

Layer 3 Forward and ARP, ND Configuration

Оглавление

1.	LAYER 3 FORWARD CONFIGURATION	4
1.1	Layer 3 Interface	4
1.1	1.1 Introduction to Layer 3 Interface	4
1.1	1.2 Layer 3 Interface Configuration Task List	4
1.2	IP Configuration	6
1.2	2.1 Introduction to IPv4, IPv6	6
1.2	2.2 IP Configuration	8
	1.2.2.1 IPv4 Address Configuration	8
	1.2.2.2 IPv6 Address Configuration	9
1.2	2.3 IP Configuration Examples	16
	1.2.3.1 Configuration Examples of IPv4	16
	1.2.3.2 Configuration Examples of IPv6	17
1.2	ü	21
1.3	ARP	21
1.3		21
1.3	G .	21
1.3	3.3 ARP Troubleshooting	23
2.	ARP SCANNING PREVENTION FUNCTION CONFIGURATION	24
2.1	Introduction to ARP Scanning Prevention Function	24
2.2	ARP Scanning Prevention Configuration Task Sequence	24
2.3	ARP Scanning Prevention Typical Examples	27
2.4	ARP Scanning Prevention Troubleshooting Help	28
3.	PREVENT ARP, ND SPOOFING CONFIGURATION	29
3.1	Overview	29
3.1	1.1 ARP (Address Resolution Protocol)	29
3.1	1.2 ARP Spoofing	29
3.1	1.3 How to prevent void ARP/ND Spoofing	29
3.2	Prevent ARP, ND Spoofing configuration	30
3.3	Prevent ARP, ND Spoofing Example	31
4.	ARP GUARD CONFIGURATION	33
4.1	Introduction to ARP GUARD	33
4.2	ARP GUARD Configuration Task List	34

5.	GRATUITOUS ARP CONFIGURATION	35
5.1	Introduction to Gratuitous ARP	35
5.2	Gratuitous ARP Configuration Task List	35
5.3	Gratuitous ARP Configuration Example	36
5 4	Gratuitous ARP Troubleshooting	37

1. LAYER 3 FORWARD CONFIGURATION

Switch supports Layer 3 forwarding which forwards Layer 3 protocol packets (IP packets) across VLANs. Such forwarding uses IP addresses, when a interface receives an IP packet, it will perform a lookup in its own routing table and decide the operation according to the lookup result. If the IP packet is destined to another subnet reachable from this switch, then the packet will be forwarded to the appropriate interface. Switch can forward IP packets by hardware, the forwarding chip of switch have a host route table and default route table. Host route table stores host routes to connect to the switch directly; default route table stores network routes (after aggregation algorithm process).

If the route (either host route or network route) for forwarding unicast traffic exists in the forwarding chip, the forwarding of traffic will be completely handled by hardware. As a result, forwarding efficiency can be greatly improved, even to wire speed.

1.1 Layer 3 Interface

1.1.1 Introduction to Layer 3 Interface

Layer 3 interface can be created on switch. The Layer 3 interface is not a physical interface but a virtual interface. Layer 3 interface is built on VLANs. The Layer 3 interface can contain one or more layer 2 ports which belong to the same VLAN, or contain no layer 2 ports. At least one of the Layer 2 ports contained in Layer 3 interface should be in UP state for Layer 3 interface in UP state, otherwise, Layer 3 interface will be in DOWN state. All layer 3 interfaces in the switch use the same MAC address by default, this address is selected from the reserved MAC address while creating Layer 3 interface. The Layer 3 interface is the base for layer 3 protocols. The switch can use the IP addresses set in the layer 3 interfaces to communicate with the other devices via IP. The switch can forward IP packets between different Layer 3 interfaces. Loopback interface belongs to Layer 3 interface.

1.1.2 Layer 3 Interface Configuration Task List

Layer 3 Interface Configuration Task List:

- 1. Create Layer 3 interface
- 2. Bandwidth for Layer 3 Interface configuration
- 3. Configure VLAN interface description
- 4. Open or close the VLAN interface
- 5. VRF configuration
 - Create VRF instance and enter VPN view
 - Configure RD of VRF instance (optional)
 - Configure RT of VRF instance (optional)

Configure the relation between VRF instance and the interface

1. Create Layer 3 Interface

Command	Explanation
Global Mode	
<pre>interface vlan <vlan-id> no interface vlan <vlan- id=""></vlan-></vlan-id></pre>	Creates a VLAN interface (VLAN interface is a Layer 3 interface); the no command deletes the VLAN interface (Layer 3 interface) created in the switch.
<pre>interface loopback <loopback-id> no interface loopback <loopback-id></loopback-id></loopback-id></pre>	Creates a Loopback interface then enter the loopback Port Mode; the no command deletes the Loopback interface created in the switch.

2. Bandwidth for Layer 3 Interface configuration

Command	Explanation
VLAN Interface Mode	
bandwidth <bandwidth> no bandwidth</bandwidth>	Configure the bandwidth for Layer 3 Interface. The no command recovery the default value.

3. Configure VLAN interface description

Command	Explanation
VLAN Interface Mode	
description <text> no description</text>	Configure the description information of VLAN interface. The no command will cancel the description information of VLAN interface.

4. Open or close the vlan interface

Command	Explanation
VLAN Interface Mode	
shutdown	Onen er elese the year interfere
no shutdown	Open or close the vlan interface.

5. VRF configuration

- Create VRF instance and enter VPN view
- Configure RD of VRF instance (optional)
- Configure RT of VRF instance (optional)
- Configure the relation between VRF instance and the interface

Command	Explanation
Global Mode	
<pre>ip vrf <vrf-name> no ip vrf <vrf-name></vrf-name></vrf-name></pre>	Create VRF instance; VRF instance is not created by default.
VRF Mode	
rd <asn:nn_or_ip-address:nn></asn:nn_or_ip-address:nn>	Configure RD of VRF instance. RD is not created by default.
<pre>route-target {import export both} <rt-value></rt-value></pre>	Configure RT of VRF instance
no route-target {import export both} <rt-value></rt-value>	
Interface Mode	
<pre>ip vrf forwarding <vrf-name> no ip vrf forwarding <vrf-name></vrf-name></vrf-name></pre>	Configure the relation between VRF instance and the interface.
<pre>ip address <ip-address> <mask> no ip address <ip-address> <mask></mask></ip-address></mask></ip-address></pre>	Configure the private IP address of direct link interface.

1.2 IP Configuration

1.2.1 Introduction to IPv4, IPv6

IPv4 is the current version of global universal Internet protocol. The practice has proved that IPv4 is simple, flexible, open, stable, strong and easy to implement while collaborating well with various protocols of upper and lower layers. Although IPv4 almost has not been changed since it was established in 1980's, it has kept growing to the current global scale with

the promotion of Internet. However, as Internet infrastructure and Internet application services continue boosting, IPv4 has shown its deficiency when facing the present scale and complexity of Internet.

IPv6 refers to the sixth version of Internet protocol which is the next generation Internet protocol designed by IETF to replace the current Internet protocol version 4 (IPv4). IPv6 was specially developed to make up the shortages of IPv4 addresses so that Internet can develop further.

The most important problem IPv6 has solved is to add the amount of IP addresses. IPv4 addresses have nearly run out, whereas the amount of Internet users has been increasing in geometric series. With the greatly and continuously boosting of Internet services and application devices (Home and Small Office Network, IP phone and Wireless Service Information Terminal which make use of Internet,) which require IP addresses, the supply of IP addresses turns out to be more and more tense. People have been working on the problem of shortage of IPv4 addresses for a long time by introducing various technologies to prolong the lifespan of existing IPv4 infrastructure, including Network Address Translation(NAT for short), and Classless Inter-Domain Routing(CIDR for short), etc.

Although the combination of CIDR, NAT and private addressing has temporarily mitigated the problem of IPv4 address space shortage, NAT technology has disrupted the end-to-end model which is the original intention of IP design by making it necessary for router devices that serve as network intermediate nodes to maintain every connection status which increases network delay greatly and decreases network performance. Moreover, the translation of network data packet addresses baffles the end-to-end network security check, IPSec authentication header is such an example.

Therefore, in order to solve all kinds of problems existing in IPv4 comprehensively, the next generation Internet Protocol IPv6 designed by IETF has become the only feasible solution at present.

First of all, the 128 bits addressing scheme of IPv6 Protocol can guarantee to provide enough globally unique IP addresses for global IP network nodes in the range of time and space. Moreover, besides increasing address space, IPv6 also enhanced many other essential designs of IPv4.

Hierarchical addressing scheme facilitates Route Aggregation, effectively reduces route table entries and enhances the efficiency and expansibility of routing and data packet processing.

The header design of IPv6 is more efficient compared with IPv4. It has less data fields and takes out header checksum, thus expedites the processing speed of basic IPv6 header. In IPv6 header, fragment field can be shown as an optional extended field, so that data packets fragmentation process won't be done in router forwarding process, and Path MTU Discovery Mechanism collaborates with data packet source which enhances the processing efficiency of router.

Address automatic configuration and plug-and-play is supported. Large amounts of hosts can find network routers easily by address automatic configuration function of IPv6 while

obtaining a globally unique IPv6 address automatically as well which makes the devices using IPv6 Internet plug-and-play. Automatic address configuration function also makes the readdressing of existing network easier and more convenient, and it is more convenient for network operators to manage the transformation from one provider to another.

Support IPSec. IPSec is optional in IPv4, but required in IPv6 Protocol. IPv6 provides security extended header, which provides end-to-end security services such as access control, confidentiality and data integrity, consequently making the implement of encryption, validation and Virtual Private Network easier.

Enhance the support for Mobile IP and mobile calculating devices. The Mobile IP Protocol defined in IETF standard makes mobile devices movable without cutting the existing connection, which is a network function getting more and more important. Unlike IPv4, the mobility of IPv6 is from embedded automatic configuration to get transmission address (Care-Of-Address); therefore it doesn't need Foreign Agent. Furthermore, this kind of binding process enables Correspondent Node communicate with Mobile Node directly, thereby avoids the extra system cost caused by triangle routing choice required in IPv4.

Avoid the use of Network Address Translation. The purpose of the introduction of NAT mechanism is to share and reuse same address space among different network segments. This mechanism mitigates the problem of the shortage of IPv4 address temporally; meanwhile it adds the burden of address translation process for network device and application. Since the address space of IPv6 has increased greatly, address translation becomes unnecessary, thus the problems and system cost caused by NAT deployment are solved naturally.

Support extensively deployed Routing Protocol. IPv6 has kept and extended the supports for existing Internal Gateway Protocols (IGP for short), and Exterior Gateway Protocols (EGP for short). For example, IPv6 Routing Protocol such as RIPng, OSPFv3, IS-ISv6 and MBGP4+, etc.

Multicast addresses increased and the support for multicast has enhanced. By dealing with IPv4 broadcast functions such as Router Discovery and Router Query, IPv6 multicast has completely replaced IPv4 broadcast in the sense of function. Multicast not only saves network bandwidth, but enhances network efficiency as well.

1.2.2 IP Configuration

Layer 3 interface can be configured as IPv4 interface, IPv6 interface.

1.2.2.1 IPv4 Address Configuration

IPv4 address configuration task list:

1. Configure the IPv4 address of three-layer interface

Configure the IPv4 address of three-layer interface

Command	Explanation
---------	-------------

VLAN Interface Configuration Mode	
<pre>ip address <ip-address> <mask> [secondary] no ip address [<ip-address> <mask>]</mask></ip-address></mask></ip-address></pre>	Configure IP address of VLAN interface; the no ip address [<ip-address> <mask>] command cancels IP address of VLAN interface.</mask></ip-address>

1.2.2.2 IPv6 Address Configuration

The configuration Task List of IPv6 is as follows:

- 1. IPv6 basic configuration
 - 1. Configure interface IPv6 address
 - 2. Configure IPv6 static routing
- 2. IPv6 Neighbor Discovery Configuration
 - 1. Configure DAD neighbor solicitation message number
 - 2. Configure send neighbor solicitation message interval
 - 3. Enable and disable router advertisement
 - 4. Configure router lifespan
 - 5. Configure router advertisement minimum interval
 - 6. Configure router advertisement maximum interval
 - 7. Configure prefix advertisement parameters
 - 8. Configure static IPv6 neighbor entries
 - 9. Delete all entries in IPv6 neighbor table
 - 10. Set the hoplimit of sending router advertisement
 - 11. Set the mtu of sending router advertisement
 - 12. Set the reachable-time of sending router advertisement
 - 13. Set the retrans-timer of sending router advertisement
 - 14. Set the flag representing whether information other than the address information will be obtained via DHCPv6
 - 15. Set the flag representing whether the address information will be obtained via DHCPv6
- 3. IPv6 Tunnel configuration
 - 1. Create/Delete Tunnel
 - 2. Configure tunnel description
 - 3. Configure Tunnel Source
 - 4. Configure Tunnel Destination
 - 5. Configure Tunnel Next-Hop
 - 6. Configure Tunnel Mode
 - 7. Configure Tunnel Routing

1. IPv6 Basic Configuration

1. Configure interface IPv6 address

Command	Explanation
Interface Configuration Mode	
<pre>ipv6 address <ipv6- address="" prefix-length=""> [eui-64] no ipv6 address <ipv6- address="" prefix-length=""></ipv6-></ipv6-></pre>	Configure IPv6 address, including aggregatable global unicast addresses, sitelocal addresses and link-local addresses. The no ipv6 address <ipv6-address prefixlength=""> command cancels IPv6 address.</ipv6-address>

2. Set IPv6 Static Routing

Command	Explanation
Global mode	
<pre>ipv6 route</pre>	Configure IPv6 static routing. The no command cancels IPv6 static routing.

2. IPv6 Neighbor Discovery Configuration

1. Configure DAD Neighbor solicitation Message number

Command	Explanation
Interface Configuration Mode	

	Set the neighbor query message number
ipv6 nd dad attempts	sent in sequence when the interface
<value></value>	makes duplicate address detection.
no ipv6 nd dad attempts	The no command resumes default value (1).

2. Configure Send Neighbor solicitation Message Interval

Command	Explanation
Interface Configuration Mode	
<pre>ipv6 nd ns-interval <seconds> no ipv6 nd ns-interval</seconds></pre>	Set the interval of the interface to send neighbor query message. The NO command resumes default value (1 second).

3. Enable and disable router advertisement

Command	Explanation
Interface Configuration Mode	
ipv6 nd suppress-ra no ipv6 nd suppress-ra	Forbid IPv6 Router Advertisement. The NO command enables IPv6 router advertisement.

4. Configure Router Lifespan

Command	Explanation
Interface Configuration Mode	
<pre>ipv6 nd ra-lifetime <seconds> no ipv6 nd ra-lifetime</seconds></pre>	Configure Router advertisement Lifespan. The NO command resumes default value (1800 seconds).

5. Configure router advertisement Minimum Interval

Command Description

Interface Configuration Mode	
<pre>ipv6 nd min-ra-interval <seconds></seconds></pre>	Configure the minimum interval for router advertisement. The NO command resumes
no ipv6 nd min-ra-interval	default value (200 seconds).

6. Configure router advertisement Maximum Interval

Command	Explanation
Interface Configuration Mode	
<pre>ipv6 nd max-ra-interval <seconds></seconds></pre>	Configure the maximum interval for router advertisement. The NO command resumes
no ipv6 nd max-ra-interval	default value (600 seconds).

7. Configure prefix advertisement parameters

Command	Explanation
Interface Configuration Mode	
ipv6 nd prefix	
<pre><ipv6-address length="" prefix-=""> <valid-lifetime> <preferred-lifetime> [off- link] [no-autoconfig] no ipv6 nd prefix</preferred-lifetime></valid-lifetime></ipv6-address></pre>	Configure the address prefix and advertisement parameters of router. The NO command cancels the address prefix of
<pre><ipv6-address length="" prefix-=""> <valid-lifetime> <preferred-lifetime> [off- link] [no-autoconfig]</preferred-lifetime></valid-lifetime></ipv6-address></pre>	routing advertisement.

8. Configure static IPv6 neighbor Entries

Command	Explanation
Interface Configuration Mode	
<pre>ipv6 neighbor <ipv6- address=""> <hardware-address> interface <interface-type interface-name=""></interface-type></hardware-address></ipv6-></pre>	Set static neighbor table entries, including neighbor IPv6 address, MAC address and two-layer port.
no ipv6 neighbor <ipv6-address></ipv6-address>	Delete neighbor table entries.

9. Delete all entries in IPv6 neighbor table

Command	Explanation
Admin Mode	
clear ipv6 neighbors	Clear all static neighbor table entries.

10. Set the hoplimit of sending router advertisement

Command	Explanation
Interface Configuration Mode	
ipv6 nd ra-hoplimit <value></value>	Set the hoplimit of sending router advertisement.

11. Set the mtu of sending router advertisement

Command	Explanation
Interface Configuration Mode	
ipv6 nd ra-mtu <value></value>	Set the mtu of sending router advertisement.

12. Set the reachable-time of sending router advertisement

Command	Explanation
Interface Configuration Mode	
ipv6 nd reachable-time <seconds></seconds>	Set the reachable-time of sending router advertisement.

13. Set the retrans-timer of sending router advertisement

Command	Explanation
Interface Configuration Mode	
ipv6 nd retrans-timer <seconds></seconds>	Set the retrans-timer of sending router advertisement.

14. Set the flag representing whether information other than the address information will be obtained via DHCPv6.

Command	Explanation
Interface Configuration Mode	
ipv6 nd other-config-flag	Set the flag representing whether information other than the address information will be obtained via DHCPv6.

15. Set the flag representing whether the address information will be obtained via DHCPv6

Command	Explanation
Interface Configuration Mode	
ipv6 nd managed-config-flag	Set the flag representing whether the address information will be obtained via DHCPv6.

3. IPv6 Tunnel Configuration

1. Add/Delete tunnel

Command	Explanation
Global mode	
<pre>interface tunnel <tnl-id> no interface tunnel <tnl- id=""></tnl-></tnl-id></pre>	Create a tunnel. The NO command deletes a tunnel.

2. Configure tunnel description

Command	Explanation
Tunnel Configuration Mode	
description <desc></desc>	Configure tunnel description. The NO
no description	command deletes the tunnel description.

3. Configure tunnel source

Command	Explanation
Tunnel Configuration Mode	
<pre>tunnel source { <ipv4- address=""> <ipv6-address> <interface-name> } no tunnel source</interface-name></ipv6-address></ipv4-></pre>	Configure tunnel source end IPv4/IPv6 address. The NO command deletes the IPv4/IPv6 address of tunnel source end.

4. Configure Tunnel Destination

Command	Explanation
Tunnel Configuration Mode	
tunnel destination { <ipv4-address>} address> <ipv6-address>} no tunnel destination</ipv6-address></ipv4-address>	Configure tunnel destination end IPv4/IPv6 address. The NO command deletes the IPv4/IPv6 address of tunnel destination end.

5. Configure Tunnel Next-Hop

Command			Explanation
Tunnel Configuration Mode		ode	
tunnel address>	nexthop	<ipv4-< td=""><td>Configure tunnel next-hop IPv4 address. The NO command deletes the IPv4 address</td></ipv4-<>	Configure tunnel next-hop IPv4 address. The NO command deletes the IPv4 address
no tunnel	nexthop		of tunnel next-hop end.

6. Configure Tunnel Mode

Command	Explanation
Tunnel Configuration Mode	
tunnel mode [[gre] ipv6ip [6to4 isatap]] no tunnel mode	Configure tunnel mode. The NO command clears tunnel mode.

7. Configure Tunnel Routing

Command	Explanation
Global mode	

Configure tunnel routing. The NO command clears tunnel routing.

1.2.3 IP Configuration Examples

1.2.3.1 Configuration Examples of IPv4



Fig 1-1 IPv4 configuration example

The user's configuration requirements are: Configure IP address of different network segments on Switch1 and Switch2, configure static routing and validate accessibility using ping function.

Configuration Description:

- 1. Configure two VLANs on Switch1, namely, VLAN1 and VLAN2.
- 2. Configure IPv4 address 192.168.1.1 255.255.255.0 in VLAN1 of Switch1, and configure IPv4 address 192.168.2.1 255.255.255.0 in VLAN2.
- 3. Configure two VLANs on Switch2, respectively VLAN2 and VLAN3.
- 4. Configure IPv4 address 192.168.2.2 255.255.255.0 in VLAN2 of Switch2, and configure IPv4 address 192.168.3.1 255.255.255.0 in VLAN3.
- 5. The IPv4 address of PC1 is 192.168.1.100 255.255.255.0, and the IPv4 address of PC2 is 192.168.3.100 255.255.255.0.
- 6. Configure static routing 192.168.3.0/24 on Switch1, and configure static routing 192.168.1.0/24 on Switch2.
- 7. Ping each other among PCs.

Note: First make sure PC1 and Switch1 can access each other by ping, and PC2 and Switch2 can access each other by ping.

The configuration procedure is as follows:

```
Switch1 (config) #interface vlan 1
Switch1 (Config-if-Vlan1) #ip address 192.168.1.1 255.255.255.0
Switch1 (config) #interface vlan 2
Switch1 (Config-if-Vlan2) #ip address 192.168.2.1 255.255.255.0
Switch1 (Config-if-Vlan2) #exit
Switch1 (config) #ip route 192.168.3.0 255.255.255.0 192.168.2.2
Switch2 (config) #interface vlan 2
Switch2 (Config-if-Vlan2) #ip address 192.168.2.2 255.255.255.0
Switch2 (config) #interface vlan 3
Switch2 (Config-if-Vlan3) #ip address 192.168.3.1 255.255.255.0
Switch2 (Config-if-Vlan3) #exit
Switch2 (config) #ip route 192.168.1.0 255.255.255.0 192.168.2.1
```

1.2.3.2 Configuration Examples of IPv6

Example 1:

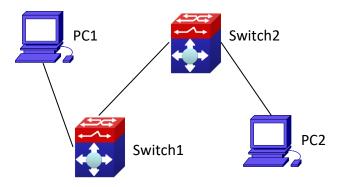


Fig 1-2 IPv6 configuration example

The user's configuration requirements are: Configure IPv6 address of different network segments on Switch1 and Switch2, configure static routing and validate reachability using ping6 function.

Configuration Description:

- 1. Configure two VLANs on Switch1, namely, VLAN1 and VLAN2.
- 2. Configure IPv6 address 2001::1/64 in VLAN1 of Switch1, and configure IPv6 address 2002::1/64 in VLAN2.
- 3. Configure 2 VLANs on Switch2, namely, VLAN2 and VLAN3.
- 4. Configure IPv6 address 2002::2/64 in VLAN2 of Switch2, and configure IPv6 address

2003::1/64 in VLAN3.

- 5. The IPv6 address of PC1 is 2001::11/64, and the IPv6 address of PC2 is 2003::33/64.
- 6. Configure static routing 2003:33/64 on Switch1, and configure static routing 2001::11/64 on Switch2.
- 7. ping6 each other among PCs.

Note: First make sure PC1 and Switch1 can access each other by ping, and PC2 and Switch2 can access each other by ping.

The configuration procedure is as follows:

```
Switch1 (Config) #interface vlan 1
Switch1 (Config-if-Vlan1) #ipv6 address 2001::1/64
Switch1 (Config) #interface vlan 2
Switch1 (Config-if-Vlan2) #ipv6 address 2002::1/64
Switch1 (Config-if-Vlan2) #exit
Switch1 (Config) #ipv6 route 2003::33/64 2002::2

Switch2 (Config) #interface vlan 2
Switch2 (Config-if-Vlan2) #ipv6 address 2002::2/64
Switch2 (Config) #interface vlan 3
Switch2 (Config-if-Vlan3) #ipv6 address 2003::1/64
Switch2 (Config-if-Vlan3) #exit
Switch2 (Config-if-Vlan3) #exit
Switch2 (Config) #ipv6 route 2001::33/64 2002::1

Switch1 #ping6 2003::33
```

Configuration result:

```
Switch1#show run
interface Vlan1
ipv6 address 2001::1/64
!
interface Vlan2
ipv6 address 2002::2/64
!
interface Loopback
mtu 3924
!
ipv6 route 2003::/64 2002::2
!
no login
!
```


www.qtech.ru

```
end

Switch2#show run
interface Vlan2
ipv6 address 2002::2/64
!
interface Vlan3
ipv6 address 2003::1/64
!
interface Loopback
mtu 3924
!
ipv6 route 2001::/64 2002::1
!
no login
!
End
```

***** Example 2:

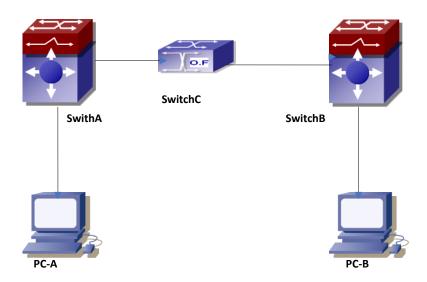


Fig 1-3 IPv6 tunnel

This case is IPv6 tunnel with the following user configuration requirements: SwitchA and SwitchB are tunnel nodes, dual-stack is supported. SwitchC only runs IPv4, PC-A and PC-B communicate.

Configuration Description:

- 1. Configure two vlans on SwitchA, namely, VLAN1 and VLAN2. VLAN1 is IPv6 domain, VLAN2 connects to IPv4 domain.
- 2. Configure IPv6 address 2002:caca:ca01:2::1/64 in VLAN1 of SwitchA and turn on RA function, configure IPv4 address 202.202.202.1 in VLAN2.
- 3. Configure two VLANs on SwitchB, namely, VLAN3 and VLAN4, VLAN4 is IPv6 domain, and VLAN3 connects to IPv4 domain.
- 4. Configure IPv6 address 2002:cbcb:cb01:2::1/64 in VLAN4 of SwitchB and turn on RA function, configure IPv4 address 203.203.203.1 on VLAN3.
- 5. Configure tunnel on SwitchA, the source IPv4 address of the tunnel is 202.202.202.1, the tunnel routing is ::/0
- 6. Configure tunnel on SwitchB, the source IPv4 address of the tunnel is 203.203.203.1, and the tunnel routing is ::/0
- 7. Configure two VLANs on SwitchC, namely, VLAN2 and VLAN3. Configure IPv4 address 202.202.202.202 on VLAN2 and configure IPv4 address 203.203.203.203 on VLAN3.
- 8. PC-A and PC-B get the prefix of 2002 via SwitchA and SwitchB to configure IPv6 address automatically.
- 9. On PC-A, ping IPv6 address of PC-B

The configuration procedure is as follows:

```
SwitchA(Config-if-Vlan1) #ipv6 address 2002:caca:ca01:2::1/64
SwitchA(Config-if-Vlan1) #no ipv6 nd suppress-ra
SwitchA(Config-if-Vlan1)#interface vlan 2
SwitchA(Config-if-Vlan2)#ipv4 address 202.202.202.1 255.255.255.0
SwitchA(Config-if-Vlan1)#exit
SwitchA(config) # interface tunnel 1
SwitchA(Config-if-Tunnel1) #tunnel source 202.202.202.1
SwitchA(Config-if-Tunnell) #tunnel destination 203.203.203.1
SwitchA(Config-if-Tunnell) #tunnel mode ipv6ip
SwitchA(config) #ipv6 route ::/0 tunnel1
SwitchB(Config-if-Vlan4) #ipv6 address 2002:cbcb:cb01::2/64
SwitchB(Config-if-Vlan4) #no ipv6 nd suppress-ra
SwitchB (Config-if-Vlan3) #interface vlan 3
SwitchB (Config-if-Vlan2) #ipv4 address 203.203.203.1 255.255.255.0
SwitchB (Config-if-Vlan1) #exit
SwitchB(config) #interface tunnel 1
SwitchB(Config-if-Tunnel1) #tunnel source 203.203.203.1
SwitchB(Config-if-Tunnell) #tunnel destination 202.202.202.1
SwitchB(Config-if-Tunnel1) #tunnel mode ipv6ip
```


SwitchB(config) #ipv6 route ::/0 tunnel1

1.2.4 IPv6 Troubleshooting

The router lifespan configured should not be smaller than the Send Router advertisement Interval. If the connected PC has not obtained IPv6 address, you should check RA announcement switch (the default is turned off).

1.3 ARP

1.3.1 Introduction to ARP

ARP (Address Resolution Protocol) is mainly used to resolve IP address to Ethernet MAC address. Switch supports both dynamic ARP and static ARP configuration. Furthermore, switch supports the configuration of proxy ARP for some applications. For instance, when an ARP request is received on the port, requesting an IP address in the same IP segment of the port but not the same physical network, if the port has enabled proxy ARP, the port would reply to the ARP with its own MAC address and forward the actual packets received. Enabling proxy ARP allows machines physically separated but of the same IP segment ignores the physical separation and communicate via proxy ARP interface as if in the same physical network.

1.3.2 ARP Configuration Task List

ARP Configuration Task List:

- 1. Configure static ARP
- 2. Configure proxy ARP
- 3. Clear dynamic ARP
- 4. Select hash arithmetic
- Clear the statistic information of ARP messages

1. Configure static ARP

Command	Explanation
VLAN Interface Mode	
<pre>arp <ip_address> <mac_address> {interface [ethernet] <portname>} no arp <ip_address></ip_address></portname></mac_address></ip_address></pre>	Configures a static ARP entry; the no command deletes a ARP entry of the specified IP address.

2. Configure proxy ARP

Command	Explanation
VLAN Interface Mode	
ip proxy-arp no ip proxy-arp	Enables the proxy ARP function for Ethernet ports: the no command disables the proxy ARP.

3. Clear dynamic ARP

Command	Explanation
Admin mode	
clear arp-cache	Clear the dynamic ARP learnt by the switch.

4. Select hash arithmetic

Command	Explanation
Global mode	
<pre>13 hashselect [<crc161 crc16u crc321 crc32u lsb>]</crc161 crc16u crc321 crc32u lsb></pre>	Set the hash arithmetic of the layer 3 table. This command refers to ARP table list storage in the hardware, the implement need to guide by the technique specialist. The detail information please refer to the interrelated Command Guide.

5. Clear the statistic information of ARP message

Command	Explanation
Admin mode	
clear arp traffic	Clear the statistic information of ARP messages of the switch.

1.3.3 ARP Troubleshooting

If ping from the switch to directly connected network devices fails, the following can be used to check the possible cause and create a solution.

- Check whether the corresponding ARP has been learned by the switch.
- ➤ If ARP has not been learned, then enabled ARP debugging information and view the sending/receiving condition of ARP packets.
- Defective cable is a common cause of ARP problems and may disable ARP learning.

2. ARP SCANNING PREVENTION FUNCTION CONFIGURATION

2.1 Introduction to ARP Scanning Prevention Function

ARP scanning is a common method of network attack. In order to detect all the active hosts in a network segment, the attack source will broadcast lots of ARP messages in the segment, which will take up a large part of the bandwidth of the network. It might even do large-traffic-attack in the network via fake ARP messages to collapse of the network by exhausting the bandwidth. Usually ARP scanning is just a preface of other more dangerous attack methods, such as automatic virus infection or the ensuing port scanning, vulnerability scanning aiming at stealing information, distorted message attack, and DOS attack, etc.

Since ARP scanning threatens the security and stability of the network with great danger, so it is very significant to prevent it. Switch provides a complete resolution to prevent ARP scanning: if there is any host or port with ARP scanning features is found in the segment, the switch will cut off the attack source to ensure the security of the network.

There are two methods to prevent ARP scanning: port-based and IP-based. The port-based ARP scanning will count the number to ARP messages received from a port in a certain time range, if the number is larger than a preset threshold, this port will be "down". The IP-based ARP scanning will count the number to ARP messages received from an IP in the segment in a certain time range, if the number is larger than a preset threshold, any traffic from this IP will be blocked, while the port related with this IP will not be "down". These two methods can be enabled simultaneously. After a port or an IP is disabled, users can recover its state via automatic recovery function.

To improve the effect of the switch, users can configure trusted ports and IP, the ARP messages from which will not be checked by the switch. Thus the load of the switch can be effectively decreased.

2.2 ARP Scanning Prevention Configuration Task Sequence

- 1. Enable the ARP Scanning Prevention function.
- 2. Configure the threshold of the port-based and IP-based ARP Scanning Prevention
- 3. Configure trusted ports
- 4. Configure trusted IP
- 5. Configure automatic recovery time
- 6. Display relative information of debug information and ARP scanning

1. Enable the ARP Scanning Prevention function.

Command	Explanation
Global configuration mode	
anti-arpscan enable no anti-arpscan enable	Enable or disable the ARP Scanning Prevention function globally.

2. Configure the threshold of the port-based and IP-based ARP Scanning Prevention

Command	Explanation
Global configuration mode	
anti-arpscan port-based threshold	
<threshold-value></threshold-value>	Set the threshold of the port-based
no anti-arpscan port-based	ARP Scanning Prevention.
threshold	
anti-arpscan ip-based threshold <threshold-value></threshold-value>	Set the threshold of the IP-based ARP
no anti-arpscan ip-based threshold	Scanning Prevention.

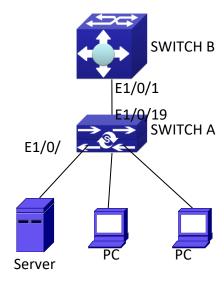
3. Configure trusted ports

Command	Explanation
Port configuration mode	
<pre>anti-arpscan trust <port supertrust-port="" =""> no anti-arpscan trust <port supertrust-port="" =""></port></port></pre>	Set the trust attributes of the ports.

4. Configure trusted IP

Command	Explanation	
Global configuration mode		
anti-arpscan trust ip <ip- address> [<netmask>]</netmask></ip- 	Set the trust attributes of IP.	
no anti-arpscan trust ip <ip-address> [<netmask>]</netmask></ip-address>		

5. Configure automatic recovery time


Command	Explanation
Global configuration mode	
anti-arpscan recovery enable no anti-arpscan recovery enable	Enable or disable the automatic recovery function.
<pre>anti-arpscan recovery time <seconds> no anti-arpscan recovery time</seconds></pre>	Set automatic recovery time.

6. Display relative information of debug information and ARP scanning

Command	Explanation	
Global configuration mode		
anti-arpscan log enable no anti-arpscan log enable	Enable or disable the log function of ARP scanning prevention.	
anti-arpscan trap enable no anti-arpscan trap enable	Enable or disable the SNMP Trap function of ARP scanning prevention.	
show anti-arpscan [trust <ip port="" supertrust-port="" =""> prohibited <ip port="" ="">]</ip></ip>	Display the state of operation and configuration of ARP scanning prevention.	
Admin Mode		
debug anti-arpscan <port ip="" =""> no debug anti-arpscan <port ip="" =""></port></port>	Enable or disable the debug switch of ARP scanning prevention.	

2.3 ARP Scanning Prevention Typical Examples

192.168.1.100/24

Fig 2-1 ARP scanning prevention typical configuration example

In the network topology above, port E1/0/1 of SWITCH B is connected to port E1/0/19 of SWITCH A, the port E1/0/2 of SWITCH A is connected to file server (IP address is 192.168.1.100/24), and all the other ports of SWITCH A are connected to common PC. The following configuration can prevent ARP scanning effectively without affecting the normal operation of the system.

SWITCH A configuration task sequence:

```
SwitchA(config) #anti-arpscan enable
SwitchA(config) #anti-arpscan recovery time 3600
SwitchA(config) #anti-arpscan trust ip 192.168.1.100 255.255.255.0
SwitchA(config) #interface ethernet1/0/2
SwitchA(config-If-Ethernet1/0/2) #anti-arpscan trust port
SwitchA(config-If-Ethernet1/0/2) #exit
SwitchA(config) #interface ethernet1/0/19
SwitchA(config-If-Ethernet1/0/19) #anti-arpscan trust supertrust-port
SwitchA(Config-If-Ethernet1/0/19) #exit
```

SWITCHB configuration task sequence:

```
Switch B(config) # anti-arpscan enable
SwitchB(config) #interface ethernet1/0/1
SwitchB(Config-If-Ethernet1/0/1) #anti-arpscan trust port
SwitchB(Config-If-Ethernet1/0/1) exit
```


2. ARP Scanning Prevention Function Configuration

2.4 ARP Scanning Prevention Troubleshooting Help

ARP scanning prevention is disabled by default. After enabling ARP scanning prevention, users can enable the debug switch, "debug anti-arpscan", to view debug information.

3. PREVENT ARP, ND SPOOFING CONFIGURATION

3.1 Overview

3.1.1 ARP (Address Resolution Protocol)

Generally speaking, ARP (RFC-826) protocol is mainly responsible of mapping IP address to relevant 48-bit physical address, that is MAC address, for instance, IP address is 192.168.0.1, network card Mac address is 00-03-0F-FD-1D-2B. What the whole mapping process is that a host computer send broadcast data packet involving IP address information of destination host computer, ARP request, and then the destination host computer send a data packet involving its IP address and Mac address to the host, so two host computers can exchange data by MAC address.

3.1.2 ARP Spoofing

In terms of ARP Protocol design, to reduce redundant ARP data communication on networks, even though a host computer receives an ARP reply which is not requested by itself, it will also insert an entry to its ARP cache table, so it creates a possibility of "ARP spoofing". If the hacker wants to snoop the communication between two host computers in the same network (even if are connected by the switches), it sends an ARP reply packet to two hosts separately, and make them misunderstand MAC address of the other side as the hacker host MAC address. In this way, the direct communication is actually communicated indirectly among the hacker host computer. The hackers not only obtain communication information they need, but also only need to modify some information in data packet and forward successfully. In this sniff way, the hacker host computer doesn't need to configure intermix mode of network card, that is because the data packet between two communication sides are sent to hacker host computer on physical layer, which works as a relay.

3.1.3 How to prevent void ARP/ND Spoofing

There are many sniff, monitor and attack behaviors based on ARP protocol in networks, and most of attack behaviors are based on ARP spoofing, so it is very important to prevent ARP spoofing. ARP spoofing accesses normal network environment by counterfeiting legal IP address firstly, and sends a great deal of counterfeited ARP application packets to switches, after switches learn these packets, they will cover previously corrected IP, mapping of MAC address, and then some corrected IP, MAC address mapping are modified to correspondence relationship configured by attack packets so that the switch makes mistake on transfer packets, and takes an effect on the whole network. Or the switches are made used of by vicious attackers, and they intercept and capture packets transferred by switches or attack other switches, host computers or network equipment.

What the essential method on preventing attack and spoofing switches based on ARP in networks is to disable switch automatic update function; the cheater can't modify corrected

3. Prevent ARP, ND Spoofing Configuration

MAC address in order to avoid wrong packets transfer and can't obtain other information. At one time, it doesn't interrupt the automatic learning function of ARP. Thus it prevents ARP spoofing and attack to a great extent.

ND is neighbor discovering protocol in IPv6 protocol, and it's similar to ARP on operation principle, therefore we do in the same way as preventing ARP spoofing to prevent ND spoofing and attack.

3.2 Prevent ARP, ND Spoofing configuration

The steps of preventing ARP, ND spoofing configuration as below:

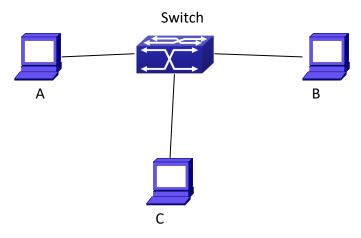
- 1. Disable ARP, ND automatic update function
- 2. Disable ARP, ND automatic learning function
- 3. Changing dynamic ARP, ND to static ARP, ND

1. Disable ARP, ND automatic update function

Command		Explanation
Global Mode and	Port Mode	
ip updateprotect	arp-security	
no ip updateprotect	arp-security	Disable and enable ARP, ND automatic
ipv6 updateprotect	nd-security	update function.
no ipv6 updateprotect	nd-security	

2. Disable ARP, ND automatic learning function

Command		Explanation
Global mode and	Interface Mode	
ip learnprotect	arp-security	
no ip learnprotect	arp-security	Disable and enable ARP, ND automatic
ipv6 learnprotect	nd-security	learning function.
no ipv6 learnprotect	nd-security	



3. Prevent ARP, ND Spoofing Configuration

3. Function on changing dynamic ARP, ND to static ARP, ND

Command	Explanation	
Global Mode and Port Mode		
ip arp-security convert	Characteristic ADD ND to static ADD ND	
ipv6 nd-security convert	Change dynamic ARP, ND to static ARP, ND	

3.3 Prevent ARP, ND Spoofing Example

Equipment Explanation

Equipment	Configuration	
switch	IP:192.168.2.4; IP:192.168.1.4; mac: 00-00-00-00-04	1
Α	IP:192.168.2.1; mac: 00-00-00-00-01	1
В	IP:192.168.1.2; mac: 00-00-00-00-02 1	
С	IP:192.168.2.3; mac: 00-00-00-00-03	some

There is a normal communication between B and C on above diagram. A wants switch to forward packets sent by B to itself, so need switch sends the packets transfer from B to A. firstly A sends ARP reply packet to switch, format is: 192.168.2.3, 00-00-00-00-00-01, mapping its MAC address to C's IP, so the switch changes IP address when it updates ARP list., then data packet of 192.168.2.3 is transferred to 00-00-00-00-01 address (A MAC address).

In further, a transfers its received packets to C by modifying source address and destination address, the mutual communicated data between B and C are received by A unconsciously. Because the ARP list is update timely, another task for A is to continuously send ARP reply packet, and refreshes switch ARP list.

3. Prevent ARP, ND Spoofing Configuration

So it is very important to protect ARP list, configure to forbid ARP learning command in stable environment, and then change all dynamic ARP to static ARP, the learned ARP will not be refreshed, and protect for users.

```
Switch#config
Switch(config) #interface vlan 1
Switch(Config-If-Vlan1) #arp 192.168.2.1 00-00-00-00-01 interface
                                                                         eth
1/0/2
Switch(Config-If-Vlan1)#interface vlan 2
Switch (Config-If-Vlan2) #arp
                            192.168.1.2
                                         00-00-00-00-02 interface
                                                                         eth
1/0/2
Switch(Config-If-Vlan2#interface vlan 3
Switch(Config-If-Vlan3) #arp 192.168.2.3 00-00-00-00-03 interface
                                                                         eth
1/0/2
Switch (Config-If-Vlan3) #exit
Switch(Config) #ip arp-security learnprotect
Switch (Config) #
Switch(config) #ip arp-security convert
```

If the environment changing, it enable to forbid ARP refresh, once it learns ARP property, it wont be refreshed by new ARP reply packet, and protect use data from sniffing.

```
Switch#config
Switch(config)#ip arp-security updateprotect
```


4. ARP GUARD CONFIGURATION

4.1 Introduction to ARP GUARD

There is serious security vulnerability in the design of ARP protocol, which is any network device, can send ARP messages to advertise the mapping relationship between IP address and MAC address. This provides a chance for ARP cheating. Attackers can send ARP REQUEST messages or ARP REPLY messages to advertise a wrong mapping relationship between IP address and MAC address, causing problems in network communication. The danger of ARP cheating has two forms: 1. PC4 sends an ARP message to advertise that the IP address of PC2 is mapped to the MAC address of PC4, which will cause all the IP messages to PC2 will be sent to PC4, thus PC4 will be able to monitor and capture the messages to PC2; 2. PC4 sends ARP messages to advertise that the IP address of PC2 is mapped to an illegal MAC address, which will prevent PC2 from receiving the messages to it. Particularly, if the attacker pretends to be the gateway and do ARP cheating, the whole network will be collapsed.

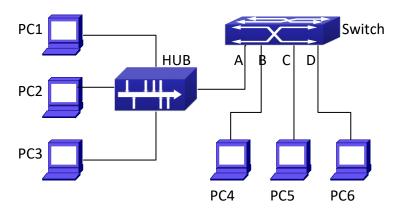


Fig 4-1 ARP GUARD schematic diagram

We utilize the filtering entries of the switch to protect the ARP entries of important network devices from being imitated by other devices. The basic theory of doing this is that utilizing the filtering entries of the switch to check all the ARP messages entering through the port, if the source address of the ARP message is protected, the messages will be directly dropped and will not be forwarded.

ARP GUARD function is usually used to protect the gateway from being attacked. If all the accessed PCs in the network should be protected from ARP cheating, then a large number of ARP GUARD address should be configured on the port, which will take up a big part of FFP entries in the chip, and as a result, might affect other applications. So this will be improper. It is recommended that adopting FREE RESOURCE related accessing scheme. Please refer to relative documents for details.

4. ARP GUARD Configuration

4.2 ARP GUARD Configuration Task List

1. Configure the protected IP address

Command	Explanation	
Port configuration mode		
arp-guard ip <addr></addr>	Configure /doloto ADD CHADD address	
no arp-guard ip <addr></addr>	Configure/delete ARP GUARD address	

5. GRATUITOUS ARP CONFIGURATION

5.1 Introduction to Gratuitous ARP

Gratuitous ARP is a kind of ARP request that is sent by the host with its IP address as the destination of the ARP request.

The basic working mode for the switch is as below: The Layer 3 interfaces of the switch can be configured to advertise gratuitous ARP packets period or the switch can be configured to enable to send gratuitous ARP packets in all the interfaces globally.

The purpose of gratuitous ARP is as below:

- To reduce the frequency that the host sends ARP request to the switch. The hosts in the
 network will periodically send ARP requests to the gateway to update the MAC address of
 the gateway. If the switch advertises gratuitous ARP requests, the host will not have to
 send these requests. This will reduce the frequency the hosts' sending ARP requests for
 the gateway's MAC address.
- Gratuitous ARP is a method to prevent ARP cheating. The switch's advertising gratuitous
 ARP request will force the hosts to update its ARP table cache. Thus, forged ARP of
 gateway cannot function.

5.2 Gratuitous ARP Configuration Task List

- 1. Enable gratuitous ARP and configure the interval to send gratuitous ARP request
- 2. Display configurations about gratuitous ARP

1. Enable gratuitous ARP and configure the interval to send gratuitous ARP request.

Command	Explanation
Global Configuration Mode and Interface Configuration Mode.	
ip gratuitous-arp <5-1200> no ip gratuitous-arp	To enable gratuitous ARP and configure the interval to send gratuitous ARP request. The no command cancels the gratuitous ARP.

5. Gratuitous ARP Configuration

2. Display configurations about gratuitous ARP

Command	Explanation
Admin Mode and Configuration Mode	
show ip gratuitous-arp [interface vlan <1-4094>]	To display configurations about gratuitous ARP.

5.3 Gratuitous ARP Configuration Example

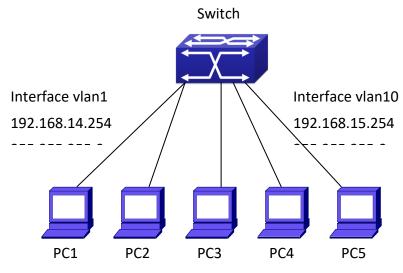


Fig 6-1 Gratuitous ARP Configuration Example

For the network topology shown in the figure above, interface VLAN10 whose IP address is 192.168.15.254 and network address mask is 255.255.255.0 in the switch system. Three PCs – PC3, PC4, PC5 are connected to the interface. The IP address of interface VLAN 1 is 192.168.14.254, its network address mask is 255.255.255.0. Two PCs – PC1 and PC2 are connected to this interface. Gratuitous ARP can be enabled through the following configuration:

1. Configure two interfaces to use gratuitous ARP at one time.

Switch(config)#ip gratuitous-arp 300
Switch(config)#exit

2. Configure gratuitous ARP specifically for only one interface at one time.

Switch(config)#interface vlan 10
Switch(Config-if-Vlan10)#ip gratuitous-arp 300
Switch(Config-if-Vlan10)#exit

5. Gratuitous ARP Configuration

5.4 Gratuitous ARP Troubleshooting

Gratuitous ARP is disabled by default. And when gratuitous ARP is enabled, the debugging information about ARP packets can be retrieved through the command debug ARP send.

If gratuitous ARP is enabled in global configuration mode, it can be disabled only in global configuration mode. If gratuitous ARP is configured in interface configuration mode, the configuration can only be disabled in interface configuration mode.

