes effect.                      |
|-----------------------|--------------------------------------------------|
|                       | QTECH# show run                                  |
|                       |                                                  |
|                       | !                                                |
|                       | ftp-client ascii ftp-client port                 |
|                       | ftp-client vrf 123 port ftp-client vrf 123 ascii |
|                       | ftp-client source 192.168.23.167                 |
|                       |                                                  |
|                       | !                                                |

### **Common Errors**

- The source IP address is not a local IP address.
- Before configuring the **ftp-client vrf** command, configure the **vrf** command.

# 8.5 Monitoring

### Displaying

| Description                            | Command  |
|----------------------------------------|----------|
| Displays the FTP client configuration. | show run |

# Debugging

System resources are occupied when debugging information is output. Therefore,

disable debugging immediately after use.

| Description            | Command          |
|------------------------|------------------|
| Debugs the FTP Client. | debug ftp-client |



# 9 Configuring TFTP

# 9.1 Overview

The Trivial File Transfer Protocol (TFTP) service enables a device to be configured as a TFTP server. Then the client can be connected to the TFTP server to upload files to or download files from the device using the TFTP protocol.

Users can easily obtain files such as upgrade package files from the device or copy files to the file system of the device using the TFTP service.

### **Protocols and Standards**

- RFC1350: The TFTP Protocol (revision 2)
- RFC2347: TFTP Option Extension
- RFC2348: TFTP Blocksize Option
- RFC2349: TFTP Timeout Interval and Transfer Size Options

## 9.2 Applications

| Application                            | Description                                          |
|----------------------------------------|------------------------------------------------------|
| Providing the TFTP<br>Service in a LAN | Enables users in a LAN to upload and download files. |

9.2.1 Providing the TFTP Service in a LAN

## Scenario

Enable users in a LAN to upload and download files. In the following figure:

- Device G serves as a TFTP server.
- The User sends a TFTP uploading or downloading request. Figure 9-1

RemarksG is a network device on which the TFTP server is enabled.

### Deployment



- Enable the TFTP server on the device G.
- The user uploads files to or download files from the device G.





# 9.3 Features

### **Basic Concepts**

### ✤ TFTP

TFTP is a set of standard protocols defined by the IETF Network Working Group, and operates at the application layer. Implemented on the top of the User Datagram Protocol (UDP), TFTP is a simple protocol to transfer files. TFTP provides only the file uploading and downloading functions instead of many common FTP functions. It does not support the directory list and the authentication function, and does not provide any security mechanism. TFTP uses the way of acknowledged retransmission upon timeout to ensure data transmission, which covers three transmission modes: netascii in the form of an eight-bit ASCII code, eight-bit octet of the source data type, and mail (which is no longer supported). TFTP uses UDP port 69. A description of TFTP can be found in RFC 1350.

### TFTP Packet

Any transfer begins with a request to read or write a file from a TFTP client. After the TFTP server grants the request, the file is sent in fixed length blocks of 512 bytes. A data packet of less than 512 bytes indicates the termination of a transfer.

Each data packet contains a block of data, and must be acknowledged by an acknowledgement packet before the next data packet can be sent. If no acknowledgement packet is received within specified time, the last sent data packet is retransmitted.

The TFTP packet header includes an opcode field, which indicates the packet type. TFTP supports the following five types of packets:

- Read Request (RRQ)
- Write Request (WRQ)
- DATA
- Acknowledgment (ACK)
- EROR Figure 9-2

| IP Header | UDP Header | Opcode<br>(1=RRQ)<br>(2=WRQ<br>) | Fi       | lename        | 0   | Transmit Mode | 0 |  |
|-----------|------------|----------------------------------|----------|---------------|-----|---------------|---|--|
| 20 bytes  | 8 bytes    | 2 bytes                          | n        | bytes         | 1   | n bytes       | 1 |  |
|           |            | Opcode<br>( 3=DATA<br>)          | Block ID |               | Dat | ta Content    |   |  |
|           |            | 2 bytes                          | 2 bytes  |               | 0-5 | 12 bytes      |   |  |
|           |            | Opcode<br>(4=ACK)                | Block ID |               |     |               |   |  |
|           |            | 2 bytes                          | 2 bytes  |               |     |               |   |  |
|           |            | Opcode<br>(5=ERRO<br>R)          | ErrCode  | Error Content | 0   |               |   |  |
|           |            | 2 bytes                          | 2 bytes  | n bytes       | 1   |               |   |  |



## Working Principle

Figure 9-3

| TFTP<br>Client |          | Server      |
|----------------|----------|-------------|
|                | RRQ/WRQ  | <b>&gt;</b> |
| -              | DATA/ACK |             |
|                | ACK/DATA |             |
|                |          |             |
|                | DATA     |             |
|                | ACK      |             |

- The TFTP client initiates an RRQ or WRQ to the TFTP server.
- Upon receipt of the RRQ, the TFTP server first determines whether the read condition is met (for example, whether the file exists or whether the client has the access permission), and returns a DATA packet to the TFTP client if yes; upon receipt of the WRQ, the TFTP server first determines whether the write condition is met (for example, whether there is a sufficient space or whether the client has the write permission), and returns an ACK packet to the TFTP client if yes.
- The TFTP client receives the DATA packet in the case of file downloading, and replies with an ACK packet; or receives the ACK packet in the case of file uploading, and then sends a DATA packet.
- The process of transmission acknowledgement repeats till the last DATA packet is less than 512 bytes, which indicates the end of the transmission.
- If errors occur during the transmission, an ERROR packet is returned.

# 9.3.1 Enabling the TFTP Service



The working principle of TFTP is as described in the previous chapter. After the TFTP service is enabled on the device, configure a top directory so that the TFTP service is available for users.

# **Related Configuration**

# Enabling the TFTP Service

- By default, the TFTP service is disabled.
- Run the **tftp-server enable** command to enable the TFTP service.
- Configuring the Top Directory
- By default, no top directory is configured.
- Run the **tftp-server topdir** command to configure the top directory.

# 9.4 Configuration

| Configuration                   | Description and Command                                            |                                                 |  |  |  |
|---------------------------------|--------------------------------------------------------------------|-------------------------------------------------|--|--|--|
|                                 | Mandatory configuration, which is used to enable the TFTP service. |                                                 |  |  |  |
| <u>Configuring</u> the the o    | tftp-server<br>enable                                              | Enables the TFTP service.                       |  |  |  |
| <u>Functions</u> <u>Service</u> | Mandatory config directory.                                        | uration, which is used to configure the top     |  |  |  |
|                                 | tftp-server<br>topdir                                              | Configures the top directory of the TFT server. |  |  |  |

# 9.4.1 Basic Functions

# Networking Requirements

Establish a TFTP server to provide the TFTP client with uploading and downloading functions.

# **Configuration Tips**

• Top directory configuration is required.

# **Configuration Steps**



2. Configuring ARP249

- Enabling the TFTP Service
- Mandatory configuration.
- Enable the TFTP service on each device unless otherwise stated.

### **Configuring the Top Directory**

- Mandatory configuration.
- Configure a top directory as the root directory on each device unless otherwise stated.

### Verification

Connect the TFTP server to the TFTP client.

- Check whether the client is connected to the server.
- Check whether the client can normally download files from and upload files to the server.

### **Related Commands**

Enabling the TFTP Service

| Command                  | tftp-server enable                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                                                                                                                                                                                                                            |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                                                      |
| Usage Guide              | The client cannot access the TFTP server before a top directory is<br>correctly configured for the server. Therefore, it is recommended that<br>you configure the top directory of the server first if it is the first time for<br>you to enable the TFTP server. For details about how to configure<br>the top directory, see the description to<br>immediately follow below. |

### Configuring the Top Directory of the TFTP Server

| Command                  | tftp-servertopdir <i>directory</i> |
|--------------------------|------------------------------------|
| Parameter<br>Description | directory: access path             |



| Command<br>Mode | Global configuration mode                                                                                                                                                                                                                                                                                                          |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Usage Guide     | For example, you can set the top directory of the server to <b>/dir</b> . Then the TFTP client can access files and folders in only the <b>/dir</b> directory on the device after logging in, and the TFTP client cannot return to the parent directory of the <b>/dir</b> directory due to the restrictions of the top directory. |

# Enabling the TFTP Server Debugging Switch

| Command                  | debug tftp-server                                                                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                                |
| Command<br>Mode          | Privileged EXEC mode                                                                                                                                               |
| Usage Guide              | You can run this command to enable the TFTP server debugging switch,<br>so that the process or error<br>information of the TFTP server can be output as necessary. |

# \* Displaying the Completed Update Process

| Command                  | show tftp-server updating-list                                                                                                                          |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | N/A                                                                                                                                                     |
| Command<br>Mode          | Global configuration mode/Privileged EXEC mode/Interface configuration mode                                                                             |
| Usage Guide              | You can run this command to display the completed update process on the current TFTP client. This command is supported only on RG-AM5528 access points. |

# **Configuration Example**

# **\*** Establishing the TFTP Service on an IPv4 Network

| Scenario | Enable the TFTP service.                          |  |
|----------|---------------------------------------------------|--|
|          | Set the top directory of the TFTP server to /dir. |  |



|              | QTECH(config)#tftp-server topdir /tmp<br>QTECH(config)#tftp-server enable                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| Verification | Run the show tftp-server command to display the configuration. <pre>QTECH#show tftp-server    tftp-server information</pre> |

### **Common Errors**

No top directory is configured.

# 9.5 Monitoring

# Displaying

| Function                                       | Command          |
|------------------------------------------------|------------------|
| Displays the configuration of the TFTP server. | show tftp-server |

# Debugging

System resources are occupied when debugging information is output. Therefore,

disable the debugging switch immediately after use.

| Function                                  | Command           |
|-------------------------------------------|-------------------|
| Enables the TFTP server debugging switch. | debug tftp-server |



# 2. Configuring ARP252 10. Configuring TCP

# 10.1 Overview

The Transmission Control Protocol (TCP) is a transport-layer protocol providing reliable connection-oriented and IP-based services to for the application layer.

Internetwork data flows in 8-bit bytes are sent from the application layer to the TCP layer, and then fragmented into packet segments of a proper length via the TCP. The Maximum Segment Size (MSS) is usually limited by the Maximum Transmission Unit (MTU) of the data link layer. After that, the packets are sent to the IP layer and then to the TCP layer of a receiver through the network.

To prevent packet loss, every byte is identified by a sequence number via the TCP, and this ensures that packets destined for the peer are received in order. Then, the receiver responds with a TCP ACK packet upon receiving a packet. If the sender does not receive ACK packets in a reasonable Round-Trip Time (RTT), the corresponding packets (assumed lost) will be retransmitted.

- TCP uses the checksum function to check data integrity. Besides, MD5-based authentication can be used to verify data.
- Timeout retransmission and piggyback mechanism are adopted to ensure reliability.
- The Sliding Window Protocol is adopted to control flows. As documented in the Protocol, unidentified groups in a window should be retransmitted.

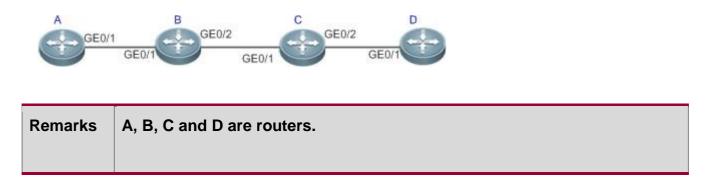
## **Protocols and Standards**

- RFC 793: Transmission Control Protocol
- RFC 1122: Requirements for Internet Hosts -- Communication Layers
- RFC 1191: Path MTU Discovery
- RFC 1213: Management Information Base for Network Management of TCP/IP-based Internets: MIB-II
- RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature Option
- RFC 4022: Management Information Base for the Transmission Control Protocol (TCP)

# **10.2 Applications**

| Application                   | Description                                                                      |
|-------------------------------|----------------------------------------------------------------------------------|
| Optimizing TCP<br>Performance | To avoid TCP packet fragmentation on a link with a small MTU, Path MTU Discovery |
|                               | (PMTUD) is enabled.                                                              |






### 10.2.1 Optimizing TCP Performance

#### Scenario

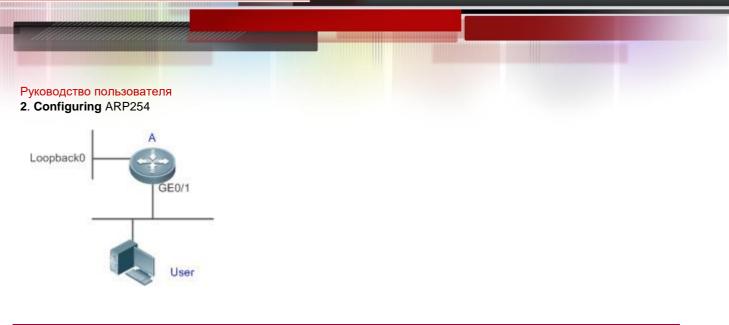
For example, TCP connection is established between A and D, as shown in the following figure. The MTU of the link between A and B is 1500 bytes, 1300 bytes between B and C, and 1500 bytes between C and D. To optimize TCP transmission performance, packet fragmentation should be avoided between B and C.

#### Figure 10-1



#### Deployment

• Enable PMTUD on A and D.


10.2.2 Detecting TCP Connection Exception

#### Scenario

For example, in the following figure, User logs in to A through telnet but is shut down abnormally, as shown in the following figure. In case of TCP retransmission timeout, the User's TCP connection remains for a long period. Therefore, TCP keepalive can be used to rapidly detect TCP connection exception.

Figure 10-2





| Remarks: A is a router. | Remarks: | A is a router. |
|-------------------------|----------|----------------|
|-------------------------|----------|----------------|

# Deployment

• Enable TCP keepalive on A.

# 10.3 Features

# **Basic Concepts**

# \* TCP Header Format

| 0 1 2 3                                                 |         |
|---------------------------------------------------------|---------|
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 | 8901    |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                | +-+-+-+ |
| Source Port   Destination Port                          | I       |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                | +-+-+-+ |
| Sequence Number                                         | I       |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                | +-+-+-+ |
| Acknowledgment Number                                   | I       |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                | +-+-+-+ |
| Data    U A P R S F                                     | I       |
| Offset  Reserved  R C S S Y I  Window                   | I       |
| G   K   H   T   N   N                                   |         |



| Руководство пол<br>2. Configuring A |                 |            |                                          |      |
|-------------------------------------|-----------------|------------|------------------------------------------|------|
| +-+-+-+-+-+                         | -+-+-+-+-+-+-+- | +-+-+-+-+- | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | ·+-+ |
| I                                   | Checksum        | I          | Urgent Pointer                           | Ι    |
| +-+-+-+-+-+-+                       | -+-+-+-+-+-+-+- | +-+-+-+-+- | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | ·+-+ |
| I                                   | Options         |            | Padding                                  | I    |
| +-+-+-+-+-+-+                       | -+-+-+-+-+-+-+- | +-+-+-+-+- | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | ·+-+ |
| I                                   |                 | data       |                                          | I    |
| +-+-+-+-+-+                         | -+-+-+-+-+-+-+- | +-+-+-+-+- | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | ·+-+ |

- **Source Port** is a 16-bit source port number.
- **Destination Port** is a 16-bit destination port number.
- Sequence Number is a 32-bit sequence number.
- Acknowledgment Number is a 32-bit number that identifies the next sequence number that the receiver is expecting to receive.
- **Data Offset** is a 4-bit number that indicates the total number of bytes in the TCP header (option included) divided by 4.
- A flag bit is 6-bit. URG: the urgent pointer field is significant; ACK: the acknowledgment field is significant; PSH: indicates the push function; RST: resets TCP connection; SYN: synchronizes the sequence number (establishing a TCP connection); FIN: no more data from the sender (closing a TCP connection).
- A 16-bit Window value is used to control flows. It specifies the amount of data that may be transmitted from the peer between ACK packets.
- **Checksum** is a 16-bit checksum.
- Urgent Pointer is 16-bit and shows the end of the urgent data so that interrupted data flows can continue. When the URG bit is set, the data is given priority over other data flows.

# TCP Three-Way Handshake

• The process of TCP three-way handshake is as follows:





#### 2. Configuring ARP256

- 5. A client sends a SYN packet to the server.
- 6. The server receives the SYN packet and responds with a SYN ACK packet.
- 7. The client receives the SYN packet from the server and responds with an ACK packet.
- After the three-way handshake, the client and server are connected successfully and ready for data transmission.

### Overview

| Feature                                                     | Description                                                                                                                      |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Configuring SYN<br>Timeout                                  | Configure a timeout waiting for a response packet after an SYN or SYN ACK packet is sent.                                        |
| <u>Configuring Window</u><br><u>Size</u>                    | Configure a window size.                                                                                                         |
| <u>Configuring Reset</u><br><u>Packet</u><br><u>Sending</u> | Configure the sending of TCP reset packets after receiving port unreachable messages.                                            |
| Configuring MSS                                             | Configure an MSS for TCP connection.                                                                                             |
| Path MTU<br>Discovery                                       | Discover the smallest MTU on TCP transmission path, and adjust the size of TCP packets based on this MTU to avoid fragmentation. |
| TCP Keepalive                                               | Check whether the peer works normally.                                                                                           |

#### **10.3.1 Configuring SYN Timeout**

# **Working Principle**

A TCP connection is established after three-way handshake: The sender sends an SYN packet, the receiver replies with a SYN ACK packet, and then the sender replies with an ACK packet.

- If the receiver does not reply with a SYN ACK packet after the sender sends an SYN packet, the sender keeps retransmitting the SYN packet for certain times or until timeout period expires.
- If the receiver replies with a SYN ACK packet after the sender sends an SYN packet but the sender does not reply with an ACK packet, the receiver keeps



#### 2. Configuring ARP257

retransmitting the SYN ACK packet for certain times or until timeout period expires. (This occurs in the case of SYN flooding.)

#### Related Configuration

- Configuring TCP SYN Timeout
- The default TCP SYN timeout is 20 seconds.
- Run the **ip tcp synwait-time** seconds command in global configuration mode to configure an SYN timeout ranging from 5 to 300 seconds.
- In case of SYN flooding, shortening SYN timeout reduces resource consumption. However, it does not work in continuous SYN flooding. When a device actively makes a request for a connection with an external device, through telnet for example, shortening SYN timeout reduces user's wait time. You may prolong SYN timeout properly on a poor network.
- The ip tcp syntime-out command in version 10.x is disused but compatible in version 11.0. If this command is executed, it will be converted to the ip tcp synwait-time command.

# 10.3.2 Configuring Window Size

#### **Working Principle**

Data from the peer is cached in the TCP receiving buffer and subsequently read by applications. The TCP window size indicates the size of free space of the receiving buffer. For wide-bandwidth bulk-data connection, enlarging the window size dramatically promotes TCP transmission performance.

#### **Related Configuration**

#### **Configuring Window Size**

- Run the ip tcp window-size size command in global configuration mode to configure a window size ranging from 128 to (65535<< 14) bytes. The default is 65535 bytes. If the window size is greater than 65535 bytes, window enlarging will be enabled automatically.
- The window size advertised to the peer is the smaller value between the configured window size and the free space of the receiving buffer.



- 2. Configuring ARP258
  - **10.3.3** Configuring Reset Packet Sending

#### **Working Principle**

When TCP packets are distributed to applications, if the TCP connection a packet belongs to cannot be identified, the local end sends a reset packet to the peer to terminate the TCP connection. Attackers may use port unreachable messages to attack the device.

#### **Related Configuration**

 Configuring the Sending of TCP Reset Packets After Receiving Port Unreachable Messages

By default, TCP reset packet sending upon receiving port unreachable messages is enabled.

Run the no ip tcp send-reset command in global configuration mode to disable TCP

reset packet sending upon receiving port unreachable messages.

After this function is enabled, attackers may use port unreachable messages to attack the device.

The ip tcp not-send-rst command in version 10.x is disused but compatible in version 11.0. If this command is executed, it will be converted to the no ip tcp send-reset command.

#### 10.3.4 Configuring MSS

#### **Working Principle**

The MSS refers to the total amount of data contained in a TCP segment t excluding TCP options.

Three-way handshake is implemented through MSS negotiation. Both parties add the MSS option to SYN packets, indicating the largest amount of data that the local end can handle, namely, the amount of data allowed from the peer. Both parties take the smaller MSS between them as the advertised MSS.

The MSS value is calculated as follows:

- IPv4 TCP: MSS = Outgoing interface MTU –IP header size (20-byte)–TCP header size (20-byte).
- IPv6 TCP: MSS = IPv6 Path MTU –IPv6 header size (40-byte)–TCP header size (20byte).



#### 2. Configuring ARP259

The effective MSS is the smaller one between the calculated MSS and the configured MSS.

If a connection supports certain options, the option length (with **data offset** taken into consideration) should be deducted from an MSS value. For example, 20 bytes for MD5 digest (with **data offset** taken into consideration) should be subtracted from the MSS.

### **Related Configuration**

### Configuring MSS

- Run the **ip tcp mss** max-segment-size command in global configuration mode to set an MSS. It ranges from 68 to 1000 bytes. By default, the MSS is calculated based on MTU. If an MSS is configured, the effective MSS is the smaller one between the calculated MSS and the configured MSS.
- . An excessively small MSS reduces transmission performance. You can promote TCP transmission by increasing the MSS. Choose an MSS value by referring to the interface MTU. If the former is bigger, TCP packets will be fragmented and transmission performance will be reduced.

# 10.3.5 Path MTU Discovery

#### **Working Principle**

The Path MTU Discovery f stipulated in RFC1191 is used to discover the smallest MTU in a TCP path to avoid fragmentation, enhancing network bandwidth utilization. The process of TCPv4 Path MTU Discovery is described as follows:

- The source sends TCP packets with the Don't Fragment (DF) bit set in the outer IP 1. header.
- If the outgoing interface MTU value of a router in the TCP path is smaller than 2. the IP packet length, the packet will be discarded and an ICMP error packet carrying this MTU will be sent to the source.
- Through parsing the ICMP error packet, the source knows the smallest MTU in the 3. path (path MTU) is.
- The size of subsequent data segments sent by the source will not surpass the 4 MSS, which is calculated as follows: TCP MSS = Path MTU – IP header size – TCP header size.



### Enabling Path MTU Discovery

By default, Path MTU Discovery is disabled.

Run the **ip tcp path-mtu-discovery** command to enable PMTUD in global configuration mode.

In version 11.0 or later, it applies to only IPv4 TCP. TCPv6 PMTUD is enabled permanently and cannot be disabled.

### **10.3.6** TCP Keepalive

### **Working Principle**

You may enable TCP keepalive to check whether the peer works normally. If a TCP end does not send packets to the other end for a period of time (namely idle period), the latter starts sending keepalive packets successively to the former for several times. If no response packet is received, the TCP connection is considered inactive and then closed.

#### **Related Configuration**

- Enabling Keepalive
- By default, TCP keepalive is disabled.
- Run the ip tcp keepalive [interval num1] [times num2] [idle-period num3] command to in global configuration mode to enable TCP keepalive. See Configuration for parameter description.

This command applies to both TCP server and client

# 10.4 Configuration

| Configuration  | Description and Command                                       |                                          |
|----------------|---------------------------------------------------------------|------------------------------------------|
|                | (Optional) It is used to optimize TCP connection performance. |                                          |
|                | ip tcp synwait-time                                           | Configures a timeout for TCP connection. |
| Optimizing TCP | ip tcp window-size                                            | Configures a TCP window size.            |



| Руководство пользователя |
|--------------------------|
| 2. Configuring ARP261    |

| 2. Configuring ARP201                    |                                                       |                                                                                                 |
|------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Performance                              | ip tcp send-reset                                     | Configures the sending of TCP<br>reset<br>packets after receiving port<br>unreachable messages. |
|                                          | ip tcp mss                                            | Configures an MSS for TCP connection.                                                           |
|                                          | ip tcp path-mtu-discovery                             | Enables Path MTU Discovery.                                                                     |
| Detecting TCP<br>Connection<br>Exception | (Optional) It is used to detect v<br>ip tcp keepalive | whether the peer works normally.<br>Enables TCP keepalive.                                      |
|                                          |                                                       |                                                                                                 |

# 10.4.1 Optimizing TCP Performance

### **Configuration Effect**

• Ensure optimal TCP performance and prevent fragmentation.

#### Notes

N/A

# **Configuration Steps**

- \* Configuring SYN Timeout
- Optional.
- Configure this on the both ends of TCP connection.
- Configuring TCP Window Size
- Optional.
- Configure this on the both ends of TCP connection.
- Configuring the Sending of TCP Reset Packets After Receiving Port Unreachable Messages.
- Optional.
- Configure this on the both ends of TCP connection.

# Configuring MSS

- Optional.
- Configure this on the both ends of TCP connection.





# Enabling Path MTU Discovery

- Optional.
- Configure this on the both ends of TCP connection.

#### Verification

N/A

#### **Related Commands**

# Configuring SYN Timeout

| Command                  | ip tcp synwait-time <b>seconds</b>                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>seconds</i> : Indicates SYN packet timeout. It ranges from 5 to 300 seconds. The default is 20 seconds.                                                                                                                                                                                                                                                               |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                                                |
| Usage Guide              | In case of SYN flooding, shortening SYN timeout reduces resource<br>consumption. However, it does not work in continuous SYN flooding.<br>When a device actively makes a request for a connection with an external<br>device, through telnet for example, shortening SYN timeout reduces<br>user's wait time. You may prolong SYN timeout properly on a poor<br>network. |

# ✤ Configuring TCP Window Size

| Command                  | ip tcp window-size <i>size</i>                                                                                    |
|--------------------------|-------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>size</i> : Indicates a TCP window size. It ranges from 128 to (65535 << 14) bytes. The default is 65535 bytes. |
| Command<br>Mode          | Global configuration mode                                                                                         |
| Usage Guide              | N/A                                                                                                               |

# Configuring the Sending of TCP Reset Packets After Receiving Port Unreachable Messages



| Command     | ip tcp send-reset                                                                         |
|-------------|-------------------------------------------------------------------------------------------|
| Parameter   | N/A                                                                                       |
| Description |                                                                                           |
| Command     | Global configuration mode                                                                 |
| Mode        |                                                                                           |
| Usage Guide | By default, TCP reset packet sending upon receiving port unreachable messages is enabled. |

# Configuring MSS

| Command                  | ip tcp mss <i>max-segment-size</i>                                                                                                                                                                                                                      |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <i>max-segment-size</i> : Indicates the maximum segment size. It ranges from 68 to 10000 bytes. By default, the MSS is calculated based on MTU.                                                                                                         |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                               |
| Usage Guide              | This command defines the MSS for a TCP communication to be<br>established. The negotiated MSS for a new connection should be smaller<br>than this MSS. If you want to reduce the MSS, run this command.<br>Otherwise, do not perform the configuration. |

# \* Configuring Path MTU Discovery

| Command         | ip tcp path-mtu-discovery [ age-timer <i>minutes</i>   age-timer infinite ]           |
|-----------------|---------------------------------------------------------------------------------------|
| Parameter       | <b>age-timer</b> <i>minutes</i> : Indicates the interval for a new probe after a path |
| Description     | MTU is discovered. It ranges from 10 to 30 minutes. The default is 10 minutes.        |
|                 | <b>age-timer infinite</b> : No probe is implemented after a path MTU is discovered.   |
| Command<br>Mode | Global configuration mode                                                             |
| Usage Guide     | The PMTUD is an algorithm documented in RFC1191 aimed to improve                      |



| 2. Configuring ARP264 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | bandwidth utilization. When the                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | TCP is applied to bulk data transmission, this function may facilitate transmission performance.                                                                                                                                                                                                                                                                                                                                                           |
|                       | If the MSS used for the connection is smaller than what the peer connection can handle, a larger MSS is tried every time the age timer expires. The age timer is a time interval for how often TCP estimates the path MTU with a larger MSS. The discovery process is stopped when either the send MSS is as large as the peer negotiated, or the user has disabled the timer on the router. You may turn off the timer by setting it to <b>infinite</b> . |

### **Configuration Example**

# Enabling Path MTU Discovery

| Configuration<br>Steps | Enable PMTUD for a TCP connection. Adopt the default age timer settings.                                             |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|                        | QTECH# configure terminal QTECH(config)# ip tcp path-mtu-discovery<br>QTECH(config)# end                             |  |
| Verification           | Run the <b>show tcp pmtu</b> command to display the IPv4 TCP PMTU.                                                   |  |
|                        | QTECH# show tcp pmtu<br>Number Local Address Foreign Address PMTU 1<br>192.168.195.212.23 192.168.195.112.13560 1440 |  |
|                        | Run the <b>show ipv6 tcp pmtu</b> command to display the IPv6 TCP PMTU.                                              |  |
|                        | QTECH# show ipv6 tcp pmtu<br>Number Local Address Foreign Address PMTU 1<br>1000::1:23 1000::2.13560 1440            |  |

# Common Errors

N/A

10.4.2 Detecting TCP Connection Exception

# **Configuration Effect**

• Check whether the peer works normally.

#### Notes

N/A

# **Configuration Steps**



# \* Enabling TCP Keepalive

• Optional.

# Verification

N/A

# **Related Commands**

\* Enabling TCP Keepalive

| Command                  | ip tcp keepalive [interval <i>num1</i> ] [times <i>num2</i> ] [idle-period <i>num3</i> ]                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter<br>Description | <b>interval</b> <i>num1</i> : Indicates the interval to send keepalive packets. Ranging from 1 to120 seconds. The default is 75 seconds.                                                                                                                                                                                                                                                                                                                                                 |
|                          | <ul> <li>times <i>num2</i>: Indicates the maximum times for sending keepalive packets. It ranges from 1 to 10. The default is 6.</li> <li>idle-period <i>num3</i>: Indicates the time when the peer sends no packets to the local end, It ranges from 60 to</li> </ul>                                                                                                                                                                                                                   |
|                          | 1800 seconds. The default is15 minutes.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Command<br>Mode          | Global configuration mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Usage Guide              | You may enable TCP keepalive to check whether the peer works<br>normally. The function is disabled by default.<br>Suppose a user enables TCP keepalive function with the default interval,<br>times and idle period settings. The user does not receive packets from<br>the other end within 15 minutes and then starts sending Keepalive<br>packets every 75 seconds for 6 times. If the user receives no TCP<br>packets, the TCP connection is<br>considered inactive and then closed. |

# **Configuration Example**

# \* Enabling TCP Keepalive

| Configuration | Enable TCP keepalive on a device with interval and idle-period set to 3 |
|---------------|-------------------------------------------------------------------------|
| Steps         | minutes and 60 seconds respectively. If the user receives no TCP        |



|              | packets from the other end after sending keepalive packets four times, the TCP connection is considered inactive.                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | QTECH# configure terminal<br>QTECH(config)# ip tcp keepalive interval 60 times 4 idle-period 180<br>QTECH(config)# end                                                                        |
| Verification | A user logs in to a device through telnet, and then shuts down the local device. Run the <b>show tcp connect</b> command on the remote device to observe when IPv4 TCP connection is deleted. |

# Common Errors

N/A

# 10.5 Monitoring

# Displaying

| Description                                              | Command                                                                                            |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Displays basic information<br>on IPv4<br>TCP connection. | <pre>show tcp connect [local-ip a.b.c.d] [local-port num] [peer-ip a.b.c.d] [peer-po rt num]</pre> |
| DisplaysIPv4TCPconnecti<br>on<br>statistics.             | show tcp connect statistics                                                                        |
| Displays IPv4 TCP PMTU.                                  | <pre>show tcp pmtu [local-ip a.b.c.d] [local-port num] [peer-ip a.b.c.d] [peer-port num]</pre>     |
| Displays IPv4 TCP port information.                      | show tcp port [ <i>num</i> ]                                                                       |
| Displays IPv4 TCP parameters.                            | show tcp parameter                                                                                 |
| Displays IPv4 TCP statistics.                            | show tcp statistics                                                                                |
| Displays basic information on IPv6                       | <pre>show ipv6 tcp connect [local-ipv6 X:X:X:X:X] [local-port num] [peer-ipv6 X:</pre>             |



| Z. Configuring ARP207                        |                                                                                                                          |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| TCP connection.                              | X:X:X::X] [peer-port num]                                                                                                |
| DisplaysIPv6TCPconnecti<br>on<br>statistics. | show ipv6 tcp connect statistics                                                                                         |
| Displays IPv6 TCP PMTU.                      | show ipv6 tcp pmtu [local-ipv6 X:X:X:X:X] [local-port <i>num</i> ]<br>[peer-ipv6 X:X:X:<br>X::X] [peer-port <i>num</i> ] |
| Displays IPv6 TCP port information.          | show ipv6 tcp port [ <i>num</i> ]                                                                                        |

# Debugging

System resources are occupied when debugging information is output. Therefore, disable debugging immediately after use.

| Description                                                      | Command                                                                                                                                                                |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Displays the debugging information on IPv4 TCP packets.          | debug ip tcp packet [ in   out] [ local-ip a.b.c.d ] [ peer-ip<br>a.b.c.d ] [ global   vrf<br>vrf-name ] [ local-port num ] [ peer-port num ] [ deeply ]               |
| Displays the debugging<br>information<br>on IPv4 TCP connection. | debug ip tcp transactions [ local-ip a.b.c.d ] [ peer-ip a.b.c.d ] [ local-port num ] [ peer-port num ]                                                                |
| Displays the debugging<br>information<br>on IPv6 TCP packets.    | <pre>debug ipv6 tcp packet [ in   out ] [ local-ipv6 X:X:X:X:X] [ peer-ipv6 X:X:X:X:X] [ global   vrf vrf-name ] [ local-port num ] [ peer-port num ] [ deeply ]</pre> |
| Displays the debugging<br>information<br>on IPv6 TCP connection. | <pre>debug ipv6 tcp transactions [ local-ipv6 X:X:X:X:X] [ peer-<br/>ipv6 X:X:X:X:X]<br/>[ local-port num ] [ peer-port num ]</pre>                                    |



Руководство пользователя 0. 11. Configuring IPv4/IPv6 REF268 **11. CONFIGURING IPV4/IPV6 REF** 

# 11.1. Overview

On products incapable of hardware-based forwarding, IPv4/IPv6 packets are forwarded through the software. To optimize the software-based forwarding performance, QTECH introduces IPv4/IPv6 express forwarding through software (QTECH Express Forwarding, namely REF).

REF maintains two tables: forwarding table and adjacency table. The forwarding table is used to store route information. The adjacency table is derived from the ARP table and IPv6 neighbor table, and it contains Layer 2 rewrite(MAC) information for the next hop..

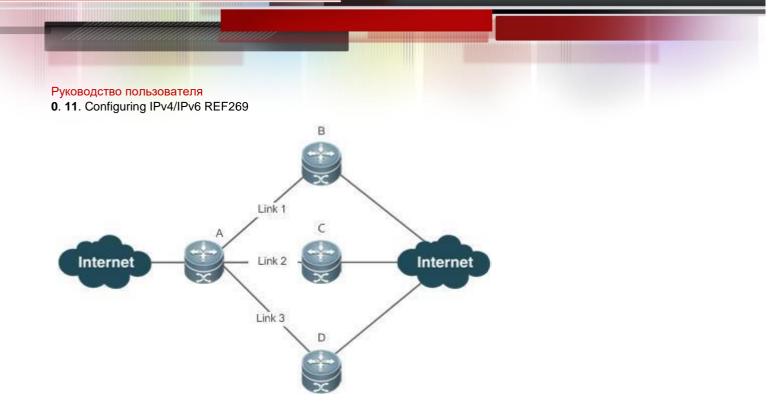
REF is used to actively resolve next hops and implement load balancing.

### **Protocols and Standards**

N/A

# 11.2. Applications

| Application               | Description                                                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------|
| Load Balancing            | During network routing, when a route prefix is associated with multiple<br>next hops, REF can |
|                           | implement load balancing among the multiple next hops.                                        |
| ECMP Loadind<br>Balancing | ECMP can be used for load balancing.                                                          |


# 11.2.1. Load Balancing

# Scenario

As shown in Figure 11-1, a route prefix is associated with three next hops on router A, namely, link 1, link 2, and link 3. By default, REF implements load balancing based on the destination IP address. Load balancing can be implemented based on the source IP address and destination IP address as well.

Figure 11-1

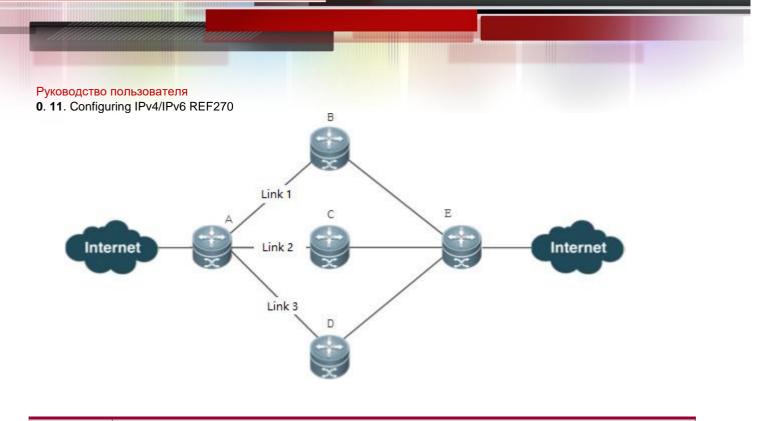




Remarks **A is a routers that runs REF. B, C and D are forwarding devices.** 

# Deployment

• Run REF on router A.


# 11.2.2. ECMP Load Balancing

# Scenario

As shown in Figure 11-2, there are three equal-cost paths between Router A and Router E, including link 1, link 2 and link 3. Configure ECMP load balancing policies on Router A, and load will be evenly distributed over the three links. ECMP load balancing is based on the source IP address and destination IP address by default.

Figure 11-2





Remarks A and E are routers that run REF. B, C and D are forwarding devices.

# 11.3. Features

# **Basic Concepts**

IPv4/IPv6 REF involves the following basic concepts:

# Routing table

An IPv4/IPv6 routing table stores routes to the specific destinations and contains the topology information. During packet forwarding, IPv4/IPv6 REF selects packet transmission paths based on the routing table.

# Adjacent node

An adjacent node contains output interface information about routed packets, for example, the next hop, the next component to be processed, and the link layer encapsulation. When a packet is matched with an adjacent node, the packet is directly encapsulated and then forwarded. For the sake of query and update, an adjacent node table is often organized into a hash table. To support routing load balancing, the next hop information is organized into a load balance entry. An adjacent node may not contain next hop information. It may contain indexes of next components (such as other line cards and multi-service cards) to be processed.

# Active resolution

REF supports next hop resolution. If the MAC address of the next hop is unknown, REF will actively resolve the next hop. IPv4 REF requests the ARP module for next hop resolution while IPv6 REF applies the ND module to resolution.

# Packet forwarding Path





#### 0. 11. Configuring IPv4/IPv6 REF271

Packets are forwarded based on their IPv4/IPv6 addresses. If the source and destination IPv4/IPv6 addresses of a packet are specified, the forwarding path of this packet is determined.

#### 11.3.1. Load Balancing Policies

Load balancing is configured to distribute traffic load among multiple network links.

#### Working Principle

REF supports two load balancing modes. In the REF model, a route prefix is associated with multiple next hops, in other words, it is a multi-path route. The route will be associated with a load balance table and implement weight-based load balancing. When an IPv4/IPv6 packet is matched with a load balance entry based on the longest prefix match, REF performs hash calculation based on the IPv4/IPv6 address of the packet and selects a path to forward the packet.

IPv4/IPv6 REF supports two kinds of load balancing policies: load balancing based on destination IP address, and load balancing based on the source and destination IP addresses.

#### **Related Configuration**

- Configuring Load Balancing Based on IPv4 Source and Destination Addresses
- By default, load balancing is implemented based on the IPv4 destination addresses.
- Run the **ip ref load-sharing original** command to configure the load balancing.
- After the configuration, load balancing is implemented based on the IPv4 source and destination addresses.

#### Configuring Load Balancing Based on IPv6 Source and Destination Addresses

- By default, load balancing is implemented based on the IPv6 destination addresses.
- Run the **ipv6 ref load-sharing original** command to configure the load balancing.
- After the configuration, load balancing is implemented based on the IPv6 source and destination addresses.

#### **11.3.2. ECMP Load Balancing Policies**

#### Working Principle

There are many ECMP load balancing algorithms available. For example, if ECMP load balancing is based on the source IP address, the packets containing the same source IP address are routed over the same link. The other packets are evenly distributed over ECMP paths.

The following ECMP load balancing algorithms are available:



#### Руководство пользователя 0. 11. Configuring IPv4/IPv6 REF272

- Source IP address or destination IP address
- Source IP address and destination IP address
- L4 source port or L4 destination port
- L4 source port and L4 destination port
- Source IP address and L4 source port
- Source IP address and L4 destination port
- Destination IP address and L4 source port
- Destination IP address and L4 destination port
- Source IP address and L4 source port and L4 destination port
- Destination IP address and L4 source port and L4 destination port
- Source IP address and destination IP address and L4 source port
- Source IP address and destination IP address and L4 destination port
- Source IP address and destination IP address and L4 source port and L4 destination port

# **Related Configuration**

- Configuring ECMP Elastic Hash
- ECMP elastic hash is disabled by default.
- Run the **ip ref hash-elastricity enable** command to enable ECMP elastic hash.
- Run the **no ip ref hash-elastricity enable** command to disable ECMP elastic hash.

# 11.4. Configuration

| Configuration   | Description and Command      |                                        |
|-----------------|------------------------------|----------------------------------------|
| ConfiguringLoad | Optional.                    | Enables the load balancing             |
| Balancing       | ip ref load-sharing original | algorithm based on                     |
| Datanoing       |                              | IPv4 source and destination addresses. |



#### Руководство пользователя 0. 11. Configuring IPv4/IPv6 REF273

| <u>Policies</u>                            | ipv6 ref load-sharing<br>original            | Enables the load balancing algorithm based on |
|--------------------------------------------|----------------------------------------------|-----------------------------------------------|
|                                            |                                              | IPv6 source and destination addresses.        |
| <u>ConfiguringECM</u><br><u>P Policies</u> | ip ref load-balance                          | Enables ECMP loading balancing.               |
|                                            | ip ref hash-elastricity<br>enable            | Enables ECMP elastic hash.                    |
|                                            | hash-disturb                                 | Enables hash disturbance factor.              |
|                                            | hash-symmetrical [ipv4  <br>ipv6   fcoe  on] | Enables hash symmetrical factor.              |

# 11.4.1. Configuring Load Balancing Policies

# **Configuration Effect**

REF supports the following two kinds of load balancing policies:

- Destination address-based load balancing indicates performing hash calculation based on the destination address of the packet. The path with a greater weight is more likely to be selected. This policy is used by default.
- Implementing load balancing based on the source and destination addresses indicates performing hash calculation based on the source and destination addresses of the packet. The path with a greater weight is more likely to be selected.

#### Notes

N/A

# **Configuration Steps**

- Optional.
- Perform this configuration if you want to implement load balancing based on the source and destination IP addresses.
- Perform this configuration on a router that connects multiple links.





### Verification

Run the **show ip ref adjacency statistic** command to display the IPv4 load balancing policy. Run the **show ipv6 refadjacency statistic** command to display the IPv6 load balancing policy.

#### **Related Commands**

# \* Configuring Load Balancing Based on IPv4 Source and Destination Addresses

| Command                  | ip ref load-sharing original |
|--------------------------|------------------------------|
| Parameter<br>Description | N/A                          |
| Command<br>Mode          | Global configuration mode    |
| Usage Guide              | N/A                          |

# Configuring Load Balancing Based on IPv6 Source and Destination Addresses

| Command                  | ipv6 ref load-sharing original |
|--------------------------|--------------------------------|
| Parameter<br>Description | N/A                            |
| Command<br>Mode          | Global configuration mode      |
| Usage Guide              | N/A                            |

# Configuring Hash Disturbance Factor

| Command                  | hash-disturb <b>string</b>                                                 |  |
|--------------------------|----------------------------------------------------------------------------|--|
| Parameter<br>Description | string: Configures hash disturbance factor.                                |  |
| Defaults                 | Hash disturbance factor is disabled by default.                            |  |
| Command<br>Mode          | REF load balancing enhanced profile configuration mode                     |  |
| Usage Guide              | Use the <b>no hash-disturb</b> command to disable hash disturbance factor. |  |



# ✤ Configuring Hash Symmetrical Factor

| Command                  | hash-symmetrical { ipv4   ipv6   fcoe }                                                                                                                                                                   |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter<br>Description | <ul><li>ipv4: Enables hash symmetrical factor for IPv4 packets.</li><li>ipv6: Enables hash symmetrical factor for IPv6 packets.</li><li>fcoe: Enables hash symmetrical factor for FCoE packets.</li></ul> |  |
| Defaults                 |                                                                                                                                                                                                           |  |
| Command<br>Mode          | REF load balancing enhanced profile configuration mode                                                                                                                                                    |  |
| Usage Guide              | Use the <b>no hash-disturb</b> command to disable hash symmetrical factor.                                                                                                                                |  |

# **Configuration Example**

# ✤ Configuring Load Balancing Based on Source and Destination IP Addresses

| Scenario               |                                                                                                    |  |
|------------------------|----------------------------------------------------------------------------------------------------|--|
| Figure 11-3            | B<br>Link 1<br>Link 2<br>Link 3<br>D                                                               |  |
|                        | A route prefix is associated with three next hops on router A, namely, link 1, link 2, and link 3. |  |
| Configuration<br>Steps | Configure load balancing based on IPv4 source and destination IP addresses on router A.            |  |
| Α                      | A#configure terminal                                                                               |  |
|                        | Enter configuration commands, one per line. End with CNTL/Z.                                       |  |



Руководство пользователя 0. 11. Configuring IPv4/IPv6 REF276

| 0. 11. Configuring IPV2 | A(config)#ip ref load-sharing original                                                                     |
|-------------------------|------------------------------------------------------------------------------------------------------------|
| Verification            | A #show ip ref adjacency statistics adjacency balance table statistic:<br>source-dest-address load-sharing |
|                         | balance: 0                                                                                                 |
|                         | adjacency node table statistic:                                                                            |
|                         | total : 3                                                                                                  |
|                         | local : 1                                                                                                  |
|                         | glean : O                                                                                                  |
|                         | forward: 0                                                                                                 |
|                         | discard: 0                                                                                                 |
|                         | mcast : 1                                                                                                  |
|                         | punt : 1                                                                                                   |
|                         | bcast : 0                                                                                                  |

# 11.4.2. Configuring ECMP Policies

# **Configuration Effect**

ECMP supports the following load balancing policies:

- ECMP load balancing based on the destination IP address.
- ECMP load balancing based on the source IP address.
- ECMP load balancing based on the destination IP address and L4 destination port.
- ECMP load balancing based on the source IP address, L4 source port and L4 destination port.
- ECMP load balancing based on the destination IP address and L4 source port.
- ECMP load balancing based on the L4 destination port. ECMP load balancing based on the source IP address, destination IP address and L4 destination port.
- ECMP load balancing based on the source IP address, destination IP address, L4 source port and L4 destination port.



0. 11. Configuring IPv4/IPv6 REF277

- ECMP load balancing based on the L4 source port and L4 destination port.
- ECMP load balancing based on the source IP address and L4 destination port.
- ECMP load balancing based on the source IP address, L4 source port and L4 destination port.
- ECMP load balancing based on the source IP address and L4 destination port.
- ECMP load balancing based on the L4 source port.
- ECMP load balancing based on the destination IP address.
- ECMP load balancing based on the source port.

ECMP load balancing based on the source IP address and the destination IP

address. ECMP elastic hash contains the following two kinds of configuration:

- Support
- Not Support

#### Notes

- ECMP and elastic hash configuration is supported by only switches.
- ECMP and elastic hash configuration are supported by both IPv4 and IPv6 addresses.

#### **Related Commans**

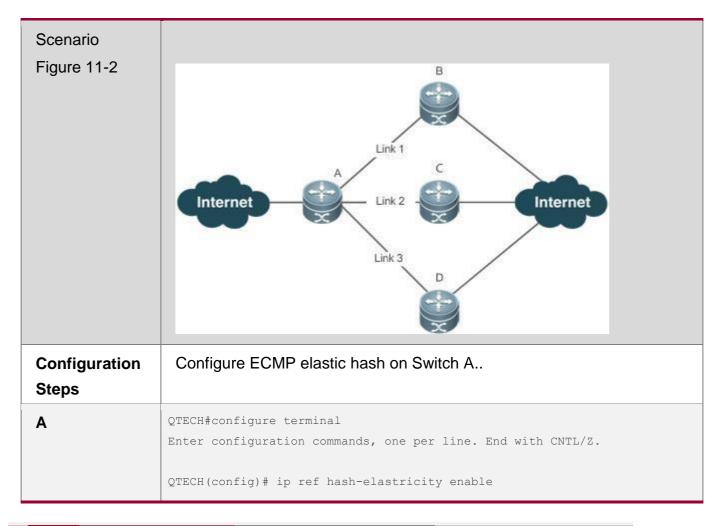
# Configuring ECMP Load Balancing Policies

| Command                  | ip ref load-balance [ src-dst-ip   src-ip   src-ip-src-dst-l4port   src-dst-ip-<br>src-dst-l4port ]         |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Parameter<br>Description | src-dst-ip: Configures ECMP load balancing based on the source and destination IP address.                  |  |
| Description              | src-ip: Configures ECMP load balancing based on the source IP address.                                      |  |
|                          | src-ip-src-dst-l4port: Configures ECMP load balancing based on the                                          |  |
|                          | source IP address, layer-4 source port and layer-4 destination port.                                        |  |
|                          | src-dst-ip-src-dst-l4port: Configures ECMP load balancing based on<br>the source IP address, destination IP |  |
|                          | address, layer-4 source port and layer-4 destination port.                                                  |  |
| Command                  | Global configuration mode                                                                                   |  |
| Mode                     |                                                                                                             |  |
| Usage Guide              | N/A                                                                                                         |  |



0. 11. Configuring IPv4/IPv6 REF278

#### Configuring ECMP Elastic Hash


| Command                  | ip ref hash-elastricity enable |
|--------------------------|--------------------------------|
| Parameter<br>Description | N/A                            |
| Command<br>Mode          | Global configuration mode      |
| Usage Guide              | N/A                            |

### Verification

Run the **show ip ref loab-balance** command to check ECMP elastic hash status.

# **Configuration Example**

# Configuring ECMP Elastic Hash





| Руководство пользоват<br>0. 11. Configuring IPv4/II |                                                                                                       |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Verification                                        | QTECH#show ip ref load-balance<br>load-balance : src-dst-mac.<br>hash-elastricity : enable.<br>QTECH# |

# **Common Errors**

N/A

# 11.5. Monitoring

# **Displaying REF Packet Statistics**

REF packet statistics includes the number of forwarded packets and the number of packets discarded due to various causes. You can determine whether packets are forwarded as expected by displaying and clearing REF packet statistics.

| Command                          | Description                          |
|----------------------------------|--------------------------------------|
| show ip ref packet statistics    | Displays IPv4 REF packet statistics. |
| clear ip ref packet statistics   | Clears IPv4 REF packet statistics.   |
| show ipv6 ref packet statistics  | Displays IPv6 REF packet statistics. |
| clear ipv6 ref packet statistics | Clears IPv6 REF packet statistics.   |

# DisplayingAdjacency Information

You can run the following commands to display adjacency information:

| Command                                                                                                                                          | Description                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>show ip ref adjacency [glean   local   ip-<br/>address   {interface<br/>interface_type interface_number )   discard  <br/>statistics]</pre> | Displays the gleaned adjacencies, local<br>adjacencies, adjacencies of a specified IP<br>address, adjacencies associated with a<br>specified interface, and all adjacent<br>nodes in IPv4 REF. |



Руководство пользователя 0. 11. Configuring IPv4/IPv6 REF280

show ipv6 ref adjacency [glean | local |
ipv6-address | (interface interface\_type
interface\_number) | discard | statistics]

Displays the gleaned adjacencies, local adjacencies, adjacencies of a specified IPv6 address, adjacencies associated with a specified interface, and all adjacent nodes in IPv6 REF.

#### **DisplayingActive Resolution Information**

You can run the following commands to display next hops to be resolved:

| Command                    | Description                            |
|----------------------------|----------------------------------------|
| show ip ref resolve-list   | Displays the next hop to be resolved . |
| show ipv6 ref resolve-list | Displays the next hop to be resolved.  |

#### DisplayingPacket

#### ForwardingPath Information

Packets are forwarded based on their IPv4/IPv6 addresses. If the source and destination IPv4/IPv6 addresses of a packet are specified, the forwarding path of this packet is determined. Run the following commands and specify the IPv4/IPv6 source and destination addresses of a packet. The forwarding path of the packet is displayed, for example, the packet is discarded, submitted to a CPU, or forwarded. Furthermore, the interface that forwards the packet is displayed.

| Command                                                                                                 | Description                                                                                             |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| <pre>show ip ref exact-route [oob   vrf vrf_name] source-ipaddress</pre>                                | Displays the forwarding path of a packet. oob indicates                                                 |
| dest_ipaddress                                                                                          | out-of-band management network.                                                                         |
| <b>showipv6refexact- route</b> [oob   vrf <i>vrf-name</i> ]<br><i>src-ipv6-address dst-ipv6-address</i> | Displays the forwarding path of an IPv6<br>packet. oob<br>indicates out-of-band, management<br>network. |

#### DisplayingRoute Information in an REF Table

Run the following commands to display the route information in an REF table:



#### Руководство пользователя 0. 11. Configuring IPv4/IPv6 REF281

| Command                                                                                 | Description                                                                                                                                                         |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| show ip ref route [oob   vrf vrf_name]<br>[default   { <i>ip mask</i> } <br>statistics] | Displays route information in the IPv4 REF<br>table. The<br>parameter <b>default</b> indicates a default<br>route. oob indicates out-of-band<br>management network. |
| show ipv6 ref route [oob   vrf vrf-name ] [<br>default   statistics  <br>prefix/len ]   | Displays route information in the IPv6 REF<br>table. The<br>parameter <b>default</b> indicates a default<br>route. oob indicates out-of-band<br>management network. |

