Content | CONTENT | 1 | |--|----| | CHAPTER 1 ACCESSING SWITCH | 14 | | 1.1 COMMAND LINE INTERFACE | 14 | | 1.1.1 Command Line Configuration Mode | 14 | | 1.1.2 Command Syntax Comprehension | 16 | | 1.1.3 Syntax Help | 18 | | 1.1.4 History command | 18 | | 1.1.5 Symbols in command | 19 | | 1.1.6 Command Parameter Categories | 19 | | 1.2 USER MANAGEMENT | 20 | | 1.2.1 System default user name | 20 | | 1.2.2 Add user | 20 | | 1.2.3 Modify password | 21 | | 1.2.4 Modify privilege | 21 | | 1.2.5 Remove user name | 22 | | 1.2.6 View system user information | 22 | | 1.3 REMOTE AUTHENTICATION OF ADMINISTRATOR | 22 | | 1.3.1 Start RADIUS/TACACS+ remote authentication | 23 | | 1.3.2 Display authentication configuration | 23 | | 1.3.3 TACACS+ remote server configuration | 23 | | 1.3.4 Show TACACS+ | 23 | | 1.4 Ways of managing switch | 23 | | 1.4.1 Manage switch by hyper terminal | 24 | | 1.4.2 Manage switch by telnet | 25 | | CHAPTER 2 PORT CONFIGURATION | 26 | | 2.1 Port configuration introduction | 26 | | 2.2 Port Configuration | 26 | | 2.2.1 Port related configuration | 26 | | 2.2.2 Enter interface configuration mode | 26 | | 2.2.3 Enable/disable specified interface | 27 | | 2.2.4 Configure port-control mode | | | 2.2.5 Configure interface duplex mode and speed rate | 27 | | 2.2.6 Interface Prioruty Configuration | 28 | | 2.2.7 Interface description configuration | 28 | | 2.2.8 Ingress/egress bandwidth-control configuration | 28 | | | 2.2.9 Enable/disable VLAN filtration of receiving packet of interface | 29 | |----|---|----| | | 2.2.10 Interface ingress acceptable-frame configuration | 29 | | | 2.2.11 Enable/disable interface flow-control | 29 | | | 2.2.12 Port mode configuration | 30 | | | 2.2.13 The default vlan-id of port configuration | 30 | | | 2.2.14 Add port to specified VLAN | 31 | | | 2.2.15 Display interface information | 31 | | | 2.2.16 Display/ clear interface statistics information | 32 | | | 2.3 INTERFACE MIRROR | 32 | | | 2.3.1 Brief introduction of interface mirror | 32 | | | 2.3.2 Interface mirror configuration | 32 | | | 2.4 PORT LACP CONVERGENT CONFIGURATION | 34 | | | 2.4.1 Brief introduction of port convergence | 34 | | | 2.4.2 Interface convergent configuration | 36 | | | 2.5 INTERFACE CAR CONFIGURATION | 38 | | | 2.5.1 Brief introduction of interface CAR | 38 | | | 2.5.2 Port CAR configuration command list | 39 | | | 2.5.3 Enable/disable interface globally | 39 | | | 2.5.4 Enable/disable interface CAR on a port | 39 | | | 2.5.5 Configure the reopen time of the port shutdown by port-car | 40 | | | 2.5.6 Configure the port-car-rate | 40 | | | 2.5.7 Display port-car information | | | | 2.6 Port Alarm Configuration | 40 | | | 2.6.1 Brief introduction of port alarm configuration | 40 | | | 2.6.2 Port alarm configuration list | | | | 2.6.3 Enable/disable port alarm globally | 41 | | | 2.6.4 Enable/disable port alarm on the port | 41 | | | 2.6.5 Configure the exceed threshold and normal threshold of port alarm | 41 | | | 2.6.6 Display port alarm | 42 | | | 2.7 INTERFACE SHUTDOWN-CONTROL CONFIGURATION | 42 | | | 2.7.1 Brief introduction of shutdown-control | 42 | | | 2.7.2 Interface shutdown-control Configuration list | 43 | | | 2.7.3 shutdown-control Configuration | 43 | | | 2.7.4 Configure shutdown-control open-time | 43 | | | 2.7.5 Display shutdown-control | 44 | | | 2.7.6 Recover shutdown-control | 44 | | CH | IAPTER 3 VLAN CONFIGURATION | 45 | | | 3.1 Brief Introduction of VLAN | 45 | | | 3.2 VLAN INTERFACE TYPE | 45 | | 3.3 DEFAULT VLAN | 45 | |---------------------------------------|------------------------| | 3.4 VLAN CONFIGURATION | 45 | | 3.4.1 VLAN configuration list | 45 | | 3.4.2 Create/delete VLAN | 46 | | 3.4.3 Add/delete VLAN interface | 46 | | 3.4.4 Specify/restore VLAN descript | ion47 | | 3.4.5 Configure interface type | 48 | | 3.4.6 Configure interface default vla | n ID48 | | 3.4.7 Configure tag vlan | 48 | | 3.4.8 Display VLAN information | 48 | | 3.5 PVLAN | 49 | | 3.6 GVRP CONFIGURATION | 49 | | 3.6.1 Brief introduction of GVRP | 49 | | 3.6.2 GVRP Configuration list | 49 | | 3.6.3 Enable/disable global GVRP | 50 | | 3.6.4 Enable/disable GVRP on a por | t50 | | 3.6.5 Display GVRP | 50 | | 3.6.6 Add/delete vlan that can be dy | namic learnt by GVRP51 | | 3.6.7 Display vlan that can be learnt | by GVRP51 | | 3.7 QINQ CONFIGURATION | 51 | | 3.7.1 Brief introduction of QinQ | 51 | | 3.7.2 QinQ configuration list | 51 | | 3.7.3 Configure global QinQ | 52 | | 3.7.4 Configure global inner/outer T | PID52 | | 3.7.5 Configure QinQ mode of interf | ace52 | | 3.7.6 Configure interface dynamic C | tinQ53 | | 3.7.7 Enable/disable vlan-swap | 53 | | 3.7.8 Configure rewrite-outer-vlan | 53 | | 3.7.9 Display dynamic QinQ | 54 | | 3.7.10 Display vlan-swap | 54 | | 3.7.11 Display rewrite-outer-vlan | 54 | | 3.8 VLAN EXTENDED PROPERTIES | 55 | | 3.8.1 Configure MAC-based VLAN ta | able55 | | 3.8.2 Configure protocol-based VLA | N table55 | | 3.8.3 VLAN translate | 56 | | 3.8.4 N:1 VLAN | 56 | | 3.8.5 Configure QinQ mode of interf | ace57 | | 3.9 L2-TUNNEL | 57 | | 3.9.1 Brief introduction of I2-tunnel | 57 | | 3.9.2 L2-tunnel configuration list | 57 | |---|----| | 3.9.3 Enable/disable l2-tunnel | 57 | | 3.9.4 Show port I2-tunnel status | 58 | | 3.9.5 Configure /cancel l2-tunnel drop threshold | 58 | | 3.9.6 Show I2-tunnel drop threshold | 58 | | 3.10 VPRB | 59 | | 3.10.1 Brief introduction of VPRB | 59 | | 3.10.2 VPRB configuration list | 59 | | 3.10.3 Configure/delete VPRB port backup | 59 | | 3.10.4 Show VPRB | 59 | | CHAPTER 4 DHCP CONFIGURATION | 61 | | 4.1 Brief Introduction of DHCP | 61 | | 4.2 DHCP Configuration | _ | | 4.2.1 DHCP Configuration list | | | 4.2.2 Enable DHCP relay | 61 | | 4.2.3 Support relay option82 | 62 | | 4.3 DHCP SNOOPING | 64 | | 4.3.1 Enable DHCP SNOOPING | | | 4.3.2 Configure trust ports | | | 4.3.3 Configure max host number | | | 4.3.4 Configure IP source guard | | | 4.3.5 IP source guard bind | 64 | | 4.3.6 Show DHCP SNOOPING configuration of ports | | | 4.3.7 Show DHCP SNOOPING configuration of VLANs | 65 | | 4.3.8 Show information of clients | 65 | | 4.3.9 N:1 VLAN | 65 | | CHAPTER 5 MULTICAST PROTOCOL CONFIGURATION | 66 | | 5.1 Brief Introduction of GMRP | 66 | | 5.2 GMRP Configuration | 66 | | 5.2.1 GMRP Configuration list | 66 | | 5.2.2 Enable/disable global GMRP | 66 | | 5.2.3 Enable/disable GMRP on a port | 67 | | 5.2.4 Display GMRP | 67 | | 5.2.5 Add/delete multicast that can be dynamic learnt by GMRP | 67 | | 5.2.6 Display multicast that can be learnt by GMRP | 68 | | 5.3 IGMP SNOOPING CONFIGURATION | 68 | | 5.3.1 Brief introduction of IGMP Snooping | 68 | | 5.3.2 IGMP Snooping configuration | 68 | | | 5.3.3 IGMP Snooping multicast interface aging time configuration | 69 | |-----|--|------| | | 5.3.4 IGMP Snooping max-response-time configuration | . 69 | | | 5.3.5 IGMP Snooping interface fast-leave configuration | . 69 | | | 5.3.6 Configure the number of the multicast group allowed learning | . 70 | | | 5.3.7 IGMP Snooping permit/deny group configuration | . 70 | | | 5.3.8 IGMP Snooping route-port forward configuration | . 70 | | | 5.3.9 Enable/disable IGMP Snooping querier | . 71 | | | 5.3.10 Configure IGMP Snooping query-interval | .71 | | | 5.3.11 Configure IGMP Snooping querier vlan | . 71 | | | 5.3.12 Configure IGMP Snooping query max response | .72 | | | 5.3.13 Configure IGMP Snooping query source IP | .72 | | | 5.3.14 Configure IGMP Snooping route port aging | .72 | | | 5.3.15 Add IGMP Snooping route port | | | | 5.3.16 Configure IGMP Snooping multicast VLAN | . 73 | | | 5.3.17 Enable/disable IGMP Snooping preview | . 73 | | | 5.3.18 IGMP Snooping preview parameter | .74 | | | 5.3.19 IGMP Snooping Multicast preview group configuration | .74 | | | 5.3.20 Display IGMP Snooping multicast preview | . 75 | | | 5.3.21 IGMP Snooping profile | . 75 | | | 5.3.22 IGMP Snooping profile configuration | . 75 | | | 5.3.23 IGMP Snooping profile refer configuration | . 76 | | | 5.3.24 Show IGMP Snooping profile | . 77 | | | 5.3.25 igmp-snooping record-host | . 77 | | | 5.3.26 igmp-snooping drop query | . 77 | | | 5.3.27 igmp-snooping drop report | . 78 | | | 5.3.28 show igmp-snooping record-host | .78 | | | 5.3.29 show multicast interface | . 78 | | 5.4 | MLD SNOOPING CONFIGURATION | . 79 | | | 5.4.1 MLD Snooping protocol overview | .79 | | | 5.4.2 MLD Snooping Configuration | . 79 | | | 5.4.3 MLD Snooping host aging time | . 80 | | | 5.4.4 MLD Snooping Max response time | . 80 | | | 5.4.5 MLD Snooping fast leave | .80 | | | 5.4.6 MLD Snooping max learnt multicast number | | | | 5.4.7 MLD Snooping permit/deny group | . 81 | | | 5.4.8 Configure MLD Snooping route-port forward | . 81 | | | 5.4.9 Enable/disable MLD Snooping querier | . 81 | | | 5.4.10 Configure MLD Snooping querier sending interval | | | | 5.4.11 Configure MLD Snooping max-response time | | | | 5.4.12 Configure MLD Snooping router-port aging | 82 | |----|---|-------------| | | 5.4.13 Add MLD Snooping router-port | 83 | | | 5.4.14 MLD Snooping multicast VLAN | 83 | | | 5.4.15 Display MLD Snooping group | 83 | | | 5.5 STATIC MULTICAST CONFIGURATION | 84 | | | 5.5.1 Brief introduction of Static Multicast | 84 | | | 5.5.2 Static Multicast Configuration | 84 | | Cŀ | HAPTER 6 ACL CONFIGURATION | 87 | | | 6.1 Brief Introduction of ACL | 87 | | | 6.1.1 Introduction of ACL | 87 | | | 6.1.2 Matching order configuration | 87 | | | 6.1.3 ACL support | 88 | | | 6.2 ACL CONFIGURATION | 88 | | | 6.2.1 Configuration list | 88 | | | 6.2.2 Configure time range | 89 | | | 6.2.3 Define ACL | 90 | | | 6.2.4 IPV6 ACL key mode | 94 | | | 6.2.5 Activate ACL | 94 | | | 6.3 MONITOR AND MAINTANENCE OF ACL | 95 | |
Cŀ | HAPTER 7 QOS CONFIGURATION | 96 | | | 7.1 Brief introduction of QOS | 96 | | | 7.2 QOS CONFIGURATION | 99 | | | 7.2.1 QoS Configuration list | 99 | | | 7.2.2 Flow monitor | 99 | | | 7.2.3 Interface line rate | 100 | | | 7.2.4 Packet redirection configuration | 100 | | | 7.2.5 Priority configuration | 101 | | | 7.2.6 Queue-scheduler configuration | 101 | | | 7.2.7 The cos-map relationship of hardware priority queue and | priority of | | | IEEE802.1p protocol | 102 | | | 7.2.8 Configure the mapping relationship between DSCP and 8 prior | ity in IEEE | | | 802.1p | 102 | | | 7.2.9 Flow mirror configuration | 102 | | | 7.2.10 Flow statistic configuration | 103 | | | 7.2.11 Copy packet to CPU | 103 | | | 7.2.12 Traffic rewrite vlan configuration | 104 | | | 7.2.13 Traffic-insert-vlan configuration | 104 | | | 7.2.14 Bandwidth ingress | 105 | | | 7.3 MONITOR AND MAINTENANCE OF QOS | 105 | |----|---|-----| | | 7.4 CONFIGURATION EXAMPLE OF QACL | 106 | | | 7.4.1 Use QACL to realize user isolation | 106 | | | 7.4.2 Use QACL to realize bandwidth control | 109 | | | 7.4.3 Use QACL to realize deny all packet expect | 110 | | | 7.4.4 Use QACL to prevent virus | 111 | | | 7.5 PORT ISOLATION | 111 | | | 7.5.1 Brief introduction of port isolation | 111 | | | 7.5.2 Port isolation configuration | 112 | | | 7.6 STROM CONTROL | 113 | | | 7.6.1 Brief introduction of strom control | 113 | | СН | IAPTER 8 STP CONFIGURATION COMMAND | 114 | | | 8.1 BRIEF INTRODUCTION OF STP CONFIGURATION | 114 | | | 8.2 STP Configuration Command | 114 | | | 8.2.1 STP Configuration list | 114 | | | 8.2.2 Enable/disable STP | 115 | | | 8.2.3 Enable/disable interface STP | 115 | | | 8.2.4 Configure STP mode | 115 | | | 8.2.5 Configure STP priority | | | | 8.2.6 Configure switch Forward Delay | 116 | | | 8.2.7 Configure Hello Time features | 117 | | | 8.2.8 Configure Max Age | 117 | | | 8.2.9 Configure path cost of specified interfaces | 118 | | | 8.2.10 Configure STP priority od specified port | 118 | | | 8.2.11 Configure interface to force to send rstp packet | 118 | | | 8.2.12 Configure link type of specified interface | 119 | | | 8.2.13 Configure the current port as an edge port | 119 | | | 8.2.14 Configure the speed limit of sending BPDU of specified interface | 120 | | | 8.2.15 STP monitor and maintainenance | 120 | | | 8.2.16 Enable/disable STP remote-loop-detect | 120 | | | 8.3 Brief Introduction of MSTP | 121 | | | 8.4 MSTP CONFIGURATION | 121 | | | 8.4.1 MSTP configuration list | 121 | | | 8.4.2 Configure timer value of MSTP | 122 | | | 8.4.3 Configure MSTP configuration mark | 122 | | | 8.4.4 Configure MSTP net bridge privilege | 123 | | | 8.4.5 Configure edge interface status of MSTP interface | 123 | | | 8.4.6 Configure MSTP interface link type | 123 | | | 8.4.7 Configure MSTP interface path cost | 123 | | 8.4.8 Configure MSTP interface privilege | 124 | |---|-----| | 8.4.9 Display MSTP configuration information | 124 | | CHAPTER 9 802.1X CONFIGURATION COMMAND | 125 | | 9.1 Brief introduction of 802.1X configuration | 125 | | 9.2 802.1X CONFIGURATION | 125 | | 9.2.1 AAA configuration mode | 125 | | 9.2.2 RADIUS Server Configuration | 126 | | 9.2.3 Domain Configuration | 128 | | 9.2.4 Configure local-user | 129 | | 9.2.5 802.1X Configuration | 130 | | CHAPTER 10 SNTP CLIENT CONFIGURATION | 133 | | 10.1 Brief introduction of SNTP protocol | 133 | | 10.2 SNTP CLIENT CONFIGURATION | 133 | | 10.2.1 Enable/disable SNTP client | 133 | | 10.2.2 SNTP client working mode configuration | 134 | | 10.2.3 SNTP client unicast server configuration | 134 | | 10.2.4 SNTP client broadcast delay configuration | 134 | | 10.2.5 SNTP client multicast TTL configuration | 135 | | 10.2.6 SNTP client poll interval configuration | 135 | | 10.2.7 SNTP client retransmit configuration | 135 | | 10.2.8 SNTP client valid server configuration | | | 10.2.9 SNTP client MD5 authentication configuration | 136 | | 10.2.10 Summer time configuration for SNTP client | 137 | | CHAPTER 11 SYSLOG CONFIGIRATION | 138 | | 11.1 Brief introduction of Syslog | 138 | | 11.2 Syslog Configiration | | | 11.2.1 Enable/disable Syslog | 139 | | 11.2.2 Syslog sequence number configuration | | | 11.2.3 Syslog time stamps configuration | 139 | | 11.2.4 Syslog terminal outputting configuration | | | 11.2.5 Syslog logging buffered outputting configuration | | | 11.2.6 Syslog Flash storage outputting configuration | | | 11.2.7 Syslog logging host outputting configuration | | | 11.2.8 Syslog SNMP Agent outputting configuration | | | 11.2.9 Module debug configuration | 143 | | CHAPTER 12 .SSH CONFIGURATION | 145 | | 12.1 Brief Introduction of SSH | 145 | | 12.2 SSH Configuration | 145 | |---|-----| | 12.2.1 Enable/disable SSH function of the device | 145 | | 12.2.2 SSH key configuration | 145 | | 12.2.3 Others | 147 | | CHAPTER 13 SWITCH MANAGE AND MAINTENANCE | 148 | | 13.1 CONFIGURATION FILES MANAGEMENT | 148 | | 13.1.1 Edit configuration files | | | 13.1.2 Modify and save current configuration | 148 | | 13.1.3 Erase configuration | 148 | | 13.1.4 Save minmum manageable configuration of network administration | 148 | | 13.1.5 Execute saved configuration | 149 | | 13.1.6 Display saved configuration | 149 | | 13.1.7 Configure file executing mode shift | 150 | | 13.2 Online Loading Upgrade Program | 150 | | 13.2.1 Upload and download files by TFTP | 150 | | 13.2.2 Upload and download files by FTP | 151 | | 13.2.3 Download files by Xmodem | 152 | | 13.3 FACILITY MANAGEMENT | 152 | | 13.3.1 MAC address table management | 152 | | 13.3.2 Reboot | 156 | | 13.4 System Maintenance | 157 | | 13.4.1 Use show command to check system information | 157 | | 13.4.2 Basic Configuration and Management | 157 | | 13.4.3 Network connecting test command | 158 | | 13.4.4 Loopback test command | 159 | | 13.4.5 VCT test command | 159 | | 13.4.6 Administration IP address restriction | 160 | | 13.4.7 The number of Telnet user restriction | 160 | | 13.4.8 Routing tracert command | 161 | | 13.4.9 cpu-car command | 161 | | 13.5 MONITOR SYSTEM BY SNMP | 162 | | 13.5.1 Brief introduction of SNMP | 162 | | 13.5.2 Configuration | 162 | | 13.6 ENABLE/DISABLE DLF FORWORD PACKET | 170 | | 13.7 ENABLE/DISABLE SOURCE DLF FORWARD | 171 | | 13.8 ENABLE/DISABLE DROPPING BPDU PACKET | 171 | | 13.9 TELNET CLIENT | 171 | | 13.10 CPU ALARM CONFIGURATION | 172 | | 13.10.1 Brief introduction of CPU alarm configuration | 172 | | | | | 13.10.2 CPU alarm configuration list | 172 | |--|-----| | 13.10.3 Enable/disable CPU alarm | 172 | | 13.10.4 Configure CPU busy or unbusy threshold | 172 | | 13.10.5 Display CPU alarm information | 173 | | 13.11 MAIL ALARM CONFIGURATION | 173 | | 13.11.1 Configure enable/disable mailalarm | 173 | | 13.11.2 Configure mailalarm server | 173 | | 13.11.3 Configure mailalarm receiver | 174 | | 13.11.4 Configure mailalarm ccaddr | 174 | | 13.11.5 Configure enable/disable mailalarm smtp authentication | 174 | | 13.11.6 Configure mailalarm logging level | 174 | | 13.12 Anti-DOS Attack | 175 | | 13.12.1 IP segment anti-attack | 175 | | 13.12.2 Enable/disable global TTL | 175 | | CHAPTER 14 LLDP CONFIGURATION | 176 | | 14.1 Brief introduction of LLDP protocol | 176 | | 14.2 LLDP CONFIGURATION | 176 | | 14.2.1 LLDP configuration list | 176 | | CHAPTER 15 ERRP COMMAND CONFIGURATION | 179 | | 15.1 BRIEF INTRODUCTION OF ERRP | 179 | | 15.2 ERRP Configuration | 179 | | 15.2.1 ERRP Configuration list | 179 | | 15.2.2 ERRP configuration | 179 | | 15.2.3 Configure ERRP timer | 180 | | 15.2.4 Enter ERRP configuration mode | | | 15.2.5 Configure ERRP domain working mode | | | 15.2.6 Configure control-vlan of ERRP domain | | | 15.2.7 Create ERRP ring | | | 15.2.8 Enable/disable ERRP ring | | | 15.2.9 Display ERRP domain and ring information | | | 15.2.10 ERRP Query Solicitation | 183 | | CHAPTER 16 CFM CONFIGURATION | 184 | | 16.1 Brief Introduction of CFM | | | 16.2 CFM Configuration | | | 16.2.1 CFM Configuration list | | | 16.2.2 Create/delete MD | | | 16.2.3 Configure MD parameter | 185 | | 16.2.4 Create/delete MA | 185 | |---|-----| | 16.2.5 Configure MA parameter | 186 | | 16.2.6 Create/delete MEP | 186 | | 16.2.7 Create/delete RMEP | 187 | | 16.2.8 Create/delete MIP | 188 | | 16.2.9 Loopback | 188 | | 16.2.10 Linktrace | 189 | | 16.2.11 Show MD | 189 | | 16.2.12 Show MA | 189 | | 16.2.13 Show MP(MEP/MIP/RMEP) | 190 | | 16.2.14 Show/clear CCM statistics | 190 | | 16.2.15 Show/clear CCM database | 190 | | 16.2.16 Show cfm error | 191 | | CHAPTER 17 PPPOE PLUS CONFIGURATION | 192 | | 17.1 BRIEF INTRODUCTION OF PPPOE PLUS | 192 | | 17.2 PPPoE Plus Configuration | 192 | | 17.2.1 PPPoE Plus Configuration list | 192 | | 17.2.2 Enable/disable PPPoE Plus | 192 | | 17.2.3 Configure PPPoE Plus type | 193 | | 17.2.4 Configure PPPoE port type | 193 | | 17.2.5 Self-defined Circuit ID | 193 | | 17.2.6 Configure Remote ID | | | 17.2.7 Configure Remote ID format | 193 | | 17.2.8 Configure PPPoE Plus vendor -specific-tag overwrite | 194 | | CHAPTER 18 FLEX LINKS CONFIGURATION | 195 | | 18.1 Brief introduction of Flex Links | 195 | | 18.2 FLEX LINKS CONFIGURATION | 195 | | 18.2.1 Flex links Configuration list | 195 | | 18.2.2 Enable or disable Flex links of interface(or convergent interface) | 195 | | 18.2.3 Configure Flex links preemption mode | 196 | | 18.2.4 Configure Flex links preemption mode delay | 196 | | 18.2.5 Disaply Flex links information | 196 | | 18.2.6 Configure MacMoveUpdate of Flex links | 197 | | CHAPTER 19 EFM CONFIGURATION | 198 | | 19.1 EFM OVERVIEW | 198 | | 19.2 EFM Configuration | 198 | | 19.2.1 EFM configuration list | 198 | | | 19.2.2 Enable/disable EFM | 198 | |------
--|-----| | | 19.2.3 Configure EFM working mode | 199 | | | 19.2.4 Configure EFM pdu-timeout | 199 | | | 19.2.5 Configure link timeout | 200 | | | 19.2.6 Configure response timeout | 200 | | | 19.2.7 Configure link monitoring | 200 | | | 19.2.8 Enable/disable remote failure indication | 202 | | | 19.2.9 Enable/disable link monitoring | 202 | | | 19.2.10 Enable/disable remote MIB variable obtaining | 203 | | | 19.2.11 Enable/disable remote loopback | 203 | | | 19.2.12 Enable/stop remote loopback | 203 | | | 19.2.13 Configure handling remote loopback querying packet | 204 | | | 19.2.14 Show EFM status | 204 | | | 19.2.15 Show EFM info | 204 | | | 19.2.16 Show EFM discovery | 205 | | | 19.2.17 Show/clear EFM statistics | 205 | | | 19.2.18 Show remote MIB | 206 | | CHAP | TER 20 POE FUNCTION | 207 | | 20. | 1 PoE Overview | 207 | | 20. | 2 PoE Configuration | 207 | | | 20.2.1 PoE configuration list | 207 | | | 20.2.2 Configure global max-power | 207 | | | 20.2.3 Enable/disable port PoE | 207 | | | 20.2.4 Configure interface max-power | 208 | | | 20.2.5 Configure port PoE priority | 208 | | | 20.2.6 Show PoE configuration | 208 | | CHAP | TER 21 MAC AUTHENTICATION CONFIGURATION | 209 | | 21. | 1 MAC-AUTHENTICATION OVERVIEW | 209 | | 21. | 2 MAC-AUTHENTICATION CONFIGURATION | 209 | | | 21.2.1 mac-authentication configuration list | 209 | | | 21.2.2 AAA authentication domain configuration | 209 | | | 21.2.3 mac-authentication user-name-format | 209 | | | 21.2.4 Radius authentication configuration | 210 | | | 21.2.5 Enable/disable mac-authentication | 210 | | | 21.2.6 mac-authentication timer offline-detect | 210 | | | 21.2.7 mac-authentication timer quiet | 211 | | | 21.2.8 mac vlan | 211 | | | 21.2.9 guest vlan | 211 | | 24 2 4 | 0 mac-authentication max-users | 24 | 2 | |-----------|--------------------------------|------------|---| | Z . Z . | V Mac-aumenucauon max-users | Z I | Z | # **Chapter 1 Accessing Switch** This chapter is the basic knowledge for system management, including: - Command line interface - Command syntax comprehension - Syntax help - History command - Symbols in command - Parameter in command - User management - Ways for switch management ## 1.1 Command Line Interface System provides a series of configuration command and command line interface. User can configure and manage switch by command line. Command line interface has the features as following: - Local configuration by Console interface - Local or remote configuration by Telnet - Configure command classification protection to guarantee unauthorized user illegal accessing. - Input "?" at any moment to obtain help information - Provide such network test command as ping to diagnose network fault - Provide FTP, TFTP, Xmodem to download and upload files - Keywords partial matching searching is adopted by command line convertor for user to input non-conflicting key words, such as: interface command can only input "interf" # 1.1.1 Command Line Configuration Mode System command line adopts classification protection to prevent illegal accessing of unauthorized user. Each command mode is for different configuration with the connection and distinction. For example, after successful accessing, user of all level can enter common user mode which can only see the system operation information; administrator can input "enable" to enter privileged mode; input "configure terminal" to enter global configuration mode from privileged mode which can enter related configuration mode according to inputting different configuration command. For example: Command line provides command mode as following: - User mode - Privileged mode - Global configuration mode - Interface configuration mode - VLAN configuration mode - AAA configuration mode - RADIUS configuration mode - Domain configuration mode The function and details of each command mode are as following: Command Line Configuration Mode | Command line mode | Function | Prompt character | Command for entering | Command for exiting | |------------------------------------|--|------------------------------------|--|--| | User mode | See switch operation information | QTECH> | Connect with switch after inputting user name and password | exit
disconnect
with switch | | Privileged
mode | See switch operation information and manage system | QTECH# | Input enable in user mode | exit return to user mode quit disconnect with switch | | Global
configuration
mode | Configure
global
parameter | QTECH(config)# | Input configure terminal in privileged mode | exit end return to privileged mode quit disconnect with switch | | Interface
configuration
mode | Configure interface parameter | QTECH(config-if-
ethernet-0/1)# | Input "interface Ethernet 0/1" in global configuration | end return to privileged mode exit return to | | VLAN
configuration
mode | Configure
VLAN
parameter | QTECH(config-if-
vlan)# | mode, interface configuration can enter other interface mode and VLAN configuration mode without inputting "exit". Input "vlan 2" in global configuration mode, VLAN configuration mode can enter other VLAN mode | global configuration mode quit disconnect with switch | |-------------------------------|--------------------------------|----------------------------|--|---| | | | | and interface configuration | | | | | | mode without | | | | | | inputting " exit ". | | | AAA | Create | QTECH(config- | Input "aaa" in | | | configuration | domain | aaa) # | global | | | mode | | | configuration | | | | | | mode | | | RADIUS | Configure | QTECH(config- | Input "radius host | end return to | | configuration | RADIUS | radius-default)# | default" in global | privileged | | mode | server | | configuration | mode | | | parameter | | mode | exit return to | | Domain | Configure | QTECH(config-aaa- | Input "domain | AAA | | configuration | domain | test.com)# | test.com" in AAA | configuration | | mode | parameter | | configuration | mode | | | | | mode | quit | | | | | | disconnect | | | | | | with switch | | | | | | | # 1.1.2 Command Syntax Comprehension This chapter describes the steps needed for command configuration. Please read this section and related detail information of command line interface in the following sections carefully. The logging in identity verification of the system console of this switch is used to verify the identity of the operating user. It permits and refuses the logging in by matching recognizing user name and password. ## Step 1: Following are showed when entering command line interface, Username (1-32 chars): Please input user name, press Enter button, and then the prompt is as following: Password (1-16 chars): Input password. If it is correct, enter the user mode with the following prompt: QTECH> In switch system, there are 2 different privileges. One is administrator, and the other is common user. Common user only can see the configuration information of switch without right to modify it but administrator can manage and configure the switch by specified command. Logging in as administrator can enter privileged mode from user mode. QTECH>enable ## Step 2: Input command Skip to step 3, if the command needs input the parameter. Continue this step if the command need input the parameter. If the command needs a parameter, please input it. When inputting a parameter, keyword is needed. The parameter of the command is specified which is the number or character string or IP address in a certain range. Input "?" when you are uncomprehending, and input the correct keyword according to the prompt. Keyword is what is to be operated in command. If more than one parameter are needed, please input keywords and each parameter in turn according to the prompt until "<enter>"is showed in prompt to press enter button. #### Step 3: Press enter button after inputting complete command. ## For example: ``` !User need not input parameter QTECH#quit "quit" is a command without parameter. The name of the command is quit. Press enter button after inputting it to execute this command. !User need input parameter QTECH(config)#vlan 3 ``` "vlan 3" is a command with parameter and keyword, vlan of which is command keyword and 3 of which is parameter. # 1.1.3 Syntax Help There is built-in syntax help in command line interface. If you are not sure about the syntax of some command, obtain all command and its simple description of the current mode by inputting "?" or help command; list all keywords beginning with the current character string by inputting "?" closely after the command character string; input "?" after space, if "?" is in the same location of the keyword, all keywords and its simple description will be listed, if "?" is in the same location of parameter, all the parameter description will be listed, and you can continue to input command according to the prompt until the prompt command is "<enter>" to press enter button to execute command. ## For example: ``` Directly input "?"in privileged mode QTECH#? System mode commands: cls clear screen help description of the interactive help ping ping command quit disconnect from switch and quit Input "?" closely after keyword QTECH (config) #interf? interface Input "?"after command character string and space QTECH(config) #spanning-tree ? forward-time config switch delaytime hello-time config switch hellotime max-age config switch max agingtime priority config switch priority <enter> The command end. ``` #### 4. Parameter range and form ``` QTECH(config)
#spanning-tree forward-time ? INTEGER<4-30> switch delaytime: <4-30>(second) Command line end prompt QTECH(config) #spanning-tree ? <enter> The command end. ``` # 1.1.4 History command Command line interface will save history command inputted by user automatically so that user can invoke history command saved by command line interface and re-execute it. At most 100 history commands can be saved by command line interface for each user. Input "Ctrl+P" to access last command, and "Ctrl+N" for next command. # 1.1.5 Symbols in command There are all kinds of symbols in command syntax which is not a part of command but used to describe how to input this command. Table 1-2 makes a brief description of these symbols. **Command Symbols Description** | Symbol | Description | |---------------------|--| | Vertical bars | Vertical bars () means coordinate, together using with braces ({ }) and square brackets ([]). | | Square brackets [] | Square brackets ([]) mean optional elements. For example: | | | show vlan [<i>vlan-id</i>] | | Braces { } | Braces ({ }) group required choices, and vertical bars () separate the alternative elements. Braces and vertical bars within square brackets ([{ }]) mean a required choice within an optional element. | | | For example: | | | terminal language { chinese english } | # 1.1.6 Command Parameter Categories There are 5 categories command parameter as following: scale Two numerical value linked by hyphen in angle brackets (< >) means this parameter is some number in the range of those two numbers. For example: INTEGER<1-10> means user can input any integer between 1 and 10 (include 1 and 10), such as 8 is a valid number. IP address The prompt which is in the form of A.B.C.D. means the parameter is an IP address. A valid IP address is needed to input. For example: 192.168.0.100 is a valid IP address. MAC address The prompt which is in the form of H:H:H:H:H:H means the parameter is a MAC address. A valid MAC address is needed to input. If a multicast MAC address is needed, there will be related prompt. For example: 01:02:03:04:05:06 is a valid MAC address. Interface list The prompt of interface list is STRING<3-4>. Interface parameter interface-num is in the form of interface-type + interface-number. Interface-type is Ethernet and interface-number is slot-num/port-num, in which slot-num is in the range of 0 to 2, and port-num is in the range of 1 to 24. Seriate interfaces with the same type can be linked by to keyword, but the port number to the right of the to keyword must be larger than the one to the left of the keyword, and this argument only can be repeated for up to 3 times. The special declaration of interface parameter interface list will be displayed in the command. For example: show spanning-tree interface ethernet 0/1 ethernet 0/3 to ethernet 0/5 means displaying spanning-tree information of interface ethernet 0/1 ethernet 0/3 to ethernet 0/5 Character string The prompt which is in the form of STRING<3-4> means the parameter is a character string which is in the form of 1 to 19 characters. "?" can be inputted to display the concrete command description. # 1.2 User management There are 2 privileges for user: - administrator - normal user Normal user can only enter user mode not privileged mode after logging in, so that he can only see system information but not to configure it. Administrator has the right to enter all modes, and query and configure all parameters. # 1.2.1 System default user name There is a system default built-in user name called admin, and the initial password is 123456. It is suggested modifying password when logging in switch for the first time to avoid leaking it. This user name cannot be deleted and the privilege cannot be modified either. It also possesses the right to manage other users. Please remember your modified password. ## 1.2.2 Add user Log in with the identity of system administrator admin to enter privileged mode, then global configuration mode by using **username** command. Input user name, user's privilege, password to add new user according to system prompt or by using the following command. username username [privilege level] { password encryption-type password } username: User name of new users and existed users ranges from 1 to 32 printable characters excluding such wildcards as '/',':','*','?','\\','<','>','|','"' etc. *privilege*: Privilege of new user ranges from 0 to 15. 0 to 1 means user while 2 to 15 means administrator. *encryption-type*: the value of it is 0 or 7. 0 means non-encryption and 7 means encryption (It is not supported now). password: Log in password for new user and modified password of the existed user ranges from 1 to 16 characters or numbers. If the privilege doesn't configure, the default privilege is ordinary user. At most 8 users are supported. Caution: User name supports case insensitivity while password doesn't support case sensitivity. Add a new administrator "test", configure privilege to be 3, and password to be 1234 ``` QTECH(config) #username test privilege 3 password 0 1234 ``` # 1.2.3 Modify password In global configuration mode, system administrator admin can use the following command to modify password of his or other user. Other user can only modify his own password. ``` username change-password ``` #### For example: ``` !Modify the password of user "test" to be 123456 QTECH(config) #username change-password please input you login password: ***** please input username:test Please input user new password:***** Please input user comfirm password:***** change user test password success. ``` # 1.2.4 Modify privilege In global configuration mode, only administrator admin can use following command to modify the privilege of other user. username username [privilege level] { password encryption-type password } **username**: User name of new users and existed users ranges from 1 to 32 printable characters excluding such wildcards as '/',':','*','?','\\','<','>','|','"' etc. **privilege**: Privilege of new user or the modified privilege of existed user ranges from 0 to 15. 0 to 1 means user while 2 to 15 means administrator. Caution: the privilege of administrator cannot be modified. **encryption-type**: the value of it is 0 or 7. 0 means non-encryption and 7 means encryption (It is not supported now). **password**: Log in password for new user and modified password of the existed user ranges from 1 to 16 characters or numbers. If inputting nothing to modify the privilege of existed user, the privilege doesn't modify. Caution: User name supports case insensitivity while password doesn't support case sensitivity. ## For example: Modify the privilege of administrator "test" to be 1,and password to be 1234 QTECH (config) #username test privilege 1 password 0 1234 ## 1.2.5 Remove user name System administrator admin can use following command to remove user name in global configuration mode no username username Username is the user name to be deleted. #### For example: !Remove user test QTECH(config) #no username test # 1.2.6 View system user information View user list, and input **show username** command or **show usename** [username] command in any configuration mode to display information of all users. #### For example: !Display information of user test QTECH(config) #show username test display user information user name role test ADMIN ## 1.3 Remote authentication of administrator Switch administrators can be saved in loca database and also in RADIUS/TACACS+ server. The user is authenticated to RADIUS/TACACS+ server through RADIUS/TACACS+ protocol. After authentication, user's default privilege is normal user. Only when there is Service-Type field in authentication accepting packet the value of which is **Administrative**, user's privilege is administrator. If it is TACACS+ remote authentication, when the authorization is not used, the privilege after authentication is administrator; when the authorization is used, the privilege after authentication is determined by the replied priv_lvl from remote server, if there is no reply, it is administrator; if the authorization fails, it is normal user. Caution: Admin user only supports local database authentication. ## 1.3.1 Start RADIUS/TACACS+ remote authentication Use following command in global configuration mode: muser { local | { radius radiusname { pap | chap } [local] } }|{tacacs+ [author] [account] [local]} It can be configured to authenticate only by RADIUS/TACACS+ remote authentication or by local database authentication after no response of RADIUS/TACACS+ server caused by failing connection. The accounting of TACACS+ is from the beginning to the end. # 1.3.2 Display authentication configuration Use following command to display authentication configuration. show muser # 1.3.3 TACACS+ remote server configuration Use following command in global configuration mode: tacacs+ { priamary | secondary } server ipaddress [key keyvalue] [port portnum] [timeout timevalue] The default port number is 49 and the timeout is 5 seconds. # 1.3.4 Show TACACS+ Use following command in any configuration mode: show tacacs+ # 1.4 Ways of managing switch System provides following ways of management: - By hyper terminal accessing command-line interface (CLI) - By telnet managing system - By SNMP managing software management system - By Web browser, such as Internet Explorer managing system # 1.4.1 Manage switch by hyper terminal Use hyper terminal (or simulation terminal software) connect to Console to access system command line interface (CLI) by hyper terminal. Configuration: Open "file" -> "attribute" menu, popping up a window. Enter configuration to restore it to default value, and click "setting" and then choose "auto-detect" in the pulldown list of "terminal
simulation" and click [ok]. After the successful connection and seeing logging in interface of operation system in terminal, configure switch by command line interface. The steps are as following: Step 1: Connect switch Console with computer serial port; Step 2: After the switch power on and system successful booting, logging in prompt can be seen: Username (1-32 chars): Step 3: Input correct user name, press enter button, then input corresponding password. If it is the first time to logging in switch, use default user name admin and its password 123456 to log in and operate as system administrator. If your own user name and password exist, log in with your own user name and password; Step 4: After successfully logging in, following information is displayed: QTECH> Step 5: As administrator, after entering privileged mode, use **copy running-config startup-config** command to save configuration. QTECH#copy running-config startup-config When following information is displayed: Startup config in flash will be updated, are you sure (y/n)? [n]y Building, please wait... It means system is saving configuration. Please wait, then the prompt is: Build successfully. It means current configuration is saved successfully. Following information is displayed when system booting: Ready to load startup-config, press ENTER to run or CTRL+C to cancel: Press enter button to make saved configuration be effective, and press CTRL+C to restore system default configuration. Step 6: Administrator can use stop connection when overtime, while normal user can use this function in user mode. Input **timeout** command to configure the overtime of user's logging in to be 20 minutes. And use **no timeout** command to configure overtime to be non-over timing. Step 7: Input following command after finishing operation to switch: QTECH#quit It is used to exit user interface. # 1.4.2 Manage switch by telnet Step 1: Establish configuration environment by connecting computer by network to switch interface: Step 2: Run Telnet program in computer; Step 3: After switch is power on, input switch IP address to connect to switch, and input configured logging in password according to the prompt, then the command line prompt is displayed (such as QTECH>). It will be disconnected after 1 minute when there is not any input before successfully logging in or wrong inputting of user name and password for 5 times. If there is such prompt as "Sorry, session limit reached.", please connect later (At most 2 telnet users are allowed to log in at the same time.); Step 4: Use related command to configure switch system parameter or view switch operation. If you want to enter privileged mode, user must possess the privilege of administrator. If you need any help, please input "?" at any moment. For concrete command, please refer to following chapters. Step 5: If you want to exit telnet, use **quit** or **exit** command to exit in user mode, and **quit** command or "ctrl+]" to exit in other mode. Administrator can use **stop** *username* command in privileged mode to exit logging in. # **Chapter 2 Port Configuration** # 2.1 Port configuration introduction Ethernet interface can work in half duplex and full duplex mode, and can negotiate other working mode and speed rate with other network devices to option the best working mode and speed rate automatically to predigest system configuration and management. # 2.2 Port Configuration # 2.2.1 Port related configuration Configure related feature parameter of ports should enter interface configuration mode first, and then configure. Interface configuration list is as following: - Enter interface configuration mode - Enable /disable specified interface - Configure port-control mode - Configure duplex mode and speed rate - Configure interface privilege - Configure interface limited speed - Configure type of receiving frame - Configure interface type - Configure default VLAN ID of trunk port - Add access port to specified VLAN - Display interface information # 2.2.2 Enter interface configuration mode Enter interface configuration mode before configuration. Configure as following in global configuration mode: Enter interface configuration mode #### interface ethernet interface-num *Interface-num* is Ethernet interface number which is in the form of slot-num/port-num, in which slot-num is in the range of 0 to 2, and **port-num** is in the range of 1 to 24. # 2.2.3 Enable/disable specified interface After system booting, all the interfaces are defaulted to be enable, and each interface can be configured according to real situation. Use following commands to enable/disable an Ethernet port. # shutdown no shutdown **Shutdown** means disable a port, while **no shutdown** means enable a port. #### For example: ``` !Enable Ethernet interface 1 QTECH(config-if-ethernet-0/1) #no shutdown !Disable Ethernet interface 25 QTECH(config-if-ethernet-1/1) #shutdown When interface is shutdown, the physical link is working for diagnosis. ``` # 2.2.4 Configure port-control mode After booting, by default, all ports are slave mode. Configure mode of each port. Configure master/slave mode in interface configuration mode: ``` port-control mode { master | slave } no port-control mode no port-control mode is used to restore port to slave mode. ``` #### Example: ``` !Configure e1/1 to be master QTECH(config-if-ethernet-1/1) # port-control mode master !Restore port control mode of e1/1(default mode is slave) QTECH(config-if-ethernet-1/1) # no port-control mode ``` Caution: Only extended GE TX can configure port control mode to work the configuration of two GE TX with mode being force. **Show port-control mode** inany configuration mode(only GE TX needs showing): **show port-control mode** # 2.2.5 Configure interface duplex mode and speed rate 10/100/1000Base-T supports 10Mbps, 100Mbps, 1000Mbps and full duplex, half duplex autonegotiation. 1000Base-X only supports 1000Mbps, full duplex and auto-negotiation. By default, the port is in auto mode. User can configure the working mode by himself. Use **speed** command to configure the speed and **duplex** command to configure duplex. Command form in interface mode ``` speed { 10 | 10auto | 100 | 100 auto | 1000 | 1000 auto | auto } no speed duplex { auto | full | half } no duplex ``` ## For example: ``` !Configure the speed of Ethernet 0/1 to 100 \text{Mbps} and duplex mode to be full duplex QTECH(config-if-ethernet-0/1) #speed 100 QTECH(config-if-ethernet-0/1) #duplex full ``` In system, if one of speed and duplex is set to be auto, the other will also be auto. # 2.2.6 Interface Prioruty Configuration There are 8 priorities from 0 to 7, and the default interface priority is 0. The larger the priority value is, the higher the priority is. And the packet with the higher priority will be quickly handled. If there are too much packet to be handled in some interface or the packet is urgent to be handled, priority of this interface can be configured to be high-priority. Use following command in interface configuration mode: Configure priority of Ethernet 0/5 to be 1 ``` QTECH(config-if-ethernet-0/5) #priority 1 ``` Restore the default priority of Ethernet 0/5 QTECH(config-if-ethernet-0/5) #no priority # 2.2.7 Interface description configuration Use following command to describe interface to distinguish each interface from others. Configure it in interface configuration mode. description description-list #### For example: ``` !Configure description string "test" for the Ethernet 0/3 QTECH(config-if-ethernet-0/3) #description test !Display description of Ethernet 0/3 QTECH(config) #show description interface ethernet 0/3 ``` # 2.2.8 Ingress/egress bandwidth-control configuration Egress/ingress bandwidth-control is to restrict the total speed rate of all sending and receiving packets. Use following command to configure engress/ingress bandwidth-control. Configure it in interface configuration mode: Interface engress/ingress bandwidth-control ## bandwidth-control { ingress | egress } target-rate Cancel engress/ingress bandwidth-control ## no bandwidth-control { ingress | egress } Detailed description of this command please refer to the corresponding command reference. # 2.2.9 Enable/disable VLAN filtration of receiving packet of interface When enabling VLAN ingress filtration, received 802.1Q packet which doesn't belong to the VLAN where the interface locates will be dropped. The packet will not be dropped if it is disabled. Use this command in interface configuration mode. # ingress filtering no ingress filtering ## Example: ``` !Enable VLAN ingress filtration of e0/5 QTECH(config-if-ethernet-0/5) #ingress filtering !Disable VLAN ingress filtration of e0/5 QTECH(config-if-ethernet-0/5) #no ingress filtering ``` # 2.2.10 Interface ingress acceptable-frame configuration Configure ingress acceptable frame mode to be all types or only tagged. Use following command in interface configuration mode to configure or cancel the restriction to ingress acceptable-frame: ingress acceptable-frame { all | tagged } no ingress acceptable-frame #### For example: ``` !Configure Ethernet 0/5 only to receive tagged frame QTECH(config-if-ethernet-0/5) #ingress acceptable-frame tagged ``` ## 2.2.11 Enable/disable interface flow-control If the port is crowded, it needs controlling to avoid congestion and data loss. Use flow-control command to control the flow. Use following command to enable/disable flow-control on current Ethernet port. #### flow-control #### no flow-control #### For example: ``` !Enable flow control on Ethernet 0/5 QTECH(config-if-ethernet-0/5)#flow-control !Disable flow control on Ethernet 0/5 QTECH(config-if-ethernet-0/5)#no flow-control ``` Use following command in any configuration mode to display interface flow-control: **show flow-control** [*interface-num*] #### For example: ``` !Display flow-control of Ethernet 0/5 QTECH(config-if-ethernet-0/5)#show flow-control ethernet 0/5 ``` # 2.2.12 Port mode configuration This
command is for configuring port type. Port can be trunk, hybrid and access,trunk port is tagged in the vlan it belongs to, so the packets sent by this port is tagged; hybrid port can be tagged and untagged in the vlan it belongs to, so it allows packets of multiple VLANs to be sent with or without the Tag label; accessonly port belongs to one VLAN and it is untagged in VLAN. Configure it in interface configuration mode: Configure port mode ## switchport mode { trunk | hybrid | access } Restore to default mode, hybrid port #### no switchport mode #### For example: ``` !Configure port 1 to be trunk QTECH(config-if-ethernet-0/1) #switchport mode trunk ``` ## Shift to other port mode: - 1. to access: keep default VLAN to be untagged vlan and deleted from other VLANs; - 2. to hybrid: All vlan tagged status to be untagged; - 3. to trunk: All vlan tagged status to be tagged; # 2.2.13 The default vlan-id of port configuration Use this command to configure the default *vlan-id*. Use the no command to restore it to default vlan ID. When received untagged packets, this port will forward it to default vlan. Packets sending and receiving is with IEEE 802.1Q standard. Configure it in interface configuration #### mode: Configure default VLAN ID ## switchport default vlan vlan-id Restore default VLAN ID ## no switchport default vlan ## For example: !Configure default vlan id of Ethernet0/1 to be 5 QTECH(config-if-ethernet-0/1)# switchport default vlan 5 # 2.2.14 Add port to specified VLAN Use this command to add port to specific vlan. Use **no** command to delete it from specific vlan. Configure it in interface configuration mode: Add trunk port to specific VLAN ## switchport trunk allowed vlan { all | vlan-list } Delete trunk port from specific VLAN ## no switchport trunk allowed vlan { all | vlan-list } Add hybrid port to specific tagged vlan list #### **switchport hybrid tagged vlan** { **all** | *vlan-list* } Add hybrid port to specific untagged vlan list ## **switchport hybrid untagged vlan { all |** *vlan-list* } Delete hybrid port from specific VLAN ## **no switchport hybrid vlan { all |** *vlan-list* } Add access port to specific VLAN switchport access vlan vlan-id # 2.2.15 Display interface information Use show interface [interface-num] to display information of specified interface or all interfaces: - Interface state (enable/disable) - Connection - Working mode (full duplex, half duplex or auto-negotiation) - Default VLAN ID - Interface priority - Port mode (trunk/access port) If no parameter is input in **show interface** [interface-num] command, information of all interfaces will be displayed. # 2.2.16 Display/ clear interface statistics information Use **show statistics interface** [interface-num] command in any configuration mode to display information of specified interface or all interfaces: - Byte receiving - Unicast packet receiving - Non-unicast packet receiving - Unicast packet sending - Non-unicast packet sending Use **clear interface** [interface-num | slot-num] command in global configuration mode to clear information of specified interface or all interfaces in specified slot or all interfaces. Use **clear interface** command in interface configuration mode to clear information of current interface. ## 2.3 Interface mirror ## 2.3.1 Brief introduction of interface mirror System provides mirror based on interface, that is, copy packet in a or more specified interface to monitor interface to analyze and monitor packet. For example, copy packet of Ethernet 0/2 to specified monitor interface Ethernet 0/3 so that test and keep record by protocols linked by monitor interface Ethernet 0/3. System also provides packet mirror for specified source/destination MAC address. For example, mirror packet from Ethernet 0/3 with the destination MAC address of 00:1f:ce:00:00:01. System also provides mirror divider, that is, sample packet that can be mirrored and send it to mirror destination interface to reduce the number of packet to mirror destination interface. # 2.3.2 Interface mirror configuration Interface Mirror configuration command includes: - Configure mirror destination interface - Configure mirror source interface - Display interface mirror ## 2.3.2.1 Configure mirror interface Configure mirror destination interface in global configuration mode: Configure mirror interface #### mirror destination-interface interface-num This command will cancel original mirror destination interface. Remove mirror interface #### no mirror destination-interface interface-num #### For example: !Configure Ethernet 0/0/1 to be mirror interface QTECH(config) # mirror destination-interface ethernet 0/0/1 ## 2.3.2.2 Configure mirror source interface Configure mirror source-interface of switch in global configuration mode: • Configure mirror source-interface ## mirror source-interface { interface-list | cpu } { both | egress | ingress } **interface-list** is in the form of interface-num [to interface-num], which can be repeated for 3 times. **Cpu** interface is in the form og character string "cpu". **both** means mirroregress and ingress interfaces, **egress** means mirror interface egress and **ingress** means mirror interface ingress. Remove mirror source interface ## no mirror source-interface { interface-list | cpu } #### For example: !Configure Ethernet 0/0/1 to Ethernet 0/0/12 to be mirror source interfaces QTECH(config)# mirror source-interface ethernet 0/0/1 to ethernet 0/0/12 both !Remove Ethernet 0/0/10 to Ethernet 0/0/12 from mirror source interfaces QTECH(config)#no mirror source-interface ethernet 0/0/10 to ethernet 0/0/12 # 2.3.2.3 Display interface mirror Display interface mirror Use **show mirror** command to display system configuration of current mirror interface, including monitor port and mirrored port list. Use this command in any configuration mode: **show mirror** ## For example: !Display monitor port and mirrored port list OTECH#show mirror ## 2.3.2.4 Delete all port and traffic mirror Delete all port and traffic mirror: no mirror all ## For example: !Delete all port and traffic mirror QTECH(config) #no mirror all # 2.4 Port LACP convergent configuration # 2.4.1 Brief introduction of port convergence Port convergence is a channel group formed by many ports convergence to realize flow load sharing for each member. When a link cannot be used, flow of this link will be transferred to another link to guarantee the smoothness of the flow. Basic configurations are: - static or dynamic channel groups can be configured and at most 12 interface members can be configured in each group, and at most 8 interfaces can be convergent at the same time in each group which is determined by up/down status, interface number, LACP priority. Each group is defined to be a channel group, and the command line is configured around it. - 2. Load balance strategy of each group can be divided into source MAC, destination MAC, source and destination MAC, source IP, destination IP, and source and destination IP. The default strategy is source MAC. - 3. System and interface LACP priority can be configured. The default system priority is 32768, and interface priority is 128. To remove system and interface priority is to restore them to default ones. - 4. LACP protocol of each interface can be configured. In static mode, interface is static convergent, and LACP protocol does not run; in active mode, interface will initiate LACP negotiation actively; in passive mode, interface only can response LACP negotiation. When interconnecting with other device, static mode only can interconnect with static mode; active can interconnect with active and passive mode, but passive mode only can interconnect with active mode. The default mode of interface is ACTIVE mode. Each convergent interface need same layer 2 features, so there are following restrictions to interfaces in a channel group: - 1. Static convergent interfaces and dynamic convergent interfaces can not be in a same channel group, but there can be static convergent channel as well as dynamic convergent channel. - 2. Each interface in a same channel group must possess the same features as following: interface speed rate, working mode of full duplex, STP/GVRP/GMRP function, STP cost, STP interface priority, VLAN features (interface mode, PVID, VLAN belonged to, tag vlan list of access interface, allowed vlan list of trunk interface) and layer 2 multicast group belonged to. - 3. If modifying the feature of one interface in the channel group, other interfaces will be modified automatically in the same place. The feature refers to point 2. - 4. After convergence, static hardware item (ARL, MARL, PTABLE, VTABLE) will be modified, but there will be delay. - 5. After convergence, only host interface can send CPU packet. If STP changes status of some interface, the status of the whole channel group will be changed. - After convergence, when transferring layer 2 protocol packet, STP/GARP/GNLINK will not transfer packet to the current channel grou. If transferring to other channel group, only one packet will be transferred. If there are members in the channel group, this channel group cannot be deleted. Delete interface members first. Influence on choosing link redundancy caused by LACP system and interface priority. LACP provides link redundancy mechanism which needs to guarantee the redundancy consistency of two interconnected switches and user can configure redundancy link which is realized by system and interface priority. The redundancy choosing follows the following steps: First, determine which switch is the choosing standard. For LACP packets interaction, each of the two switches knows each other's LACP system priority and system MAC and compares the LACP system priority to choose the smaller one; if the system priority is the same, compare MAC and choose the smaller one. Then, choose redundancy link according to the interface parameter of the chosen switch. Compare interface LACP priority, and
choose the inferior one to be redundant. If the priorities are the same, choose the interface whose interface number is larger to be redundant. ## 2.4.2 Interface convergent configuration Port LACP configuration command includes: Channel group configuration Please configure it in global configuration mode: **channel-group** *channel-group-number* Parameter "channel-group-number" is range from 0 to 5. #### For example: !Create a channel group with the group number being 0 QTECH(config) #channel-group 0 Delete channel group ## no channel-group channel-group-number Add add port members to the group ## channel-group channel-group-number mode {active | passive | on} In interface configuration mode, add current interface to channel group and specify the mode of interface. If the channel group doesn't exist, create it. ## For example: !Add Ethernet 0/3 to channel-group 3 and specify the port to be active mode QTECH(config-if-ethernet-0/0/3) #channel-group 3 mode active Delete interface member in channel group #### no channel-group channel-group-number In interface configuration mode, delete current interface from channel group. #### For example: !Delete interface Ethernet 0/0/3 from channel group 3 QTECH(config-if-ethernet-0/0/3)#no channel-group 3 Configure load balance of switch ## channel-group load-balance {dst-ip|dst-mac|src-dst-ip|src-dst-mac|src-ip|src-mac} choose physical link program when packet sending. #### For example: !Specify load-balance of channel-group 0 is destination mac QTECH(config)#channel-group load-balance dst-mac Configure system LACP priority ### lacp system-priority priority ### For example: !Configure LACP system priority is 40000 QTECH(config) #lacp system-priority 40000 Delete system LACP priority ## no lacp system-priority Use this command to restore system default LACP priority to be 32768. Configure interface LACP priority ## lacp port-priority priority Use this command in interface configuration mode to configure LACP priority of the current interface #### For example: !Configure lacp port-priority of Ethernet 0/2 to be 12345 QTECH(config-if-ethernet-0/0/2)#lacp port-priority 12345 Delete interface LACP priority #### no lacp port-priority Use this command to restore interface default LACP priority to be 128. Display system LACP ID #### show lacp sys-id System id is in the form of 16 characters of system priority and 32 characters of system MAC address. #### For example: !Display lacp system id QTECH(config) #show lacp sys-id Display local information of channel group ## **show lacp internal** [channel-group-number] Use **show lacp interval** command to display the information of group members, if the there is no keywords, all groups are displayed. For example: Display the member information of channel group 2. QTECH#show lacp internal 2 Display information of neighbour interface of channel group **show lacp neighbor** [channel-group-number] Use **show lacp neighbor** command to display the information of the neighbour port in the group. If there is no keyword, the neighbor ports of all the groups are displayed. For example: Display the information of the neighbour port of the group 2 QTECH#show lacp neighbor 2 Show channel-group statistics **show statistics channel-group** [channel-group-number] Use this command to show channel-group statistics. If channel-group-number is not specified, show all. Example: Show statistics of channel-group 2 QTECH#show statistics channel-group 2 Clear channel-group statistics clear channel-group [channel-group-number] Use this command to clear channel-group statistics. If channel-group-number is not specified, clear all. Example: Clear statistics of channel-group 2 QTECH#clear channel-group 2 Show dynamic channel-group statistics show statistics dynamic channel-group Example: show dynamic statistics of all channel-group QTECH(config) # show statistics dynamic channel-group Show utilization channel-group statistics show utilization channel-group Example: Show utilization channel-group statistics QTECH(config) # show utilization channel-group # 2.5 Interface CAR configuration ## 2.5.1 Brief introduction of interface CAR Interface CAR is used to restrict the speed rate impacted CPU of single interface. CPU can make speed rate statistics of each interface. If the speed rate is larger than the configured threshold (it is defaulted to be 300 packet/second), disable this interface and send trap of interface being abnormal. After a certain time (it is defaulted to be 480 seconds), re-enable the interface. If this interface will not be re-disabled by interface CAR in 2 seconds, the storm of impacting CPU by interface is over, and the interface recovers, and sends the trap of interface being normal. Caution: If the re-enabled interface is disable again by impacting CPU packet in 2 seconds, no trap of interface being abnormal is sent. # 2.5.2 Port CAR configuration command list Port CAR configuration command includes: - Enable/disable interface CAR globally - Enable/disable interface CAR on a port - Configure interface CAR re-enable time - Configure interface CAR - Display interface CAR status # 2.5.3 Enable/disable interface globally Configure it in global configuration mode • Enable global interface #### port-car Disable global interface #### no port-car By default, port-car globally enables #### For example: !Enable port-car globally QTECH(config) #port-car # 2.5.4 Enable/disable interface CAR on a port Please configure it in interface configuration mode: Enable interface CAR #### port-car Disable interface CAR #### no port-car #### For example: +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 !Enable port-car of Ethernet 0/8 QTECH(config-if-ethernet-0/8)#port-car # 2.5.5 Configure the reopen time of the port shutdown by port-car Please configure it in global configuration mode: • Configure the reopen time of the port shutdown by port-car port-car-open-time port-car-open-time By default, port-car-open-time is 480 seconds ## For example: !Configure port-car-open-time to be 10 seconds QTECH(config) #port-car-open-time 10 # 2.5.6 Configure the port-car-rate Please configure it in global configuration mode: Configure the port-car-rate port-car-rate port-car-rate Default port-car-rate is 30 packet/second #### For example: !Configure port-car-rate to be 100 packet/second QTECH(config) #port-car-rate 100 # 2.5.7 Display port-car information Input following command in any configuration mode to display port-car information: #### show port-car #### For example: !Display port-car information QTECH(config) #show port-car # 2.6 Port Alarm Configuration # 2.6.1 Brief introduction of port alarm configuration System can monitor port packet receiving rate. If the rate of receiving packet is beyond the interface flow exceed threshold, send alarm of large interface flow and the interface is in the status of large interface flow. In this status, if the rate of receiving packet is lower than the interface flow normal threshold, send alarm of normal interface flow. This function can actively report the rate of receiving packet to user. # 2.6.2 Port alarm configuration list Port alarm configuration command includes: - Enable/disable port alarm globally - Enable/disable port alarm on the port - Configure the exceed threshold and normal threshold of port alarm - Display port alarm ## 2.6.3 Enable/disable port alarm globally Please configure it in global configuration mode: Enable port alarm globally ## alarm all-packets Disable port alarm globally ## no alarm all-packets By default, alarm all-packets enable. #### For example: ``` ! Enable global alarm all-packets QTECH(config)#alarm all-packets ``` # 2.6.4 Enable/disable port alarm on the port Please configure it in interface configuration mode: • Enable port alarm on the port #### alarm all-packets Disable port alarm on the port #### no alarm all-packets #### For example: ``` !Enable alarm all-packets of Ethernet 0/0/8 QTECH(config-if-ethernet-0/0/8)# alarm all-packets ``` # 2.6.5 Configure the exceed threshold and normal threshold of port alarm Please configure it in global configuration mode: Configure the exceed threshold and normal threshold of port alarm ## alarm all-packets threshold [exeed exceed] [normal normal] Caution: Exceed > normal. By default, 100 BASE exceed threshold is 85,normal threshold is 60 ## For example: !Configure alarm all-packets exceed threshold to be 500, and normal threshold to be 300 QTECH(config) #alarm all-packets threshold exceed 500 normal 300 # 2.6.6 Display port alarm Input following command in any configuration mode to display global interface alarm: ## show alarm all-packets ### For example: !Display global alarm all-packets information QTECH(config) #show alarm all-packets interface ethernet 0/0/1 Input following command in any configuration mode to display interface alarm on the port: ## show alarm all-packets interface [interface-list] Keyword "interface-list" is alternative. If there is no keyword, the alarm all-packets of all the interfaces are displayed, or the information of specified port is displayed. #### For example: !Display the alarm all-packets interface information of Ethernet 0/0/1 QTECH(config) #show alarm all-packets interface ethernet 0/0/1 e0/1 port alarm information Port alarm status : enable Port alarm exceed threshold(Mbps) : 85 Port alarm normal threshold(Mbps) : 60 Total entries: 1.0 # 2.7 Interface shutdown-control Configuration ## 2.7.1 Brief introduction of shutdown-control Interface shutdown-control is used to restrict the speed rate of unicast\ multicast\broadcast of single interface. If the rate is beyond the configured restricted value(that can be configured), the interface will be shut down and failure trap will be sent. After a while(it is defaulted to be 480 seconds, which can be configured), it may reopen. If the interface will not reshutdown-control in 2 seconds, it turns normal and normal trap will be sent. If the interface
reshutdown-control in 2 seconds, the failure trap will not be sent. # 2.7.2 Interface shutdown-control Configuration list Interface shutdown-control Configuration list is as following: - shutdown-control Configuration - Configure shutdown-control open-time - Display shutdown-control - Recover shutdown-control # 2.7.3 shutdown-control Configuration Configure it in interface configuration mode: Enable shutdown-control ## shutdown-control [broadcast | multicast | unicast] target-rate Disable shutdown-control ## no shutdown-control [broadcast | multicast | unicast] By default, shutdown-control is disabled. #### Example: !Enable shutdown-control of $\mathrm{e0/8}$ for broadcast and speed rate is 100pps. QTECH(config-if-ethernet-0/8) #shutdown-control broadcast 100 # 2.7.4 Configure shutdown-control open-time Configure it in global configuration mode: • Configure shutdown-control open-time #### shutdown-control-open-time The default shutdown-control open-time is 480 seconds. #### Example: !Configure shutdown-control-open-time of CAR is 20 seconds QTECH(config) # shutdown-control-open-time 20 # 2.7.5 Display shutdown-control • Configure it in any configuration mode: #### show shutdown-control interface #### Example: !Display interface shutdown-control information QTECH(config) #show shutdown-control interface ## 2.7.6 Recover shutdown-control Configure it in global configuration mode: Restore shutdown-control to be manual: #### no shutdown-control-recover mode • Restore shutdown-control time to be 480s: ## no shutdown-control-recover automatic-open-time ## Example: !Restore shutdown-control to be manual QTECH(config) # no shutdown-control-recover mode # **Chapter 3 VLAN Configuration** ## 3.1 Brief introduction of VLAN System supports IEEE 802.1Q. There are 2 kinds of VLAN: tagged and untagged. # 3.2 VLAN interface type System supports IEEE 802.1Q which possesses two types of VLAN interfaces. One is tagged, and the other is untagged. Tagged interface can ad VLAN ID, priority and other VLAN information to the head of the packet which is out of the interface. If the packet has included IEEE 802.1Q information when entering the switch, the mark information will not be changed; if the packet has not includes IEEE 802.1Q mark information, system will determine the VLAN it belongs to according to the default VLAN ID of the receiving interface. Network devices supported IEEE 802.1Q will determine whether or not to transmit this packet by the VLAN information in the mark. Untagged interface can drop the mark information from all the packets which are out of the interface. When a frame is out of a untagged interface, it will not contain IEEE 802.1Q mark information. The function of dropping the mark makes the packet can be transferred from the network device supported mark to the one which doesn't support it. Now, only the switch supported IEEE 802.1Q can be recognize IEEE 802.1Q frame so only a port linking to a switch supported IEEE 802.1Q can be configured to be Tagged port. ## 3.3 Default VLAN There is a default VLAN of production, which possesses following features: - The name of this VLAN is Default which can be modified. - It includes all ports which can be added and deleted. - All the port mode of default VLAN is untagged which can be modified to be tagged. - VLAN ID of default VLAN is 1 which cannot be deleted. # 3.4 VLAN configuration # 3.4.1 VLAN configuration list Configure VLAN should create VLAN according to the need first, then configure VLAN interface and its parameter. VLAN configuration list is as following: - Create/delete VLAN - Add/delete VLAN interface - Specify/delete VLAN description - Configure interface type - · Configure interface default vlan ID - Configure tag vlan - Display VLAN information ## 3.4.2 Create/delete VLAN Configure it in global configuration mode: Enter VLAN configuration mode or create VLAN and enter it vlan vlan-list Delete created VLAN or specified VLAN except VLAN 1 no vlan { vlan-list | all } VLAN-ID allowed to configure by system is in the range of 1 to 4094. *vlan-list* can be in the form of discrete number, a sequence number, or the combination of discrete and sequence number, discrete number of which is separate by comma, and sequence number of which is separate by subtraction sign, such as: 2,5,8,10-20. Use the vlan command to enter VLAN configuration mode. If the vlan identified by the *vlan-id* keyword exists, enter VLAN configuration mode. If not, this command creates the VLAN and then enters VLAN configuration mode. For example, if VLAN 2 is not existed, system will create VLAN 2 first, then enter VLAN configuration mode; if VLAN 2 has existed, enter VLAN configuration mode. When deleting VLAN, if the vlan-list is specified, delete corresponding VLAN. If choosing all, delete all existed VLAN except default VLAN. If deleting interface in VLAN, and default VLAN id is the same as the VLAN to be deleted, restore interface default VLAN ID to be default VLAN ID. If the VLAN to be removed exists in the multicast group, remove the related multicast group first. ## 3.4.3 Add/delete VLAN interface Use the switchport command to add a port or multiple ports to current VLAN. Use the no switchport command to remove a port or multiple ports from current VLAN. Use following commands in VLAN configuration mode: Add interface to specified VLAN switchport { interface-list | all } +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 Delete some interface from specified VLAN ## no switchport { interface-list | all } Interface-list is the optioned interface list which means a or more interfaces. If choose **all**, add all ports to current VLAN; if choosing **all** when deleting interface, all ports in current VLAN will be deleted. When deleting interface from VLAN 1, if the PVID of interface is 1, modify the PVID to be other VLAN ID before deleting this interface. When deleting interface in other VLAN ID, port PVID should be the same as the VLAN ID, and the port is also in VLAN 1, delete it. If this port is not in VLAN 1, modify port PVID to be other VLAN ID, delete the port. There are two status of the interface in VLAN, one is **tagged** and the other is **untagged**. If the port is access port, add it to VLAN with the status of being untagged. If it is trunk port, change it to be tagged in VLAN. ## For example: ``` !Add Ethernet 1, 3, 4, 5, 8 to current VLAN QTECH(config-if-vlan)#switchport ethernet 0/0/1 ethernet 0/0/3 to ethernet 0/0/5 ethernet 0/0/8 !Remove Ethernet 3, 4, 5, 8 from current VLAN QTECH(config-if-vlan)#no switchport ethernet 0/0/3 to ethernet 0/0/5 ethernet 0/0/8 ``` Command switchport access vlan and its no command can also add and delete port to or from VLAN. Please refer to interface configuration of chapter 2. # 3.4.4 Specify/restore VLAN description The description string is used to distinguish each VLAN. Please configure it in VLAN configuration mode: Specify a description string to specified VLAN ## description string Delete description string of specified VLAN #### no description string: It is in the range of 1 to 32 characters to describe the current VLAN. The characters can be printable, excluding such wildcards as '/', ':', '*', '?', '\\', '<', '>', '|', '"' etc. #### For example: ``` !Specify the description string of the current VLAN as "market" QTECH (config-if-vlan) #description market !Delete the description string of VLAN QTECH(config-if-vlan) #no description ``` # 3.4.5 Configure interface type Use **switchport mode** command to configure port type. Please refer to interface configuration in chapter 2. switchport mode { trunk | hybrid | access } # 3.4.6 Configure interface default vlan ID System supports IEEE 802.1Q. When receiving a untagged packet, system will add a tag to the packet, in which the VLAN ID is determined by the default VLAN ID of the receiving port. The command to configure default VLAN of trunk port is switchport trunk native vlan; for acess port, use switchport access vlan command to configure default VLAN of specified interface. The detailed introduction of the corresponding no command is in chapter 2. ## For example: ``` !Configure default vlan-id of Ethernet interface 1 to be 2 QTECH(config-if-ethernet-0/1) #switchport mode access QTECH(config-if-ethernet-0/1) #switchport access vlan 2 ``` Caution: To use **switchport trunk native vlan** *vlan-id* must guarantee the specified interface to be trunk, and belongs to specified VLAN, and the VLAN ID is not 1. Use **switchport access vlan** *vlan-id* to configure interface default VLAN and add it to the VLAN. The specified interface is access, and the VLAN is existed and is not the default VLAN. # 3.4.7 Configure tag vlan When port is hybrid without tag vlan configuration, it can only send untagged packets. If tagged packets is need, you can use command **switchport hybrid tagged vlan** {*vlan-list*|**all**}. #### For example: ``` !Configure Ethernet interface 1 to send IEEE 802.1Q packet with tag VLAN 5, VLAN 7-10 QTECH(config-if-ethernet-0/1) \#switchport hybrid tagged vlan 5,7-10 ``` # 3.4.8 Display VLAN information VLAN information is VLAN description string, *vlan-id*, VLAN status and interface members in it, tagged interfaces, untagged interfaces and dynamic tagged interfaces. Interface members consist of tagged and untagged members. ``` show vlan [vlan-id] ``` If the VLAN with specified keyword exists, this command displays the information of the specified VLAN. If no keyword is specified, this command displays the list of all the existing VLANs ### For example: !Display the information of existed VLAN 2. QTECH(config) #show vlan 2 ## 3.5 PVLAN PVLAN means private VLAN which is used to realize interface isolation function. These private VLANs are unknown to uplink devices to save the resource of public VLAN. Nowadays, factories in this field use SVL to realize PVLAN and provide corresponding configuration command. But there is some shortage by using SVL, such
as: the uplink and downlink interfaces are access, and MAC address wasting. Our company uses redirection technology to realize PVLAN and overcome the shortage of SVL, any interface can be access or trunk, which entirely realize PVLAN. The detailed information of PVLAN configuration can refer to interface isolation configuration. # 3.6 GVRP configuration ## 3.6.1 Brief introduction of GVRP GVRP, GARP VLAN Registration Protocol is a kind of application of GARP. It is based on GARP working mechanism to maintain VLAN dynamic register information in switch and transfer it to other switch. All switch that support GVRP can receive VLAN register information from other switches and dynamically upgrade local VLAN register information which includes: current VLAN members, and by which interface can reach VLAN members. And all switches supported GVRP can transfer local VLAN register information to other switches to make the consistency of the VLAN information of devices which support GVRP. VLAN register information transferred by GVRP includes local munal configuration of static register information and the dynamic register information of other switch. # 3.6.2 GVRP Configuration list In all configurations, enable global GVRP first before enable GVRP on a port. GVRP must be enabled in the two ends of trunk link which follows IEEE 802.1Q standard. GVRP Configuration list is as following: - Enable/disable global GVRP - Enable/disable GVRP on a port - Display GVRP - Add/delete vlan that can be dynamic learnt by GVRP - Display vlan that can be learnt by GVRP # 3.6.3 Enable/disable global GVRP Please configure it in global configuration mode: Enable global GVRP ### gvrp Disable global GVRP #### no gvrp By default, GVRP globally disables ### For example: !Enable GVRP globally QTECH(config) #gvrp # 3.6.4 Enable/disable GVRP on a port Please configure it in interface configuration mode: Enable GVRP on a port #### gvrp • Disable GVRP on a port #### no gvrp #### For example: !Enable GVRP on Ethernet port 8 QTECH(config-if-ethernet-0/8)#gvrp Caution: Enable global GVRP before enable GVRP on a port. By default, global GVRP deisables and GVRP on a port can be enabled in trunk mode interface. # 3.6.5 Display GVRP Use following command in any configuration mode to display global GVRP: #### show gvrp Use following command in any configuration mode to display GVRP on a port: ### **show gvrp interface** [*interface-list*] Interface-list keyword is optional. If this keyword unspecified, the command displays GVRP information for all the Ethernet ports. If specified, the command displays GVRP information on specified Ethernet port. #### For example: !Display GVRP information on interface Ethernet 0/1 QTECH(config) #show gvrp interface ethernet 0/1 # 3.6.6 Add/delete vlan that can be dynamic learnt by GVRP Use **garp permit vlan** command to add configured static vlan to GVRP module for other switches to learn. Configure it in global configuration mode: garp permit vlan vlan-list no garp permit vlan [vlan-list] ### For example: !Add vlan 2, 3, 4 to GVRP QTECH(config) #garp permit vlan 2-4 # 3.6.7 Display vlan that can be learnt by GVRP Use **show garp permit vlan** command to display current static vlan permitted learning by GVRP ### show garp permit vlan ## For example: Display current static vlan permitted learning by GVRP QTECH(config) #show garp permit vlan #### Examples for GVRP configuration !Enable GVRP on Ethernet port 2 QTECH(config-if-ethernet-0/0/2) #gvrp !Disable GVRP on Ethernet port 2 QTECH(config-if-ethernet-0/0/2) #no gvrp # 3.7 QinQ configuration ## 3.7.1 Brief introduction of QinQ QinQ is used for the communication between discrete client vlan whose service model is the interconnection of one or more switches supported QinQ by service provider interfaces which are in service provider vlan. The interface linking client vlan is called customer interface. Packet with client vlan tag will add a tag head with the vlan id being service provider vlan when passing through the customer interface. The tag head will be stripped when passing through service provider vlan. # 3.7.2 QinQ configuration list Configure global QinQ - Configure global inner/outer TPID - Configure interface QinQ # 3.7.3 Configure global QinQ Use dtag command to enable/disable QinQ globally in global configuration mode. # dtag no dtag ### For example: Enable QinQ QTECH(config)dtag # 3.7.4 Configure global inner/outer TPID For QinQ packet, there are 2 VLAN tags: external VLAN tag (Service tag) and internal VLAN tag (Customer tag). QTECH S3750G-24/48S can configure TPID in both internal and external VLAN tag to be other value. These configurations can be effective to the whole switch. The packet is called double tag packet when the external and internal TPID are matching at the same time. ``` !Configure internal TPID command mode to be global dtag inner-tpid tpid no dtag inner-tpid !Configure external TPID command mode to be interface dtag outer-tpid tpid no dtag outer-tpid ``` #### Example: #### Configure internal TPID to be 0x9100 QTECH(config) #dtag inner-tpid 9100 # 3.7.5 Configure QinQ mode of interface There are two kinds of interface modes: one is service provider port, the other is customer port. The former do not permit ignoring tag head of ingress packet and the latter permits. It is in the interface configuration mode. # dtag mode [customer | uplink] no dtag mode [customer | uplink] #### Example: ## Configure interface to be customer QTECH(config-if-ethernet-0/0/1)#dtag mode customer # 3.7.6 Configure interface dynamic QinQ • Configure a series vlan to be dynamic QinQ with the start vlan and destination vlan. In the precondition of all vlan tag packets between start vlan are not transparent transmitted, they will transmit in the form of double tag head with destination vlan. The command mode is global configuration mode dtag insert startvlanid endvlanid targetvlanid rate ## Example: Configure all vlan tag packets to add a tag head with destination vlan3 from the start vlan1 to end vlan2 and the rate is 100Kbps QTECH(config-if-ethernet-0/0/1) #dtag insert 1 2 3 100 Delete a consecultive vlan in configured dynamic QinQ on the form of start vlan and destination vlan, in which the parameter imputed start vlan and the destination vlan must be the same as configuring a vlan series. The command mode is global configuration mode **no dtag insert** { *startvlanid endvlanid* | **all** } ## Example: Delete all configured vlan tag packets to add a tag head with destination vlan3 from the start vlan1 to end vlan2 QTECH(config-if-ethernet-0/0/1) #no dtag insert 1 2 # 3.7.7 Enable/disable vlan-swap Configure it in global configuration mode: Enable vlan-swap #### vlan-swap Disable vlan-swap #### no vlan-swap By default, vlan-swap is disabled. #### Example: !Enable vlan-swap QTECH(config)#vlan-swap # 3.7.8 Configure rewrite-outer-vlan After configuration, all packets from this port without inner vlan ID being specified range and with outer vlan ID being specified one (this condition can be optioned), the outer vlan ID will be modified to be new. Command mode is interface configuration mode **rewrite-outer-vlan** start-inner-vid end-inner-vid [**outer-vlan** outer-vid] **new-outer-vlan** new-outer-vid no rewrite-outer-vlan start-inner-vid end-inner-vid [outer-vlan outer-vid] ### Example: Configure rewrite-outer-vlan of e0/1 with inner vlan ID being the range of 1~50, outer vlan ID being 3 and new outer vlan ID being 100 QTECH(config-if-ethernet-0/1) # rewrite-outer-vlan 1 50 outer-vlan 3 new-outer-vlan 100 # 3.7.9 Display dynamic QinQ Display dynamic vlan Command mode is global configuration mode show dtag insert ## Example: Display dynamic vlan QTECH(config) #show dtag insert # 3.7.10 Display vlan-swap Display vlan swap status Command mode is global configuration mode #### show vlan-swap #### Example: Display vlan swap status QTECH(config) #show vlan-swap # 3.7.11 Display rewrite-outer-vlan Display rewrite-outer-vlan Command mode is global configuration mode #### show rewrite-outer-vlan #### Example: Display rewrite-outer-vlan QTECH(config) #show rewrite-outer-vlan # 3.8 VLAN extended properties When untagged packet comes to switch, the PVID of the specific port will be the VLAN ID of this packet. VLAN ID can be specified according to other solutions, such as: - MAC-based VLAN; - Protocol-based VLAN; The packet VLAN ID can be transferred according to the VLAN table. # 3.8.1 Configure MAC-based VLAN table Assign VLAN ID and 802.1q priority according to source MAC of the packet. Configure it in global configuration mode vlan-mac-table mac-address vlan priority no vlan-mac-table [mac-address] ## For example: Configure a MAC-based VLAN entry to add a tag with VLAN ID being 5, 802.1q priority being 4 to an untagged packet with source MAC being 00:1f:ce:00:01:02 QTECH(config) #vlan-mac-table 00:1f:ce:00:01:02 5 4 # 3.8.2 Configure protocol-based VLAN table Assign VLAN ID for packet according to protocol. The protocol here means frame type (snap-llc or non-snap-llc of ethernetv2,802.3) and ethernet type(such as ARP=0806). This configuration contains: - 1. vlan-protocol in global mode to specify frame type and ethernet type, which can be configured 12 entries; - 2. specify vlan-protocol entry to VLAN ID in interface configuration mode - 1. Specify frame type and ethernet type in global mode: vlan-protocol table index <id> ethertype <type> protocol <en> no vlan-protocol table [index <id>] 2. Specify vlan-protocol entry to VLAN ID in interface configuration mode: vlan-protocol table index <id> vlan <vid> no vlan-protocol table [index <id>] Enable protocol-based VLAN on port: [no] vlan-protocol For example: +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 Configure protocol-based VLAN entry, the frame type is Ethernet II, ethernet type is 0x900. Add VID=5 tag to untagged packets ingress from port 4 QTECH(config) # vlan-protocol table index 0
ethertype 900 protocol ethernetv2 QTECH(config)#interface ethernet 0/0/4 QTECH(config-if-ethernet-0/0/4)#vlan-protocol table index 0 vlan 5 QTECH(config-if-ethernet-0/0/4)#vlan-protocol ## 3.8.3 VLAN translate VLAN translate can be divided into *ingress* and *egress* part. • Configure VLAN translate: Configure it in global configuration mode vlan-translate { ingress | egress } table <startvid> <endvid> <new vid> no vlan-translate { ingress | egress } table [<startvid> <endvid>] Enable VLAN translate: Configure it in interface configuration mode ## [no] vlan-translate { ingress | egress } #### For example: !Translate packet which ingress from port 4 VID 5 to be 8 QTECH(config) #vlan-translate ingress table 5 5 8 QTECH(config) #interface ethernet 0/0/4 QTECH(config-if-ethernet-0/0/4) #vlan-translate ingress ## 3.8.4 N:1 VLAN N:1 VLAN is used for: user A, B and C uses VLAN A, B and C. But uplink server uses VLAN D. So uplink data should translate VLAN A,B,C to be VLAN D; downlink data should translate VLAN D to be VLAN A,B,C. Uplink data translate uses vlan-translate egress; downlink data translate can: - 1. static configuration: use acl to do VLAN translate according to user's mac and ip; - 2. dynamic configuration: enable N:1VLAN of DHCP SNOOPING to get VLAN auto-match; #### For example: !Configure QinQ global TPID to be 0x88a8 QTECH(config)dtag outer-tpid 88A8 # 3.8.5 Configure QinQ mode of interface There are two kinds of interface modes: one is service provider port, the other is customer port. The former do not permit ignoring tag head of ingress packet and the latter permits. It is in the interface configuration mode. ## dtag mode { customer | service-provider } Example: Configure interface to be customer QTECH(config-if-ethernet-0/1) #dtag mode customer ## 3.9 **| 12-tunnel** ## 3.9.1 Brief introduction of I2-tunnel In VPN network, some protocol packets received by service-provider network edge need to be encapsulated in a certain form. The internal devices of SP network can recognize and transparent transmit this encapsulated packets, and restore it in the other side of SP network. # 3.9.2 L2-tunnel configuration list - Enable/disable I2-tunnel - Show port I2-tunnel status - Configure/cancel I2-tunnel drop threshold - Show I2-tunnel drop threshold ## 3.9.3 Enable/disable I2-tunnel Configure protocols which need to enable I2-tunnel. Configure it in interface configuration mode: • Enable port I2-tunnel ## l2-tunnel [cdp | pagp | lacp | stp | udld | vtp] • Disable port I2-tunnel ## no l2-tunnel [cdp | pagp | lacp | stp | udld | vtp] Parameter: cdp: cisco's cdp packets pagp: cisco's pagp packet lacp: lacp packet stp: stp packet udld: cisco's udld packet +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 vtp: cisco's vtp packet ## Example: !Configure 12-tunnel for STP packet on e0/1. QTECH(config-if-ethernet-0/1) #12-tunnel stp # 3.9.4 Show port I2-tunnel status In any configuration mode: Show I2-tunnel ## show I2-tunnel interface [interface-list] ## Example: !Show 12-tunnel for all ports QTECH(config) #show 12-tunnel interface # 3.9.5 Configure /cancel I2-tunnel drop threshold Configure in global configuration mode: • Configure speed rate for I2-tunnel packet up to cpu ## I2-tunnel drop-threshold [cdp | pagp | lacp | stp | udld | vtp] target-rate • Cancel I2-tunnel packet up to cpu ## no l2-tunnel drop-threshold [cdp | pagp | lacp | stp | udld | vtp] #### Example: !Configure the speed of cpu receiving stp packet to be 10pps QTECH(config) #12-tunnel drop-threshold stp 10 # 3.9.6 Show I2-tunnel drop threshold Show in any configuration mode: Show I2-tunnel drop threshold ## show I2-tunnel drop-threshold #### Example: !Show 12-tunnel drop-threshold QTECH(config) #show 12-tunnel drop-threshold ## 3.10.1 Brief introduction of VPRB VPRB (vlan port redundancy backup) is for vlan port backup. If there are multiple ports in a vlan, one of them can be specified to be a major-port, another is the backup port for the major-port. Generally, if major and backup-ports work normal, major-port is forwarding and backup-port is discarding, and all business packets will be sent by major-port. If major-port works abnormal and unable to forward packets, the backup-port will turn forwarding immediately and start sending business packets until the major-port works normal. In order to achieve backup and load balance in batch, VPRB needs to work with MSTP. First, add backup vlan to MSTP instance, then configure the major-port and backup-port of this MSTP instance. # 3.10.2 VPRB configuration list - Configure/delete VPRB port backup - Show VPRB # 3.10.3 Configure/delete VPRB port backup Configure it in global configuration mode: Configure VPRB port backup vprb major-port ethernet port-id bak-port ethernet port-id instance inst-id Delete VPRB port backup no vprb major-port ethernet port-id #### Parameter: port-id: major-port or backup port inst-id: MSTP instance id #### Example: !Add vlan 1-10 to MSTP instance 1 QTECH(config) #spanning-tree mst instance 1 vlan 1-10 !Specify major-port is e0/1, backup port is e0/2 QTECH(config) #vprb major-port ethernet 0/1 bak-port ethernet 0/2 instance 1 ## **3.10.4 Show VPRB** Configure it in any mode: show vprb ## Example: !Show VPRB QTECH(config) #show vprb # **Chapter 4 DHCP Configuration** ## 4.1 Brief introduction of DHCP DHCP messages are usually broadcast packets. So to use DHCP to allocate IP for hosts in a three-level architectured network, there need be a DHCP server in every broadcast domain. In a three-level architectured network constructed with QTECH 3650, a DHCP server is put in each VLAN. This is a greate waste of resources. A solution to this is to use the DHCP relay feature of S3200-24T, which relays DHCP messages to DHCP servers. Thus only one DHCP server is needed at least. The system support following DHCP features: - DHCP Relay; - Configure DHCP servers for every VLAN; - DHCP client # **4.2 DHCP Configuration** # 4.2.1 DHCP Configuration list DHCP Configuration list is as following: - Enable DHCP Relay - Configure DHCP server for each VLAN - option82 # 4.2.2 Enable DHCP relay By default, DHCP relay is disabled. To enable DHCP relay, use the following command: Enable DHCP relay #### dhcp-relay Disable DHCP relay #### no dhcp-relay To show DHCP relay status, try the command in any configuration mode: Show DHCP relay status ## show dhcp-relay ## Example: ! Enable DHCP relay QTECH(config)#dhcp-relay ! Disable DHCP relay QTECH(config)#no dhcp-relay ! Show DHCP relay status QTECH(config)#show dhcp-relay # 4.2.3 Support relay option82 Option82 is the Relay Agent Information option in DHCP packet defined by rfc 3046. When DHCP client sending requiry packet to DHCP relay, option82 will be added to packet. Administrator can get DHCP client location info from Option 82 to realize security and accounting control. Server supported Option 82 can provide agile address assignment from IP and other parameters. option82 in this chapter supports sub-option1(Circuit ID) and sub-option2(Remote ID). Tw o ways for configuring Option 82: **User-define**: user specifies Option 82 manually; Non-user-define: use default normal/verbose mode. Normal and verbose format are as following: #### 1. Normal format sub-option 1 contains VLAN ID which the port which received request packet from DHCP client belongs to and port number. As shown in following picture, sub-option type is 1, circuit id is 0. | Suboption type(0x01) | Length(0x06) | Circuit ID type(0x00) | Length(0x04) | |----------------------|--------------|-----------------------|--------------| | VLAN ID | | Interface Number | | sub-option 2 contains MAC address of the port which received request packet from DHCP client (DHCP relay) or DHCP SNOOPING device. As shown in following, sub-option type is 2, remote ID type is 0 sub-option2: | Suboption type(0x02) | Length(0x08) | Remote ID type(0x00) | Length(0x06) | | | |----------------------|--------------|----------------------|--------------|--|--| | MAC Address | | | | | | #### 2. verbose format sub-option 1 contains node-identifier, type of port which received request packet from DHCP client, port number and VLAN ID. As shown in following (attention: only the length of VLAN ID is 2 bytes and others can be changed). | Suboption type(0x01) | Length | Node identifier | |----------------------|--------|-----------------| | Interface type | | | | VLAN ID | | | sub-option 2 contains MAC address of the port which received request packet from DHCP client (DHCP relay) or DHCP SNOOPING device. Verbose and normal format contains the same as sub-option 2. Relay device will add option 82 content when received DHCP_DISCOVER and DHCP_REQUEST packet from client and send to server. The received server will strip option82 content before transmit to client. Enable option82 ## dhcp option82 Disable option82 ## no dhcp option82 Configure dhcp option82 strategy ### dhcp option82 strategy {drop|keep|replace} Restore to default dhcp option82 strategy ## no dhcp option82 strategy Configure option82 format dhcp option82 format {normal | verbose [node-identifier { mac | hostname | user-defined node-identifier }] } Restore to default option82 format #### no dhcp option82 format Restore to default node-identifier of option82 verbose #### no dhcp option82 format verbose node-identifier Configure user-defined Circuit ID #### dhcp option82 circuit-id string circuit-id Cancel user-defined Circuit ID ## no dhcp option82 circuit-id string Configure user-defined Remote ID ### **dhcp option82 remote-id string** { *remote-id* | *hostname*} Cancel user-defined Remote ID ## no dhcp option82 remote-id string Show option82 configuration ## show dhcp option82 ## 4.3 DHCP SNOOPING It is a feature of level 2. It allow the switch to listen to DHCP messages and record IP information of hosts. This feature cannot be enabled when DHCP relay is on. When this feature is enabled, all the DHCP messages will be filterd through
CPU and then be forwarded. To make hosts abtain Ips through valid DHCP servers, DHCP snooping divide ports into trust ones and untrust ones. Only messages from servers coming from the trust ports will be forwarded. Thus invalid servers are kept off. For security, DHCP snooping can limit the max number of hosts for a port or for a VLAN in order to avoid animus attack. ## 4.3.1 Enable DHCP SNOOPING By default, DHCP Snooping is disabled. Enable it in global configuration mode Enable DHCP SNOOPING ## dhcp-snooping ## 4.3.2 Configure trust ports Specify some port as trust port. In general, vlaid servers are connected to the trust ports. • Specify port as trust port ## dhcp-snooping trust # 4.3.3 Configure max host number With max host number specified for ports or VLAN, we can avoid animus hosts'ip abtian attacktin by DOS and protect servers. Configre port/VLAN max host number dhcp-snooping max-clients num # 4.3.4 Configure IP source guard Prevent IP address stolen through IP source guard. Configure interface IP source guard #### ip-source-guard # 4.3.5 IP source guard bind After configuring IP source guard bind, the entry can get online without dhcp. Configure IP source guard bind ip-souce-guard bind ip ip-address [mac mac [interface ethernet interface-num]] # 4.3.6 Show DHCP SNOOPING configuration of ports DHCP SOOPING of ports configuration can be displayed by this command. • Show DHCP snooping configuration of ports **show dhcp-snooping interface** [*interface-num*] # 4.3.7 Show DHCP SNOOPING configuration of VLANs DHCP SOOPING configuration of VLANs can be displayed by this command. Show DHCP snooping configuration of VLANs show dhcp-snooping vlan ## 4.3.8 Show information of clients Show clients' information of ip address, mac address and port number. Show information of clients ## show dhcp-snooping clients Clear DHCP SNOOPING Entry Delete dhcp snooping entry clear dhcp-snooping { mac mac-address | ip ip-address | interface ethernet interface-num | vlan vlan-id } #### 4.3.9 N:1 VLAN After enabling this function, we can establish downlink data VLAN mapping to multiple VLAN according to the new user info learnt by DHCP SNOOPING. dhcp-snooping nto1-vlan # **Chapter 5 Multicast Protocol Configuration** ## 5.1 Brief introduction of GMRP GMRP (GARP Multicast Registration Protocol) is a kind of application of GARP (Generic Attribute Registration Protocol), which is based on GARP working mechanism to maintain the dynamic multicast register information in switch. All switches supported GMRP can receive multicast register information from other switches and upgrade local multicast register information dynamically and transfer it to other switches to make the consistency of multicast information of devices supported GMRP in the same switching network. Multicast register information transferred by GMRP includes local manual configuration of static multicast register information and the dynamic multicast register information of other switch. # **5.2 GMRP Configuration** # 5.2.1 GMRP Configuration list In all configurations, enable global GMRP first before enable GMRP on a port. GMRP Configuration list is as following: - Enable/disable global GMRP - Enable/disable GMRP on a port - Display GMRP - Add/delete multicast that can be dynamic learnt by GMRP - Display multicast that can be learnt by GMRP # 5.2.2 Enable/disable global GMRP Please configure it in global configuration mode: Enable global GMRP #### gmrp Disable global GMRP #### no gmrp By default, GMRP globally disables #### For example: !Enable GMRP globally QTECH(config)#gmrp +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 # 5.2.3 Enable/disable GMRP on a port Enable global GMRP before enable GMRP on a port. Please configure it in interface configuration mode: Enable GMRP on a port #### gmrp Disable GMRP on a port ## no gmrp #### For example: ``` !Enable GMRP on Ethernet port 3 QTECH(config-if-ethernet-0/3) #gmrp ``` Caution: Enable global GMRP before enable GMRP on a port. By default, global GMRP deisables and GMRP on a port can be enabled in trunk mode interface. # 5.2.4 Display GMRP • Use following command in any configuration mode to display global GMRP: ## show gmrp • Use following command in any configuration mode to display GMRP on a port: ## show gmrp interface [interface-list] *Interface-list* keyword is optional. If this keyword unspecified, the command displays GMRP information for all the Ethernet ports. If specified, the command displays GMRP information on specified Ethernet port. #### For example: ``` !Display GMRP information of Ethernet 0/2 to ethernet 0/4 ethernet 2/1 QTECH(config) #show gmrp interface ethernet 0/2 to ethernet ethernet 2/1 port GMRP status e0/2 enable e0/3 enable e0/4 enable e^{2/1} enable Total entries: 4. ``` # 5.2.5 Add/delete multicast that can be dynamic learnt by GMRP Add configured static multicast group to GMRP for other switch learning it. ``` +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 ``` ## garp permit multicast [mac-address mac vlan vlan-id] ## Example: Add multicast group 01:00:5e:00:01:01 vlan 1 to GMRP QTECH(config) #garp permit multicast mac-address 01:00:5e:00:01:01 vlan 1 # 5.2.6 Display multicast that can be learnt by GMRP Display multicast group can be statically learnt by GMRP. show garp permit multicast For example: Display multicast group that can be statically learnt by GMRP QTECH(config) #show garp permit multicast # **5.3 IGMP Snooping Configuration** # 5.3.1 Brief introduction of IGMP Snooping IGMP (Internet Group Manangement Protocol) is a part of IP protocol which is used to support and manage the IP multicast between host and multicast router. IP multicast allows transferring IP data to a host collection formed by multicast group. The relationship of multicast group member is dynamic and host can dynamically add or exit this group to reduce network load to the minimum to realize the effective data transmission in network. IGMP Snooping is used to monitor monitor IGMP packet between host and routers. It can dynamically create, maintain and delete multicast address table according to the adding and leaving of the group members. At that time, multicast frame can transfer packet according to his own multicast address table. # 5.3.2 IGMP Snooping configuration Use following command to control IGMP Snooping to establish the MAC address multicast transmission table in layer 2. Use following command in global configuration mode: Enable IGMP Snooping #### igmp-snooping Disable IGMP Snooping ## no igmp-snooping By default, IGMP Snooping disables. Display IGMP Snooping Use following command in any mode to see IGMP Snooping: ## For example: !Display IGMP snooping information QTECH(config) #show igmp-snooping # 5.3.3 IGMP Snooping multicast interface aging time configuration Use following command in global configuration mode to configure host-aging-time dynamic multicast group learnt by igmp-snooping: ## igmp-snooping host-aging-time Use following command to display host-aging-time dynamic multicast group learnt by igmp-snooping: ### show igmp-snooping ## For example: !Configure host-aging-time of the dynamic multicast group learnt by igmp-snooping to be 10 seconds QTECH(config) #igmp-snooping host-aging-time 10 # 5.3.4 IGMP Snooping max-response-time configuration Configure the max response time to delete group interface when receiving a leave packet: ## igmp-snooping max-response-time seconds Use this command in global configuration mode. #### For example: !Configure the max-response-time of igmp-snooping is 13 seconds QTECH(config) #igmp-snooping max-response-time 13 # 5.3.5 IGMP Snooping interface fast-leave configuration Configure interface fast-leave when fast-leave enables, if the fast-leave packet is received, the interface leaves the aging group, or the time to leave is determined by the max-response-time: ### igmp-snooping fast-leave Use this command in interface configuration mode. #### For example: ``` !Enable igmp-snooping fast-leave QTECH(config-if-ethernet-0/1)#igmp-snooping fast-leave +7(495)797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 ``` # 5.3.6 Configure the number of the multicast group allowed learning Use **igmp-snooping group-limit** command to configure the number of the multicast group allowed learning. ## igmp-snooping group-limit limit Use this command in global configuration mode. ## For example: ``` !Configure the igmp-snooping group-limit to be 10 QTECH(config-if-ethernet-0/1) #igmp-snooping group-limit 10 ``` # 5.3.7 IGMP Snooping permit/deny group configuration Configure igmp-snooping permit/deny group and default group learning regulation. • Configure *igmp-snooping permit/deny group* in interface configuration mode: # igmp-snooping permit/deny group group-address igmp-snooping permit/deny group-range group-address multi-count <1-64> vlan vlan-id • Configure igmp-snooping default group learning regulation in global configuration mode: ## igmp-snooping deny/permit group all #### For example: ``` !Configure Ethernet 0/1 not to learn multicast 01:00:5e:00:01:01 QTECH(config-if-ethernet-0/1)#igmp-snooping deny group 01:00:5e:00:01:01 !Configure Ethernet 0/1 not to learn the first 32 seriate MAC address of multicast 01:00:5e:00:01:01 QTECH(config-if-ethernet-0/0/1)#igmp-snooping deny group-range 01:00:5e:01:01:01 multi-count 32 vlan 1 !Configure the learning regulation of default group to allow all multicast group QTECH(config)#igmp-snooping permit group all ``` # 5.3.8 IGMP Snooping route-port forward configuration Multicast routers interface is the interface received IGMP inquiring packet (It is also called mix router interface). Use igmp-snooping route-port forward command to configure whether to add router interface to IGMP snooping learning group. By default, router interface to IGMP snooping learning group is not added. Use following command in global configuration mode: # igmp-snooping route-port forward no
igmp-snooping route-port forward ## For example: !Enable igmp-snooping route-port forward QTECH(config)#igmp-snooping route-port forward # 5.3.9 Enable/disable IGMP Snooping querier To set up multicast route table, send IGMP query packet. The unit to send the packet is called querier. Enable or disable querier sending IGMP query packet. It is defaulted not to send. Configure it in global configuration mode: # igmp-snooping querier no igmp-snooping querier #### Example: !Enable igmp-snooping querier QTECH(config)# igmp-snooping querier # 5.3.10 Configure IGMP Snooping query-interval Configure interval of sending IGMP query. It is defaulted to be 60s. Configure it in global configuration mode: # igmp-snooping query-interval seconds no igmp-snooping query-interval ## Example: !Configure interval of sending IGMP query to be 90s QTECH(config) # igmp-snooping querier 90 # 5.3.11 Configure IGMP Snooping querier vlan Sending IGMP query must specify vlan. Packet will be transferred to all ports of this vlan. Configure vlan which IGMP query sent by querier to be sent to. It is defaulted to be vlan 1 Configure it in global configuration mode: igmp-snooping querier-vlan vlanID no igmp-snooping querier-vlan ### Example: !Configure querier sending query to vlan 10 QTECH(config)# igmp-snooping querier-vlan 10 # 5.3.12 Configure IGMP Snooping query max response Configure the max response after receiving query, that is the response value in IGMP query. It is defaulted to be 10s. Configure it in global configuration mode: # igmp-snooping query-max-respon second no igmp-snooping query-max-respon ### Example: !Configure the max response after receiving query to be 15s QTECH(config)# igmp-snooping query-max-respon 150 # 5.3.13 Configure IGMP Snooping query source IP Configure IGMP query source IP to demonstrate the destination IP to response to. It is defaulted to be 0.0.0.0 Configure it in global configuration mode: # igmp-snooping general-query source-ip ipaddress no igmp-snooping general-query source-ip #### Example: !Configure IGMP query source IP to be 1.1.1.111 QTECH(config) # igmp-snooping general-query source-ip 1.1.1.111 # 5.3.14 Configure IGMP Snooping route port aging The port receiving IGMP query is called multicast route port. Configure the aging of route port. It is defaulted to be aging. Configure it in global configuration mode: # no igmp-snooping router-port-age igmp-snooping router-port-age #### Example: Configure the route port aging no igmp-snooping router-port-age ## 5.3.15 Add IGMP Snooping route port Added route port demonstrates the transferred port of leave or report packet of the host in the same multicast. Configure uplink route port of host responsing packet. Configure it in global configuration mode: igmp-snooping route-port vlan vlanID interface port-number no igmp-snooping route-port vlan vlanID interface port-number #### Example: Configure e0/0/1 of vlan 2 to be route port of current group(determined by source IP of querier) igmp-snooping route-port vlan 2 interface ethernet 0/1 ## 5.3.16 Configure IGMP Snooping multicast VLAN This command is for specify a vlan for a port. All IGMP packets detected by IGMP snooping are considered from this vlan. And the Vlan ID in the IGMP packets will be ignored. This function will be effective as soon as the multicast vlan is created. Configure it in interface configuration mode: ## igmp-snooping multicast vlan *vlan-id* no igmp-snooping multicast vlan #### Example: !Configure igmp-snooping multicast vlan of Ethernet 0/1 to be vlan 2 QTECH(config-if-ethernet-0/1)#igmp-snooping multicast vlan 2 ## 5.3.17 Enable/disable IGMP Snooping preview IGMP Snooping provides multicast preview. Use following command to enable/disable IGMP Snooping preview. Configure following commands in global configuration mode: Enable IGMP Snooping preview #### igmp-snooping preview Disable IGMP Snooping preview #### no igmp-snooping preview By default, IGMP Snooping preview is disabled. #### Example: !Enable IGMP Snooping preview QTECH(config) #igmp-snooping preview ## 5.3.18 IGMP Snooping preview parameter IGMP Snooping preview can configure preview time, time interval, reset time and preview times. Use following commands to configure IGMP Snooping preview parameter. Use these commands in global configuration mode: Configure IGMP Snooping preview parameter **igmp-snooping preview** { **time-once** *time-once* **time-interval** *time-interval* **time-reset** *time-reset time-once* **time-interval time-interval time-reset** *time-once* **time-interval time-interval time-interval time-reset** *time-once* **time-interval time-interval time-interval time-once time-once time-once time-interval time-interval time-interval time-once time-once time-once time-interval time-interval time-once time-once time-once time-interval time-interval time-once time-once time-once time-once time-once time-interval time-interval time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-once time-onc** Restore to default IGMP Snooping preview parameter no igmp-snooping preview { time-once time-interval time-reset permit-times } #### Parameter: *time-once*: preview time for one time which is 60-300s. The default is 180s. *time-interval*: preview interval which is 180-600s. The default is 300s. *time-reset*: preview reset time which is 1800-7200s. The default is 3600s. *preview-times*: permited preview times which is 1-10. The default is 5 #### For example: !Configure IGMP Snooping preview rime to be 60s, preview interval to be 180s and permitted preview times to be 8 QTECH(config)#igmp-snooping preview time-once 60 time-interval 180 permit-times 8 ## 5.3.19 IGMP Snooping Multicast preview group configuration IGMP Snooping multicast preview is for specific group. Use following commands to add or delete IGMP Snooping multicast preview. Use these commands in global configuration mode: Add IGMP Snooping multicast preview group igmp-snooping preview group-ip A.B.C.D vlan vlan-id interface ethernet port-id Delete IGMP Snooping multicast preview group no igmp-snooping preview group-ip A.B.C.D vlan vlan-id interface ethernet port-id #### Parameter: A.B.C.D: Multicast ip address which is in the range of 224.0.0.1-239.255.255.254 vlan-id: multicast vlan which is in the range of 1-4094 port-id: multicast port number the range is determined by device type #### For example: !Add an IGMP Snooping multicast preview group +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 QTECH(config) #igmp-snooping preview group-ip 224.0.0.9 vlan 20 interface ethernet 0/1 ## 5.3.20 Display IGMP Snooping multicast preview Display IGMP Snooping multicast preview in any mode: Display current multicast preview configuration #### show igmp-snooping preview Display current multicast preview status #### show igmp-snooping preview status #### For example: !Display current IGMP Snooping preview comfiguration QTECH(config) #show igmp-snooping preview ## 5.3.21 IGMP Snooping profile IGMP Snooping can provide profile for permit and deny. Create profile first and configure profile in interface configuration mode. Use following commands in global configuration mode: Create profile and enter profile configuration mode #### igmp-snooping profile profile-id Delete specific profile, which is not been used by port #### no igmp-snooping profile [profile-list] #### Parameter: profile-id: profile id ranges from 1-16profile-list: profile list ranges from 1-16 #### Example: !Create IGMP Snooping profile 1 QTECH(config)#igmp-snooping profile 1 ## **5.3.22 IGMP Snooping profile configuration** Use following command in profile configuration mode to configure IGMP Snooping profile permit or deny multicast IP or MAC. Configure profile type. Permit is by default. Profile which is used by port cannot be modified. #### profile limit { permit | deny } Multicast IP addr range. If vlan is not specified, it is for all vlan ip range start-ip end-ip [vlan vlan-id] Multicast MAC addr range. If vlan is not specified, it is for all vlan mac range start-mac end-mac [vlan vlan-id] Delete IP range no ip range [start-ip end-ip [vlan vlan-id]] • Delete MAC range no mac range [start-mac end-mac [vlan vlan-id]] #### Parameter: *Profile type*: permit and deny. When profile is permit, it can only learn the multicast group in profile. When it is deny, it is not permitted learning multicast group in profile. start-ip: IP ranges from 224.0.0.1-239.255.255.254 end-ip: IP ranges from 224.0.0.1-239.255.255.254 start-mac: MAC ranges from 01:00:5e:H:H:H and it should start with 01:00:5e end-mac: MAC ranges from 01:00:5e:H:H:H,and it should start with 01:00:5e vlan-id: multicast used vlan ranges from 1-4094 #### Example: ``` !Configure IP and MAC addr of IGMP Snooping profile 1 and specify the type is deny QTECH(config-igmp-profile-1)#ip range 224.0.0.1 224.0.0.10 vlan 1 QTECH(config-igmp-profile-1)#mac range 01:00:5e:00:00:22 01:00:5e:00:00:33 QTECH(config-igmp-profile-1)#profile limit deny ``` ## 5.3.23 IGMP Snooping profile refer configuration IGMP Snooping profile can only be effective after it is referred by port. When there are multiple profiles are referred, they must be with the same type, that is, there can be only permit or only deny. If there is no profile referred by this port, it can learn all multicast groups. Configure it in interface configuration mode: Specify the profile list for port #### igmp-snooping profile refer profile-list Cancel port referred profile list no igmp-snooping profile refer [profile-list] #### Parameter: #### profile-list: profile list ranges from 1-16 #### Example: ``` !Configure port 1 referring profile 1 and 3 QTECH(config-if-ethernet-0/1) #igmp-snooping profile refer 1,3 ``` ## 5.3.24 Show IGMP Snooping profile Use following command in
any configuration mode: Show profile info in profile list #### show igmp-snooping profile [profile-list] Show profile info in port list #### show igmp-snooping profile interface [port-list] #### Parameter: ``` profile-list: profile list ranges from 1-16 port-list: port list ``` #### Example: ``` !Show profile 1, 2, 3 QTECH(config) #show igmp-snooping profile 1-3 ``` ## 5.3.25 igmp-snooping record-host Use following command to record host mac. ## igmp-snooping record-host no igmp-snooping record-host - Command configuration mode - Global configuration mode or interface mode #### Example ``` !Enable record host QTECH(config)#igmp-snooping record-host ``` ## 5.3.26 igmp-snooping drop query Use this command to configure drop igmp query. igmp-snooping drop query no igmp-snooping drop query Command configuration mode Interface configuration mode #### Example: !Configure drop igmp query packet in port 1 QTECH(config-if-ethernet-0/1)#igmp-snooping drop query ## 5.3.27 igmp-snooping drop report Use this command to drop igmp report packet. ## igmp-snooping drop report no igmp-snooping drop report - Command configuration mode - Interface configuration mode #### Example: !Configure port 1 to drop igmp report packet QTECH(config-if-ethernet-0/1) #igmp-snooping drop report ## 5.3.28 show igmp-snooping record-host Use this command to show igmp record-host. #### show igmp-snooping record-host - Command configuration mode - Any mode #### Example: !Show igmp record host QTECH(config) #show igmp-snooping record-host #### 5.3.29 show multicast interface Use this command to show multicast group learnt by port. #### show multicast interface - Command configuration mode - Any mode #### Example: !Show multicast group learnt by port 1 QTECH(config) #show multicast interface ethernet 0/1 ## **5.4 MLD Snooping Configuration** ## 5.4.1 MLD Snooping protocol overview MLD (Multicast Listener Discovery) is a part of IPv6 protocol which supports and manages IP multicast between host and multicast route. IP multicast permits transferring IP packets to a host clump which constructing a multicast group. Multicast group members are dynamic. Host can dynamically add or leave the group to reduce the network loading. MLD Snooping is for detecting MLD packet between host and router. It can dynamically create, maintain and delete multicast address table according to the adding and leaving of the group members. Multicast packet is transferred according to their own multicast address. ## **5.4.2 MLD Snooping Configuration** Use following commands to enable/disable MLD Snooping create mac address multicast transferring table in L2. Configure it in global configuration mode: • Enable MLD Snooping #### mld-snooping Disable MLD Snooping #### no mld-snooping By default, MLD Snooping is disabled. Display MLD Snooping status #### show mld-snooping #### For example: !Display MLD Snooping status QTECH(config) #show mld-snooping Enable/disable MLD Snooping of some VLAN In VLAN mode, use following commands: Enable MLD Snooping under VLAN #### mld-snooping Disable MLD Snooping under VLAN #### no mld-snooping By default, MLD Snooping under vlan is disabled ## 5.4.3 MLD Snooping host aging time Use following command to configure MLD-snooping host agint time in global configuration mode: #### Mld-snooping host-aging-time Use following command to show mld-snooping host aging time: #### show mld-snooping #### For example: !Configure mld snooping host aging time to be 10s QTECH(config)#mld-snooping host-aging-time 10 ## 5.4.4 MLD Snooping Max response time Configure max response time when receiving leave packet in global configuration mode: Mld-snooping max-response-time seconds #### For example: !Configure MLD-Snooping max response time to be 13s QTECH(config) #mld-snooping max-response-time 13 ## 5.4.5 MLD Snooping fast leave This function is for controlling aging port after receiving leave packet in interface mode: #### Imld-snooping fast-leave #### For example: !Enable mld-snooping fast-leave QTECH(config-if-ethernet-0/1) #mld-snooping fast-leave ## 5.4.6 MLD Snooping max learnt multicast number Configure max learnt multicast number in global configuration mode: #### Mld-snooping group-limit *limit* #### For example: !Configure max learnt multicast number to be 10 QTECH(config-if-ethernet-0/1) #mld-snooping group-limit 10 ## 5.4.7 MLD Snooping permit/deny group Configure mld-snooping permit/deny group and learning rules. In interface mode: #### mld-snooping permit/deny group group-address In global configuration mode: #### mld-snooping deny/permit group all #### For example: ``` !Configure port deny group 33:33:00:00:01:01 QTECH(config-if-ethernet-0/1)#mld-snooping deny group 33:33:00:00:01:01 !Configure learning group all QTECH(config)#mld-snooping permit group all ``` ## 5.4.8 Configure MLD Snooping route-port forward The port receiving MLD query packet is called multicast route port. Configure add route-port to MLD Snooping learnt dynamic multicast in global configuration mode. By default, it is not added. ## mld-snooping route-port forward no mld-snooping route-port forward #### For example: !Add route port to MLD Snooping learnt dynamic multicast QTECH(config) #mld-snooping route-port forward ## 5.4.9 Enable/disable MLD Snooping querier Configure querier to send MLD general query or not. It is disabled by default. Configure it in global configuration mode: ## mld-snooping querier no mld-snooping querier #### For example: +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 !Enable querier to send MLD general query QTECH(config)# mld-snooping querier ## 5.4.10 Configure MLD Snooping querier sending interval The default sending interval is 60s. Configure it in global configuration mode: mld-snooping query-interval seconds no mld-snooping query-interval #### For example: !Configure MLD query sending interval to be 90s QTECH(config) # mld-snooping query-interval 90 ## 5.4.11 Configure MLD Snooping max-response time By default, the max-response time is 10s Configure it in global configuration mode: mld-snooping query-max-respon second no mld-snooping query-max-respon #### For example: !Configure the max-response time to be 15s QTECH(config)# mld-snooping query-max-respon 15 ## 5.4.12 Configure MLD Snooping router-port aging By default, router-port will be aged. Configure it in global configuration mode: no mld-snooping router-port-age mld-snooping router-port-age { on | off | age-time } show mld-snooping router-dynamic #### For example: !Restore to default router-port aging time QTECH(config) #no mld-snooping router-port-age !Disable router-port aging QTECH(config) #mld-snooping router-port-age off !Enable router-port aging +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 QTECH(config) #mld-snooping router-port-age on !Configure router-port aging time to be 60s QTECH(config) #mld-snooping router-port-age 60 ## 5.4.13 Add MLD Snooping router-port Configure it in global configuration mode: mld-snooping route-port vlan *vlanID* interface *port-number* no mld-snooping route-port vlan *vlanID* interface *port-number* show mld-snooping router-static #### For example: !Configure port 1 of vlan 2 to be router-port QTECH(config)#mld-snooping route-port vlan 2 interface ethernet 0/0/1 ## 5.4.14 MLD Snooping multicast VLAN Specify a vlan for a port. All MLD packets packets detected by MLD Snooping will be considered from this vlan. The vlan ID in MLD packet will be ignored. Multicast VLAN will be effective after creation. Configure it in interface configuration mode: ## mld-snooping multicast vlan *vlan-id* no mld-snooping multicast vlan #### For example: !Configure multicast vlan of e0/1 to be vlan 2 QTECH(config-if-ethernet-0/1)#mld-snooping multicast vlan 2 ## 5.4.15 Display MLD Snooping group Show MLD Snooping group in any mode: #### show mld-snooping group #### For example: !Show MLD Snooping group QTECH(config)#show mld-snooping group ## 5.5 Static Multicast Configuration #### 5.5.1 Brief introduction of Static Multicast Static multicast configuration command is used to crewate multicast group and add interfaces to it. If the switch supports multicast, when receiving multicast packet, detect whether there is multicast group. If it doesn't exist, transfer the multicast packet as broadcast packet. If it exists, transfer the multicast packet to all interface members of this multicast group. ## **5.5.2 Static Multicast Configuration** ### 5.5.2.1 Static Multicast Configuration list Configure static multicast in following turns: - Create multicast group - Add interfaces to multicast group - Display multicast group information - Delete interface members from multicast group - · Delete multicast group ### 5.5.2.2 Create multicast group Use following command in global configuration mode to create a multicast group: #### multicast mac-address mac vlan vlan-id *mac*: The mac address of multicast group displayed in the form of multicast address, such as: 01:00:5e:**:**:**. vlan-id ranges from 1 to 4094. If the VLAN doesn't exist, the multicast group adding fails. #### Example: ``` !Create a multicast group to VLAN 1 with the mac address being 01:00:5e:01:02:03 QTECH(config) #multicast mac-address 01:00:5e:01:02:03 vlan 1 ``` ### 5.5.2.3 Add interfaces to multicast group Use **multicast mac-address vlan interface** command in global configuration mode to add interface to existed multicast group: multicast mac-address mac vlan vlan-id interface { all | interface-list } *mac*: Means mac address of existed multicast which is in the form of multicast mac-address, such as: 01:00:5e:**:**. *Vlan-id* ranges from 1 to 4094. Multicast group is assembled by *vlan-id* and *mac-address*. *Interface-list* is optional. If all is chosen, all interfaces in system in **multicast mac-address vlan interface** command. If the VLAN doesn't exist, the multicast group adding fails. #### For example: ``` !Add interface Ethernet 0/2 to ethernet 0/4 ethernet 0/8 to
existed multicast group QTECH(config) #multicast mac-address 01:00:5e:01:02:03 vlan 1 interface ethernet 0/2 to ethernet 0/4 ethernet 0/8 ``` #### 5.5.2.4 Display multicast group information Use **show multicast** command to display the information of the specified or all existed multicast group which includes multicast group interface information, IGMP interface list information: #### **show multicast** [mac-address mac] *Mac* is the mac address existed in multicast group. If mac-address is not specified, input **show multicast** command, information of the entire multicast group is displayed. #### For example: ``` !Display the information of multicast group with the MAC address to be 01:00:5e:01:02:03 QTECH(config) #show multicast mac-address 01:00:5e:01:02:03 show multicast table information ``` _____ MAC Address : 01:00:5e:01:02:03 VLAN ID : 1 Static port list : e0/2, e0/3, e0/4, e0/8. IGMP port list Dynamic port list Total entries: 1. ## 5.5.2.5 Delete interface members from multicast group Use following command in global configuration mode to delete multicast interface member: #### **no multicast mac-address** *mac* **vlan** *vlan-id* **interface** { **all** | *interface-list* } The meaning of *mac*, *vlan-id and interface-list* is the same as that in adding interfaces. Interface in *interface-list* means the interface member existed in multicast group. All means all the members in multicast group. #### For example: !Delete interface ethernet 5, 6 from existed multicast group. QTECH(config) #no multicast mac-address 01:00:5e:01:02:03 vlan 1 interface ethernet 0/5 ethernet 0/6 ### 5.5.2.6 Delete multicast group Use following command in global configuration mode to delete specified mac address and the multicast group of specified VLAN ID or all multicast groups: #### no multicast [mac-address mac vlan vlan-id] The meaning of *mac*, *vlan-id* and *interface-list* is the same as that above. They are corresponded to be existed multicast group. #### For example: !Delete multicast group with the mac address being 01:00:5e:01:02:03 and VLAN ID being 1 QTECH(config) #no multicast mac-address 01:00:5e:01:02:03 vlan 1 ## **Chapter 6 ACL Configuration** #### 6.1 Brief introduction of ACL #### 6.1.1 Introduction of ACL In order to filtrate data packet, it needs configuring a series of matching rules to recognize the object which needs filtration. After recognizing special object, it can configure to permit or deny corresponded data packet passing according to the scheduled strategy. Access Control List (ACL) is used to realize this function. ACL can classifies data packet according to a series of matching condition which can be source address, destination address and interface number. Switch detects data packet according to the specified condition of ACL to determine to transmit or drop. Data packet matching rules defined by ACL can be introduced to other situation which needs distinguish flow, such as the flow classification in QoS. ## **6.1.2 Matching order configuration** An ACL rule consists of many "permit | deny" syntax, and the range of data packet specified by each syntax is different. When matching a data packet and ACL rule, there should be order. Use following command to configure ACL matching order: access-list access-list-number match-order { config | auto } #### Parameter: access-list-number. the number of ACL rule which is in the range of 1 to 399. config: Specify user configured order when matching this rule. auto: Specify auto-sequencing when matching this rule. (according to the deep precedency) It is defaulted to specify user configured order, that is "config". Once user configures the matching order of an ACL rule, it cannot be changed unless delete the content of the rule and re-configure its order. The deep precedency used by *auto* means locating the syntax with the smallest data range at the end, which can be realized by comparing address wildcard. The smaller the wildcard value is, the smaller range the host has. For example, 192.168.3.1 0 specifies a host: 192.168.3.1, while 192.168.3.1 0.0.255.255 specifies a network interface: 192.168.3.1~192.168.255.255. The former is before the latter in ACL. The concrete rule is: For standard ACL syntax, compare source address wildcard, if their wildcard is the same, use config order; for layer 2 ACL, the rule with "any" is in the front, others use config order; for extended ACL, compare source address wildcard, if they are the same, compare destination address wildcard, if they are the same, compare interface number range, the smaller is in the back, if the interface number range is the same, use config order; for user-defained ACL, compare the length of mask, the longer is in the back, if they are the same, use config order. ## 6.1.3 ACL support ACL can be classified as following: ACL is the command control list applied to switch. These command is used to tell switch which data packet to receive and which to refuse. It consists of a series of judging syntax. After activating an ACL, switch will examine each data packet entering switch according to the judging condition given by ACL. The one which satisfies the ACL will be permit or dropped according to ACL. QOS introduces the permit rule configuration. In system, the ACL can be classified as following: - Standard ACL based on number ID - Standard ACL based on name ID - Extended ACL based on number ID - Extended ACL based on name ID - Layer 2 ACL based on number ID - Layer 2 ACL based on name ID The restriction to every ACL and number of QOS action is as following table: ACL number restriction | Standard ACL based on number ID | 1-99 | 99 | |---|---------|------| | Extended ACL based on number ID | 100-199 | 100 | | Layer 2 ACL based on number ID | 200-299 | 100 | | Standard ACL based on name ID | | 1000 | | Extended ACL based on name ID | | 1000 | | Layer 2 ACL based on name ID | | 1000 | | Sub-rule number which can be configured by an ACL | 0-127 | 128 | | The max sub-rule number which can be configured | | 3000 | | Time range | | 128 | | The absolute time range which can be configured by a time range | | 12 | | The periodic time range which can be configured by a time range | | 32 | | Sub-item of activating ACL | | 460 | ## **6.2 ACL configuration** ## 6.2.1 Configuration list ACL configuration includes: - Configure time range - Define ACL #### Activate ACL Above three steps should be in order. Configure time range at first, then defaine ACL which will introduce defined time range and activate ACL ## 6.2.2 Configure time range Enter time-range configuration mode Use **time-range** command to enter time-range configuration mode. In this mode, you can configure time range. Configure it in global configuration mode. Command: #### time-range time-range-name There are two kinds of configuration: configure absolute time range and periodic time range. Configuring absolute is in the form of year, month, date, hour and minute. Configuring periodic time range is in the form of day of week, hour and minute. Create absolute time range Use following command to configure it. Configure it in time-range configuration mode. Configure absolute time range: absolute [start time date] [end time date] Delete absolute time range: no absolute [start time date] [end time date] If the start time is not configured, there is no restriction to the start time.; if endtime is not configured, the end time can be the max time of system. The end time must be larger than start time. Absolute time range determines a large effective time and restricts the effective time range of periodic time. It can configure 12 absolute time range. Create periodic time range Use following command to configure periodic time range. Configure it in time-range configuration mode. Command: **periodic** days-of-the-week hh:mm:ss **to** [day-of-the-week] hh:mm:ss **no periodic** days-of-the-week hh:mm:ss **to** [day-of-the-week] hh:mm:ss The effective time range of periodic time is a week. It can configure at most 32 periodic time #### 6.2.3 Define ACL Switch supports many ACL. Followings are how to define it: Define standard ACL Switch can defaine at most 99 standard ACL with the number ID (the number is in the range of 1 to 99), at most 1000 standard ACL with the name ID and totally 3000 sub-rules. It can define 128 sub-rules for an ACL (this rule can suit both ACL with name ID and number ID). Standard ACL only classifies data packet according to the source IP information of IP head of data packet and analyse the matching data packet. The construction of IP head refers to RFC791. Define standard ACL based on number ID Standard ACL based on number ID is using number to be ID of standard ACL. Use following command to define standard ACL based on number ID. (1) Configure it in global configuration mode. Command: access-list access-list-number { deny | permit } { source-addr source-wildcard | any } [fragments] [time-range time-range-name] (2) Define the matching order of ACL: access-list access-list-number match-order { config | auto } (3) Delete all the subitems or one subitem in one ACL with number ID or name ID or all ACLs. no access-list { all | { access-list-number | name access-list-name } [subitem] } Use **access-list** command repeatedly to define more rules for the same ACL. If parameter time-range is not used, this ACL will be effective at any time after activation. Concrete parameter meaning refers to corresponded command line. 2. Define standard ACL with name ID. Standard ACL with name ID is using name ID to identify standard ACL. Instruction: Defining standard ACL with name ID should enter specified configuration mode: use **access-list** standard in global configuration mode which can specify matching order of ACL. Use **exit** command to be back from this mode. Use following commands to define standard ACL with name ID. Configure it incorresponded mode.
Command: - (1) Enter standard ACL with name ID configuration mode(global configuration mode) access-list standard name [match-order { config | auto }] - (2) Defining standard ACL rule(standard ACL with name ID configuration mode) { permit | deny } { source-addr source-wildcard | any } [fragments] [time-range time-range-name] - (3) Delete all the subitems or one subitem in one ACL with number ID or name ID or all ACLs (global configuration mode). no access-list { all | { access-list-number | name access-list-name } [subitem] } Use { **permit | deny** } command repeatedly to define more rules for the same ACL. Specifying matching order cannot be modified. By default, the matching order is user configured order (config). Concrete parameter meaning refers to corresponded command line. Define extended ACL Switch can defaine at most 100 extended ACL with the number ID (the number is in the range of 100 to 199), at most 1000 extended ACL with the name ID and totally 3000 sub-rules. It can define 128 sub-rules for an ACL (this rule can suit both ACL with name ID and number ID). Extended ACL classifies data packet according to the source IP, destination IP, used TCP or UDP interface number, packet priority information of IP head of data packet and analyse the matching data packet. Extended ACL supports three types of packet priority handling: TOS (Type Of Service) priority, IP priority and DSCP. The construction of IP head refers to RFC791. 1. Define extended ACL with number ID Extended ACL based on number ID is using number to be ID of extended ACL. Use following command to define extended ACL based on number ID. Configure it in global configuration mode. (1) Define extended ACL based on number ID access-list access-list-number2 { permit | deny } [protocol] [established] { source-addr source-wildcard | any } [port [portmask]] { dest-addr dest-wildcard | any } [port [portmask]] [icmp-type [icmp-code]] [fragments] { [precedence precedence] [tos tos] | [dscp dscp] } [time-range time-range-name] (2) Define the matching order of ACL access-list access-list-number match-order { config | auto } (3) Delete all the subitems or one subitem in one ACL with number ID or name ID or all no access-list { all | { access-list-number | name access-list-name } [subitem] } Use access-list command repeatedly to define more rules for the same ACL. *Number ID* of extended ACL is in the range of 100 to 199. Caution: parameter port means TCP or UDP interface numberused by all kinds of superior levels. For some common interface number, use corresponded mnemonic symbol to replace the real number, such as using "bgp" to instead of the TCP interface number 179 of BGP protocol. Details refer to corresponded command line. #### Define extended ACL with name ID. Extended ACL with name ID is using name ID to identify extended ACL. Instruction: Defining standard ACL with name ID should enter specified configuration mode: use accesslist extended in global configuration mode which can specify matching order of ACL. Use exit command to be back from this mode. (1) Configure it in corresponded mode. Enter extended ACL with name ID (global configuration mode). #### access-list extended name [match-order { config | auto }] - (2) Define extended ACL (extended ACL with name ID configuration mode) { permit | deny } [protocol] [established] { source-addr source-wildcard | any } [port [portmask]] { dest-addr dest-wildcard | any } [port [portmask]] [icmp-type [icmp-code]] { [precedence precedence] [tos tos] | [dscp dscp] } [fragments] [time-range timerange-name] - (3) Delete all the subitems or one subitem in one ACL with number ID or name ID or all ACLs (global configuration mode). ``` no access-list { all | { access-list-number | name access-list-name } [subitem] } ``` Use { permit | deny } command repeatedly to define more rules for the same ACL. Specifying matching order cannot be modified. Caution: parameter port means TCP or UDP interface numberused by all kinds of superior levels. For some common interface number, use corresponded mnemonic symbol to replace the real number, such as using "bgp" to instead of the TCP interface number 179 of BGP protocol. Details refer to corresponded command line. Define layer 2 ACL Switch can define at most 100 layer 2 ACL with the number ID (the number is in the range of 200 to 299), at most 1000 layer 2 ACL with the name ID and totally 3000 sub-rules. It can define 128 sub-rules for an ACL (this rule can suit both ACL with name ID and number ID). Layer 2 ACL only classifies data packet according to the source MAC address, source VLAN ID, layer protocol type, layer packet received and retransmission interface and destination MAC address of layer 2 frame head of data packet and analyze the matching data packet. 1. Define layer 2 ACL based on number ID Layer 2 ACL based on number ID is using number to be ID of layer 2 ACL. Use following command to define layer 2 ACL based on number ID. Configure it in global configuration mode. (1) Define layer 2 ACL based on number ID access-list access-list-number3 { permit | deny } [protocol] [cos vlan-pri] ingress { { [source-vlan-id] [source-mac-addr source-mac-wildcard] [interface interface-num] } | any } egress { { [dest-mac-addr dest-mac-wildcard] [interface interface-num | cpu] } | any } [time-range time-range-name] (2) Define the matching order of ACL: access-list access-list-number match-order { config | auto } (3) Delete all the subitems or one subitem in one ACL with number ID or name ID or all ACLs. no access-list { all | { access-list-number | name access-list-name } [subitem] } Use access-list command repeatedly to define more rules for the same ACL. The number ID of layer 2 ACL is in the range of 200 to 299. Interface parameter in above command specifies layer 2 interface, such as Ethernet interface. Concrete parameter meaning refers to corresponded command line. 2. Define layer 2 ACL with name ID. Layer 2 ACL with name ID is using name ID to identify layer 2 ACL. Instruction: Defining layer 2 ACL with name ID should enter specified configuration mode: use access-list link in global configuration mode which can specify matching order of ACL. Use exit command to be back from this mode. Use following commands to define layer 2 ACL with name ID. Configure it in corresponded mode. (1) Enter layer 2 ACL with name ID configuration mode(global configuration mode) #### access-list link name [match-order { config | auto }] (2) Defining layer 2 ACL rule(layer 2 ACL with name ID configuration mode) { permit | deny } [protocol] ingress { { [source-start-vlan-id source-end-vlan-id] [interface interface-num] } | any } [time-range time-range-name] (3) Delete all the subitems or one subitem in one ACL with number ID or name ID or all ACLs.(global configuration mode) ``` no access-list { all | { access-list-number | name access-list-name } [subitem] } ``` Use { **permit | deny** } command repeatedly to define more rules for the same ACL. Specifying matching order cannot be modified. By default, the matching order is user configured order (config). Concrete parameter meaning refers to corresponded command line. ### 6.2.4 IPV6 ACL key mode There are 2 kinds of IPV6 ACL key mode: *mac* mode and *dstip* mode. In mac mode, the source/destination mac in L2 ACL is effective, but 120-127bit of destination IPv6 address in extended ACL is effective. In dstip mode, 128 bit of destination IPv6 address in extended ACL can be effective, but the source/destination mac in L2 ACL is not effective. The default mode is dstip. Configure it in global configuration mode ipv6-acl-key-mode mac | dstip #### 6.2.5 Activate ACL After activating ACL, it can be effective. Use access-group command to activate accessing control list. Configure it in global configuration mode. Activate ACL access-group { user-group { access-list-number | access-list-name } [subitem subitem] | { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } Cancel activating ACL no access-group { all | user-group { access-list-number | access-list-name } [subitem subitem] | { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } #### Instruction: This command supports activating accessing control list of layer 2 and layer 3 at the same time, but the action of each accessing control list should not be conflict, if there is conflict (such as one is permit, the other is deny), the activation fails. Switch uses straight through to activate layer 2 and layer 3 ACL, that is, subitem 1 of layer 2 ACL and layer 3 ACL combine together, and the rest may be deduced by analogy; if the number of two groups of ACL is not the same, the rest subitem can activate separately. ### 6.3 Monitor and maintanence of ACL Configure followings in any configuration mode except user mode. Display time information show time-range [all | statistic | name time-range-name] Display detail information of ACL **show access-list config** { **all** | access-list-number | **name** access-list-name } Display statistic information of ACL #### show access-list config statistic Display runtime information of ACL **show access-list runtime** { **all** | access-list-number | **name** access-list-name } Display runtime statistic information of ACL #### show access-list runtime statistic Concrete configuration refers to command line configuration. ## **Chapter 7 QOS Configuration** ### 7.1 Brief introduction of QOS In traditional packet network, all packets are equal to be handled. Each switch and router handles packet by FIFO to make best effort to send packets to the destination and not to guarantee the transmission delay and delay variation. With the fast development of computer network, the
requirement of network is higher. More and more voice, image and important data which are sensitive about bandwidth, delay and jittering transferred through network, which greatly enrich network service resources and the requirement of quality of service is higher for the network congestion. Now, Ethernet becomes the leading technology in every independent LAN, and many LAN in the form of Ethernet have become a part of internet. With the development of Ethernet technology, Ethernet connecting will become one of main connecting for internet users. To realize end-to-end QoS solution has to consider the service guarantee of Ethernet QoS, which needs Ethernet device applies to Ethernet technology to provide different levels of QoS guarantee for different types of service flow, especially the service flow highly requiring delay and jitter. #### 1. Flow Flow is traffic which means all packets through switch. #### 2. Traffic classification Traffic classification means adopting certain regulation to recognize packet with some features. Clasification rule means the filtration regulation configured by the administrator according to managing need which can be simple, such as realizing flow with the feature of different priority according to the ToS field of IP packet head and can be complicated, such as information of integrated link layer (layer 2), network layer (layer 3), transmission layer (layer 4), such as MAC address, IP protocol, source address, destination address or application program interface number to classify packet. General classification is limited in the head of encapsulation packet. Use packet content to be classification standard is singular. #### 3. Access control list To classify flow is to provide service distinctively which must be connected resource distributing. To adopt which kind of flow control is related to the stage it is in and the current load of the network. For example: monitor packet according to the promised average speed rate when the packet is in the network and queue scheduling manage the packet before it is out of the node. #### 4. Packet filtration Packet filtration is to filtrate service flow, such as deny, that is, deny the service flow which is matching the traffic classification and permit other flows to pass. System adopts complicated flow classification to filtrate all kinds of information of service layer 2 packets to deny useless, unreliable, and doubtable service flow to strengthen network security. Two key points of realizing packet filtration: Step 1: Classify ingress flows according to some regulation; Step 2: Filtrate distinct flow by denying. Deny is default accessing control. #### 5. Flow monitor In order to serve customers better with the limited network resources, QoS can monitor service flow of specified user in ingress interface, which can adapt to the distributed network resources. #### 6. Interface speed limitation Interface speed limitation is the speed limit based on interface which limits the total speed rate of interface outputting packet. #### 7. Redirection User can re-specify the packet transmission interface based on the need of its own QoS strategies. #### 8. Priority mark Ethernet switch can provide priority mark service for specified packet, which includes: TOS, DSCP, 802.1p. These priority marks can adapt different QoS model and can be defined in these different models. #### 9. Choose interface outputting queue for packet Ethernet switch can choose corresponding outputting queue for specified packets. #### 10. Queue scheduler It adopts queue scheduler to solve the problem of resource contention of many packets when network congestion. There are three queue scheduler matchings: Strict-Priority Queue (PQ), Weighted Round Robin (WRR) and WRR with maximum delay. #### (1) PQ PQ(Priority Queueing)is designed for key service application. Key service possesses an important feature, that is, require the precesent service to reduce the response delay when network congestion. Priority queue divides all packets into 4 levels, that is, superior priority, middle priority, normal priority and inferior priority (3, 2, 1, 0), and their priority levels reduce in turn. When queue schedulerimg, PQ precedently transmits the packets in superior priority according to the priority level. Transmit packet in inferior priority when the superior one is empty. Put the key service in the superior one, and non-key service (such as email)in inferior one to guarantee the packets in superior group can be first transmitted and non-key service can be transmitted in the spare time. The shortage of PQ is: when there is network congestion, there are more packets in superior group for a long time, the packets in inferior priority will wait longer. #### (2) WRR WRR queue scheduler divides a port into 4 or 8 outputting queues (S2926V-O has 4 queues, that is, 3, 2, 1, 0) and each scheduler is in turn to guarantee the service time for each queue. WRR can configure a weighted value (that is, w3, w2, w1, w0 in turn) which means the percentage of obtaining the resources. For example: There is a port of 100M. Configure its WRR queue scheduler value to be 50, 30, 10, 10 (corresponding w3, w2, w1, w0 in turn) to guarantee the inferior priority queue to gain at least 10Mbit/s bandwidth, to avoid the shartage of PQ queue scheduler in which packets may not gain the service. WRR possesses another advantage. The scheduler of many queues is in turn, but the time for service is not fixed——if some queue is free, it will change to the next queue scheduler to make full use of bandwidth resources. #### (3) WRR with maximum delay Compared with WRR, WRR with maximum delay can guarantee the maximum time from packets entering superior queue to leaving it will not beyond the configured maximum delay. 11. The cos-map relationship of hardware priority queue and priority of IEEE802.1p protocol System will map between 802.1p protocol priority of packet and hardware queue priority. For each packet, system will map it to specified hardware queue priority according to 802.1p protocol priority of packet. #### 12. Flow mirror Flow mirror means coping specified data packet to monitor interface to detect network and exclude failure. #### 13. Statistics based on flow Statistics based on flow can statistic and analyse the packets customer interested in. #### 14. Copy packet to CPU User can copy specified packet to CPU according to the need of its QoS strategies. System realizes QoS function according to accessing control list, which includes: flow monitor, interface speed limit, packet redirection, priority mark, queue scheduler, flow mirror, flow statistics and coping packet to CPU. ## 7.2 QOS Configuration ## 7.2.1 QoS Configuration list QOS Configuration includes: - Flow monitor - line rate - Packet redirection configuration - Priority configuration - Queue-scheduler configuration - The cos-map relationship of hardware priority queue and priority of IEEE802.1p protocol - The cos-map relationship of DSCP and priority of IEEE802.1p protocol - Flow mirror configuration - Flow statistic configuration - Copy packet to CPU configuration - Traffic rewrite-vlan - Traffic insert-vlan - Bandwidth ingress Define corresponded ACL before configuring QoS. #### 7.2.2 Flow monitor Flow monitor is restriction to flow speed which can monitor the speed of a flow entering switch. If the flow is beyond specified specification, it will take actions, such as dropping packet or reconfigure their priority. Use following command to configure flow monitor. Configure it in global configuration mode. Rate-limit configuration based on flow rate-limit input { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } target-rate [exceed-action action] Cancel rate-limit configuration based on flow no rate-limit input { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } Define corresponded ACL before configuring. Configure the flow monitor with the same configuration in the same interface mode, such as configuring the flow monitor of ACL rule which introduces filtrating source IP address in the same interface mode. The aim of this configuration is matching data flow of ACL to realize flow monitor: take action when data flow is beyond configured flow, such as dropping packet. Details of this command refers to corresponded command. #### 7.2.3 Interface line rate Line-limit is the speed limit based on interface which restrict the total speed of packet outputting. Use following command to configure it. Configure it in interface configuration mode. Line-limit configuration based on interface. #### bandwidth egress target-rate Cancel line-limit configuration based on interface. #### no bandwidth egress System supports line limit for single interface. Details of this command refers to corresponded command. ## 7.2.4 Packet redirection configuration Packet redirection configuration is redirecting packet to be transmitted to some egress. Use following command to configure it. Configure it in interface configuration mode. Redirection traffic-redirect { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } { interface interface-num } Cancel redirection no traffic-redirect { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } #### Instruction: Use this command to redirect the data packet which matched specified accessing list regulations (it is only be effective for permit rules of accessing list). Details of this command refers to corresponded command. ## 7.2.5 Priority configuration Traffic priority configuration is the strategy of remark priority for matching
packet in ACL, and the marked priority can be filled in the domain which reflect priority in packet head. Use following command to configure priority mark configuration. Configure it in global configuration mode. Mark packet priority traffic-priority { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } { [dscp dscp-value | precedence { pre-value | from-cos }] [cos { pre-value | from-ipprec }] [local-precedence pre-value] } Cancel packet priority configuration no traffic-priority { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } System will mark IP priority (*precedence* specified value of **traffic-priority** command), DSCP(*dscp* specified value of **traffic-priority** command), 802.1p priority (that is cos value of **traffic-priority** command). User can mark different priority for packet according to real QoS strategy. Switch can locate packet to interface outputting queue according to the 802.1p priority and also can locate packet to corresponding outputting queue according to the specified local priority in **traffic-priority** command (*local-precedence* specified value). If both 802.1p priority and local priority are configured, 802.1p priority will be precedent to use. Details of this command refers to corresponded command. ## 7.2.6 Queue-scheduler configuration When network congestion, it must use queue-scheduler to solve the problem of resource competition. Use following command to configure queue-scheduler. Configure it in global configuration mode. Configure queue-scheduler **queue-scheduler** { **strict-priority** | **wrr** queue1-weight queue2-weight queue3-weight queue4-weight queue5-weight queue6-weight queue7-weight queue8-weight | **sp-wrr** queue1-weight queue2-weight queue3-weight } Disable queue-scheduler #### no queue-scheduler System supports three types of queue-scheduler mode: Strict-Priority Queue, Strict-Priority Queue and Weighted Round Robin (SP+WRR) and Weighted Round Robin (WRR). By default, switch uses Strict-Priority Queue. The detailed command refers to the corresponding command line reference. # 7.2.7 The cos-map relationship of hardware priority queue and priority of IEEE802.1p protocol There are 4 hardware priority queues which are from 0 to 3, of which 3 is the The default mapping is the mapping defined by 802.1p: 802.1p: 0 1 2 3 4 5 6 7 packed-priority: 0 0 1 1 2 2 3 3 Use **queue-scheduler cos-map** command to configure 4 cos-map relationship of hardware priority queue and 8 priority of IEEE802.1p protocol • Use following command in global configuration moide. queue-scheduler cos-map [queue-number] [packed-priority] Use following command to display the priority cos-map. #### show queue-scheduler cos-map #### For example: ``` !Configure packed-priority 1 to mapped priority 6 of IEEE 802.1p QTECH(config) #queue-scheduler cos-map 1 6 ``` # 7.2.8 Configure the mapping relationship between DSCP and 8 priority in IEEE 802.1p DSCP is the high 6 byte in ToS bit which is in the range of 0-63. The default mapping relationship is that all DSCP map to priority 0. Use this command to configure the mapping relationship between DSCP and 8 priority in IEEE 802.1p. Configure it in global configuration mode: #### queue-scheduler dscp-map [dscp-value] [packed-priority] #### Example ``` !Configure dscp 2 to map to priority 5 QTECH(config) #queue-scheduler dscp-map 2 5 ``` ## 7.2.9 Flow mirror configuration Flow mirror is copying the service flow which matches ACL rules to specified monitor interface to analyse and monitor packet. Use following command to configure flow mirror. Configure it in interface configuration mode. +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 Flow mirror configuration mirrored-to { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } [interface interfacenum] Cancel flow mirror configuration no mirrored-to { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } Details of this command refers to corresponded command. ## 7.2.10 Flow statistic configuration Flow statistic configuration is used to statistic specified service flow packet. Use following command to configure it. Configure it in global configuration mode. • Flow statistic configuration traffic-statistic { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } • Clear statistic information clear traffic-statistic { all | [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } Cancel flow statistic configuration no traffic-statistic { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } If reconfiguring flow statistics, the corresponded information will be cleared. Details of this command refers to corresponded command. ## 7.2.11 Copy packet to CPU Copy packet to CPU is copying a packet to be transmitted to CPU. Use following command to configure it. Configure it in interface configuration mode. Copy packet to CPU. traffic-copy-to-cpu { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } Cancel copy packet to CPU no traffic-copy-to-cpu { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } } Copying packet to CPU is only be effected to permit rule in ACL. Details of this command refers to corresponded command. ## 7.2.12 Traffic rewrite vlan configuration Traffic rewrite vlan is rewrite vlan of the traffic to be transmitted. Use following command to rewrite vlan. Configure it in global configuration mode. • Traffic rewrite vlan configuration. traffic-rewrite-vlan { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } vlan-id • Cancel traffic rewrite vlan configuration no traffic-rewrite-vlan{ [ip-group { access-list-number | access-list-name } [subitem subitem] [link-group { access-list-number | access-list-name } [subitem subitem]] } Instruction: Traffic rewrite vlan configuration is only effective to permit rule. Details refer to corresponded commands. ## 7.2.13 Traffic-insert-vlan configuration Traffic-insert-vlan is adding a tag head of configured vlan to the traffic to betransferred. Use following command to configure it. Configure it in global configuration mode. Traffic insert vlan configuration traffic-insert-vlan { user-group { access-list-number | access-list-name } [subitem subitem] | { [ip-group { access-list-number | access-list-name } [subitem subitem]] [link-group { access-list-number | access-list-name } [subitem subitem]] } vlan-id Cancel traffic insert vlan configuration. no traffic-insert-vlan { user-group { access-list-number | access-list-name } [subitem subitem] | { [ip-group { access-list-number | access-list-name } [subitem subitem]] [linkgroup { access-list-number | access-list-name } [subitem subitem]] } } Description: This configuration is effective for the permit rule. Details refer to corresponded commands. ## 7.2.14 Bandwidth ingress Bandwidth ingress based on port rate limited and limited total speed of packet inputting Use following command to configure it. Configure it in interface configuration mode. Line-limit configuration based on interface. #### bandwidth ingress target-rate Cancel line-limit configuration based on interface. #### no bandwidth ingress line-rate System supports line limit for single interface. Details of this command refers to corresponded command. #### 7.3 Monitor and maintenance of QoS Configure it in corresponded configuration mode. Show command can be used in any configured mode except user mode. Display all QoS information: #### show qos-info all Display all QoS statistic information #### show qos-info statistic Display flow mirror configuration #### show qos-info mirrored-to Display queue scheduler and parameter #### show queue-scheduler Display the cos-map relationship of hardware priority queue and priority of IEEE802.1p protocol #### show queue-scheduler cos-map Display QOS configuration of all interface #### show qos-interface [interface-num] all Display parameter configuration of flow limit #### show qos-interface [interface-num] rate-limit Display line limit configuration #### show qos-interface [interface-num] line-rate Display QOS statistic information of all interface #### show qos-interface statistic Display priority configuration #### show qos-info traffic-priority Display redirection configuration #### show qos-info traffic-redirect Display flow statistic configuration #### show qos-info traffic-statistic • Display configuration of copying to CPU. #### show qos-info traffic-copy-to-cpu Details of this command refers to corresponded command. ## 7.4 Configuration example of QACL #### 7.4.1 Use QACL to realize user isolation #### 1. Brief introduction of isolation Use user isolation to bind some interface and some IP address. Only the packet with the source IP address being this one can be transmitted, or it will be dropped. This can fix specified user to some interface to realize user management. There are two types of mode: one is transmitting all ARP packet, the other is not transmitting all ARP packet. In transmitting all ARP mode, after enabling user isolation, all ARP
packet can be transmitted. In not transmitting all ARP mode, after enabling user isolation, only after configuring user binding rules (such as ip +port+mac), corresponded ARP packet can be transmitted. Followings are the configuring examples of two user isolation. Example 1 can use QACL to realize user isolation of all ARP packet; example 2 uses QACL to realize user isolation of not transmitting ARP packet. #### 2. Example 1 Example 1 uses QACL to realize user isolation of transmitting all ARP packet. This example can realize following function: - (1) Enable user isolation (prevent all packet and permit ARP packet with VLAN id being 4016); - (2) Configure Ethernet interface 1 to be uplink interface (permit all packet from uplink interface - (3) Configure binding rules of three users: - 1) ip+port:ip is 192.168.0.1 and port to be Ethernet interface 2 - 2) ip+port+vid:ip is 192.168.0.2,port is Ethernet interface 2 and vid is 2 - 3) ip+port+mac;ip is 192.168.0.3,port is Ethernet interface 2 and mac is 00:00:00:00:03 #### The configuration is as following: #### (1) Define needed ACL !Define to deny all packet ACL QTECH(config) #access-list 200 deny ingress any egress any !Define to transmit ACL to transmit packet from uplink interface 1 QTECH(config) #access-list 200 permit ingress interface ethernet 0/1 egress any !Define ACL to transmit packet with VLAN ID being 4016 and from non-uplinkinterface 2 QTECH(config) #access-list 200 permit ingress 4016 interface ethernet 0/2 egress any !Define ACL to transmit all ARP packet QTECH(config) #access-list 200 permit arp ingress any egress any !Define ip+port user to bind ACL with ip being 192.168.0.1,port being Ethernet interface 2. This ip+port user bound rule can be divided into 2 ACLs:one is ACL to transmit packet with source address being 192.168.0.1, the other is ACL to transmit packet from Ethernet interface 2 QTECH(config) #access-list 1 permit 192.168.0.1 0 QTECH(config) #access-list 201 permit ingress interface ethernet 0/0/2 egress any !Define ip+port+vid user to bind ACL with ip being 192.168.0.2,port being Ethernet interface 2 and vid being 2. This ip+port+vid user bound rule can be divided into 2 ACLs:one is ACL to transmit packet with source address being 192.168.0.2, the other is ACL to transmit packet with vid being 2 from Ethernet interface 2 QTECH(config) #access-list 1 permit 192.168.0.2 0 QTECH(config)#access-list 201 permit ingress 2 interface ethernet 0/0/2 egress any !Define ip+port+mac user to bind ACL with ip being 192.168.0.3, port being Ethernet interface 2 and mac being 00:00:00:00:00:03. This ip+port+mac user bound rule can be divided into 2 ACLs:one is ACL to transmit packet with source address being 192.168.0.3, the other is ACL to transmit packet with mac being 00:00:00:00:03 from Ethernet #### interface 2 QTECH(config) #access-list 1 permit 192.168.0.3 0 QTECH(config) #access-list 201 permit ingress 00:00:00:00:00:03 0:0:0:0:0:0 interface ethernet 0/0/2 egress any #### (2) Activate ACL QTECH(config) #access-group link-group 200 QTECH(config) #access-group ip-group 1 link-group 201 #### 3. Example 2 Example 2 uses QACL to realize user isolation of not transmitting all ARP packet. This example can realize following function: - (1) Enable user isolation (prevent all packet and permit packet with VLAN id being 4016); - (2) Configure Ethernet interface 1 to be uplink interface (permit all packet from uplink interface - (3) Configure binding rules of three users: - 1) ip+port:ip is 192.168.0.1 and port to be Ethernet interface 2 - 2) ip+port+vid:ip is 192.168.0.2, port is Ethernet interface 2 and vid is 2 - 3) ip+port+mac;ip is 192.168.0.3, port is Ethernet interface 2 and mac is 00:00:00:00:003 #### The configuration is as following: #### (1) Define needed ACL !Define to deny all packet ACL QTECH(config) #access-list 200 deny ingress any egress any !Define to transmit ACL to transmit packet from uplink interface 1 QTECH(config) #access-list 200 permit ingress interface ethernet 0/1 egress any !Define ACL to transmit packet with VLAN ID being 4016 and from non-uplinkinterface 2 QTECH(config) #access-list 200 permit ingress 4016 interface ethernet 0/2 egress any !Define ACL to transmit all ARP packet !Define ip+port user to bind ACL with ip being 192.168.0.1,port being Ethernet interface 2. This ip+port user bound rule can be divided into 2 ACLs:one is ACL to transmit packet with source address being 192.168.0.1, the other is ACL to transmit packet from Ethernet interface 2 QTECH(config) #access-list 1 permit 192.168.0.1 0 QTECH(config) #access-list 201 permit ingress interface ethernet 0/0/2 +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 #### egress any !Define ip+port+vid user to bind ACL with ip being 192.168.0.2,port being Ethernet interface 2 and vid being 2. This ip+port+vid user bound rule can be divided into 3 ACLs:one is ACL to transmit packet with source address being 192.168.0.2, the other is ACL to transmit packet with vid being 2 from Ethernet interface 2 and the last is ACL transferring ARP packet from Ethernet interface 2 with sending protocol being 192.168.0.1 and vid being 2. QTECH(config) #access-list 1 permit 192.168.0.2 0 QTECH(config) #access-list 201 permit ingress 2 interface ethernet 0/0/2 egress any !Define ip+port+mac user to bind ACL with ip being 192.168.0.3, port being Ethernet interface 2 and mac being 00:00:00:00:00:03. This ip+port+mac user bound rule can be divided into 2 ACLs:one is ACL to transmit packet with source address being 192.168.0.3, the other is ACL to transmit packet with mac being 00:00:00:00:03 from Ethernet interface 2 and the last is ACL transferring ARP packet from Ethernet interface 2 with sending protocol being 192.168.0.1 and mac being 00:00:00:00:00:00:03. QTECH(config) #access-list 1 permit 192.168.0.3 0 QTECH(config) #access-list 201 permit ingress 00:00:00:00:00:03 0:0:0:0:0:0:0 interface ethernet 0/0/2 egress any #### (2) Activate ACL QTECH(config) #access-group link-group 200 QTECH(config) #access-group ip-group 1 link-group 201 QTECH(config) #access-group user-group 300 # 7.4.2 Use QACL to realize bandwidth control #### **Brief introduction** Bandwidth control means restricting the uplink and downlink speed rate of special flow. Using QACL to realize this function. #### 1. Configuration example Use QACL to realize the flow bandwidth control with source mac address being 00:01:02:03:04:05, uplink interface being 1, downlink interface being 8, uplink speed being 3 Mbps and downlink speed being 5 Mbps. Configuration is as following: ## (1) Define needed ACL !Define ACL transmitting packet with source interface to be Ethernet interface 8, destination interface to be wthernet interface 1, source MAC address to be 00:01:02:03:04:05 QTECH(config) #accesss-list 200 permit ingress 00:01:02:03:04:05 0:0:0:0:0:0 interface ethernet 0/0/8 egress egress interface ethernet 0/0/1 !Define ACL transmitting packet with source interface being Ethernet interface 1,destination interface being Ethernet interface 8,source MAC address being 00:01:02:03:04:05 QTECH(config) #accesss-list 201 permit ingress 00:01:02:03:04:05 0:0:0:0:0:0 interface fast-ethenet 1 egress egress interface ethernet 0/0/8 # (2) Configure flow monitor of uplink and downlink interface !Enter interface configuration mode of uplink interface 1 QTECH(config) #interface ethernet 0/1 !Configure corresponded flow monitor of uplink interface 1 QTECH(config-if-ethernet-0/0/1) ##rate-limit input link-group 201 3 !Enter interface configuration mode of downlink interface 8 QTECH(config) #interface ethernet 0/0/8 !Configure corresponded flow monitor of downlink interface 8 QTECH(config-if-ethernet-0/0/8) ##rate-limit input link-group 200 5 # 7.4.3 Use QACL to realize deny all packet expect Brief introduction of deny all packet expect deny all packet expect is used to drop all packet except needing transmitting. This function can be realized by configuring QACL. ## 1. Configuration example Configuring deny all packet expect PPPoE, the protocol number of PPPoE is 0x8863 (decimal is 34915) and 0x8864 (decimal is 34916) - (1) Drop all packets - (2) Transmit PPPoE packet Configuration is as following: ## (1) Define needed ACL !Configure deny ACL of all packet QTECH(config) #access-list 200 deny ingress any egress any !Configure ACL of transmitting PPPoE packet QTECH(config) #access-list 200 permit 34915 ingress any egress any QTECH(config) #access-list 200 permit 34916 ingress any egress any # (2) Activate ACL QTECH(config) #access-group link-group 200 # 7.4.4 Use QACL to prevent virus Brief introduction of QACL anti-virus Reasonable configured QACL can be used as firewall to prevent virus to be spread through network to reduce the influence to the network. Different virus has different attacking (such as attack different interface). Configure different QACL rules for different virus, which can do effective protection. For all kinds of virus attacking, it can be obtained from professional antivirus company (Kingsoft Company). # 1. Configuration example Use QACL to prevent bow wave virus Bow wave virus will attack TCP 135 interface and infect through UDP 69 INTERFACE, TCP 4444 interface. Configuring switch to prevent QACL of this packet can effectively prevent this virus. The configuring is as following: # (1) Define needed ACL ``` !Configure ACL to prevent TCP packet of interface 135 QTECH(config) #access-list 100 deny tcp any any eq 135 !Configure ACL to prevent UDP packet of interface 69 QTECH(config) #access-list 100 deny udp any any eq 69 !Configure ACL to prevent TCP packet of interface 4444 QTECH(config) #access-list 100 deny tcp any any eq 4444 ``` ## (2) Activate ACL QTECH(config) #access-group ip-group 100 # 7.5 Port isolation # 7.5.1 Brief introduction of port isolation Forbid intercommunication of users in different interfaces by port isolation configuration. There are two kinds of interfaces in port isolation function.
One is uplink port, and the other is downlink port. Uplink port can transmit any packet, but downlink port can only transmit the packet whose destination is uplink port. Connect user's computer to downlink port, and advanced devices connect to uplink port to shield intercommunication bwtween users and not influence user accessing exterior network through advanced switching devices. # 7.5.2 Port isolation configuration Use port-isolation command in global configuration mode to add a or a group of descendent isolation port. Use no port-isolation command to remove a or a group of descendent isolation port: Add port isolation downlink port ## port-isolation uplink interface-num Delete port isolation downlink port # no port-isolation uplink interface-list is the optioned interface list which means one or more Ethernet interfaces. When adding port isolation downlink ports, not all ports can be added to be port isolation downlink ports. Choose **all** only when delete port isolation downlink ports. Choose **"all**" to remove all downlink isolation ports. By default, all ports are port isolation uplink ports. #### For example: !Add Ethernet 0/1, Ethernet 0/3, Ethernet 0/4, Ethernet 0/5, Ethernet 0/8 to be downlink isolation port. QTECH(config)#port-isolation ethernet 0/1 ethernet 0/3 to ethernet 0/5 ethernet 0/8 !Remove ethernet 0/3, Ethernet 0/4, Ethernet 0/5, ethernet 0/8 from downlink isolation port. QTECH(config)#no port-isolation ethernet 0/3 to ethernet 0/8 Use port-isolation second uplink to add second uplink port. Use no command to delete the second uplink port. Configure it in global mode: Add the second uplink port # port-isolation second uplink interface-num Delete the second uplink port #### no port-isolation second uplink #### Example: !Configure the second uplink port QTECH(config) #port-isolation second uplink ethernet 0/0/3 !Delete the second uplink port QTECH(config) #no port-isolation second uplink # 7.6 Strom control # 7.6.1 Brief introduction of strom control Restrict the speed rate of port receiving broadcast/multicast/ unknown unicast packets and unknown unicast packets received by all ports by storm control configuration. Strom control configuration Use storm-control command in interface configuration mode to configure storm-control. Use show interface command to display storm-control information. Configure storm control # storm-control { broadcast | multicast | unicast } target-rate Delete storm control # no storm-control { broadcast | multicast | unicast } Configure it in global configuration mode: Configure unknown unicast storm control # storm-control unicast target-rate Delete unknown unicast storm control #### no storm-control unicast # For example: !Configure storm control of e0/1 with the speed rate being 64KBps QTECH(config-if-ethernet-0/0/1) #storm-control broadcast 64 !Configure known multicast storm control of e0/3 with the speed rate being 128KBps QTECH(config) #storm-control unicast 128 Caution: global-based unknown unicast control cannot configured at the same time as port-based unknown unicast control; the target rate of global-based unknown unicast control and port-based broadcast control is 64KBps, but the target rate of port-based unknown unicast control is 1KBps. # **Chapter 8 STP Configuration Command** # 8.1 Brief introduction of STP Configuration STP(Spanning Tree Protocl) is a part of IEEE 802.1D network bridge. The realization of standard STP can eliminate network broadcast storm caused by network circle connection and the circle connection caused by misplaying and accidence, and it also can provide the possibility of network backup connection. STP protocol with IEEE 802.1D standard provides network dynamic redundancy transferring mechanism and prevents circle connection in bridge network. It determines which interface of the network bridge can transmit data packet. After executing STP matching, switch in the LAN will form a STP dynamic topology which prevents the loop existing between any two working station to prevent broadcast storm in LAN. At the same time, STP matching is responsible to detect the change of physical topology to establish new spanning tree after the changes of topology. For example: when there is a break in the switch or a channel, it can provide certain error tolerance to re-configure a new STP topology # 8.2 STP Configuration Command # 8.2.1 STP Configuration list The configuration can be effective only after STP enables. Configure related parameter of devices or Ethernet interface before enabling STP and these configurations will be saved after disabling STP. And the parameter will be effective after re-enabling STP. STP configuration list is as following: - Enable/disable interface STP - Configure STP mode - Configure STP priority - Configure Forward Delay - Configure Hello Time - Configure Max Age - Configure path cost of specified interfaces - Configure STP priority od specified port - Configure interface to force to send rstp packet - Configure link type of specified interface - Configure the current port as an edge port - Configure the speed limit of sending BPDU of specified interface - STP monitor and maintainenance # 8.2.2 Enable/disable STP Configure it in global configuration mode: • Enable/disable STP of the devices # spanning-tree Disable STP of the devices ## no spanning-tree By default, switch STP disables. #### For example: ``` !Enable STP QTECH(config)#spanning-tree ``` # 8.2.3 Enable/disable interface STP Disable STP of specified interface to make the interface not to attend STP calculating. Use following command in interface configuration mode: Enable STP on specified interface # spanning-tree Disable STP on specified interface ## no spanning-tree By default, interface STP enables. # For example: ``` !Disable STP on Ethernet 01 QTECH(config-if-ethernet-0/1)#no spanning-tree ``` # 8.2.4 Configure STP mode Configure it in global configuration mode: Configure switch running STP # spanning-tree mode stp Configure switch running RSTP ## spannning-tree mode rstp Configure switch running MSTP ## spanning-tree mode mstp It is defaulted to run rstp. ## Example: !Configure switch running STP QTECH(config)#spanning-tree mode stp # 8.2.5 Configure STP priority Configure STP priority when STP enables, and the inferior priority of the switch can be the root bridge. Use following command in global configuration mode: Configure STP priority # spanning-tree priority bridge-priority Restore default STP priority ## no spanning-tree priority ## For example: !Configure the priority of the switch in spanning tree to 36864 QTECH(config) #spanning-tree priority 36864 Caution: If the priorities of all network bridge in switching network are the same, choose the one with the smallest MAC address to be the root. If STP enables, configuring network bridge may cause the re-accounting of the STP. By default, the network bridge priority is 32768 and ranges from 0 to 61440 and should be the integrity of 4096. # 8.2.6 Configure switch Forward Delay When this switch is the root bridge, port state transition period is the Forward Delay time, which is determined by the diameter of the switched network. The longer the diameter is, the longer the time is. Configure it in global configuration mode: Configure Forward Delay ## spanning-tree forward-time seconds Restore default Forward Delay # no spanning-tree forward-time ## For example: !Configure forward delay to 20 seconds QTECH(config) #spanning-tree forward-time 20 Caution: If Forward Delay is configured too small, temporary redundancy will becaused; if Forward Delay is configured too large, network will not be restored linking for a long time. Forward Delay ranges from 4 to 30 seconds. The default forward delay time, 15 seconds is suggested to use. Forward Delay≥Hello Time + 2. # 8.2.7 Configure Hello Time features Suitable Hello Time can guarantee network bridge noticing link failure in time without occupying too much resources. Configure it in global configuration mode: Configure Hello Time # spanning-tree hello-time seconds Restore default Hello Time ## no spanning-tree hello-time ## For example: ``` !Configure Hello Time to 5 seconds QTECH(config) #spanning-tree hello-time 5 ``` Caution: Too large **Hello Time** may cause link failure thought by network bridge for losing packets of the link to restart accounting STP; too smaller **Hello Time** may cause network bridge frequently to send configuration packet to strengthen the load of network and CPU. Hello Time ranges from 1 to 10 seconds. It is suggested to use the default time of 2 seconds. Hello Time \leq Forward Delay -2 # 8.2.8 Configure Max Age Max Age is used to judge whether the packet is outdate. User can configure it according to the real situation of the network in global configuration mode: Configure Max Age ## spanning-tree max-age seconds Restore the default Max Age ## no spanning-tree max-age #### For example: ``` !Configure the Max Age to 10 seconds QTECH(config) #spanning-tree max-age 10 ``` Caution: Max Age is used to configure the longest aging interval of STP. Lose packet when overtiming. The STP will be frequently accounts and take crowded network to be link fault, if the value is too small. If the value is too large, the link fault cannot be known timely. Max Age is determined by diameter of network, and the default time of 20 seconds is suggested. $2^*(Hello\ Time + 1) \le Max\ Age \le 2^*(ForwardDelay - 1)$ # 8.2.9 Configure path cost of specified interfaces Configure interface STP path cost and choose the path with the smallest path cost to be the effective path. The path cost is related to the link speed rate. The larger the speed rate is, the less the cost is. STP can auto-detect the link speed rate of current interface and converse it to be the cost. Configure it in interface configuration mode: Configure path cost of specified interface # spanning-tree cost cost Restore the default path cost of specified interface ## no
spanning-tree cost Confiure path cost will cause the re-acounting of the STP. Interface path cost ranges from 1 to 65535. It is suggested to use the default cost to make STP calculate the path cost of the current interface. By default, the path cost is determined by the current speed. In IEEE 802.1D, the default path cost is determined by the speed of the interface. The port with the speed 10M have the cost of 100,100M, 19; and 1000M, 4. # 8.2.10 Configure STP priority od specified port Specify specified port in STP by configuring port priority. Generally, the smaller the value is, the superior the priority is, and the port will be more possible to be included in STP. If the priorities are the same, the port number is considered. Configure it in interface configuration mode: Configure port priority # spanning-tree port-priority port-priority Restore the default port priority ## no spanning-tree port-priority The smaller the value is, the superior the priority is, and the port is easier to be the root interface. Change the port priority may cause the re-calculating of the STP. The port priority ranges from 0 to 255. the default port priority is 128. #### For example: !Configure the port priority of Ethernet 0/1 in STP to 120 QTECH(config-if-ethernet-0/1) #spanning-tree port-priority 120 # 8.2.11 Configure interface to force to send rstp packet This configuration is used to check whether there is traditional network bridge running STP. Configure it in interface configuration mode: Configure interface to force to send rstp packet ## spanning-tree mcheck # For example: !Configure Ethernet 0/1 to send RSTP packet QTECH(config-if-ethernet-0/1) #spanning-tree mcheck # 8.2.12 Configure link type of specified interface In rstp, the requirement of interface quickly in transmission status is that the interface must be point to point link not media sharing link. It can specified interface link mode manually and can also judge it by network bridge. Configure it in interface configuration mode: Configure interface to be point-to-point link ## spanning-tree point-to-point forcetrue Configure interface not to be point-to-point link # spanning-tree point-to-point forcefalse Configure switch auto-detect whether the interface is point-to-point link ## spanning-tree point-to-point auto #### For example: !Configure the link connected to Ethernet 0/1 as a point-to-point link QTECH(config-if-ethernet-0/1) #spanning-tree point-to-point forcetrue # 8.2.13 Configure the current port as an edge port Edge port is the port connecting to the host which can be in transmission status in very short time after linkup, but once the port receiving STP packet, it will shift to be non-edge port. Configure it in interface configuration mode: • Configutr the port to be edge port ## spanning-tree portfast Configutr the port to be non-edge port # no spanning-tree portfast ## For example: ``` !Configure Ethernet 0/1 as a non-edge port. QTECH(config-if-ethernet-0/1) #spanning-tree portfast ``` # 8.2.14 Configure the speed limit of sending BPDU of specified interface Restrict STP occupying bandwidth by restricting the speed of sending BPDU packet. The speed is determined by the number of BPDU sent in each hello time. Configure it in interface configuration mode: Configure the maximum number of configuration BPDUs sent by interface in each Hello time to be 2 ## spanning-tree transit-limit 2 # For example: !Configure the maximum number of configuration BPDUs that can be transmitted by the Ethernet 0/1 in each Hello time to 2 QTECH(config-if-ethernet-0/1) #spanning-tree transit-limit 2 # 8.2.15 STP monitor and maintainenance The displaying information is as following: - STP status - BridgeID - Root BridgeID - All kinds of configuration parameter of STP ## show spanning-tree interface Use following command in any configuration mode to display STP status globally or on a port: show spanning-tree interface #### For example: ``` !Display STP configuration of e0/0/1 QTECH(config) #show spanning-tree interface ethernet 0/0/1 ``` # 8.2.16 Enable/disable STP remote-loop-detect When multi-layer cascading, if switch in media layer shut down STP, the BPDU packet sent by upper switch will be cut by switch in media layer. When there is loop in the network below the media layer, upper switch cannot detect the loop. Remote loop detect is the complementary for this situation. Enable STP remote-loop-detect In interface configuration mode #### spanning-tree remote-loop-detect In global configuration mode # spanning-tree remote-loop-detect interface Use **no** command to disable this function. ## For example: !Enable spanning-tree remote-loop-detect interface of Ethernet 0/1 QTECH(config) #spanning-tree remote-loop-detect interface ethernet 0/1 !Disable remote-loop-detect of Ethernet 0/1 QTECH(config-if-ethernet-0/1) #no spanning-tree remote-loop-detect # 8.3 Brief introduction of MSTP Multiple spanning tree (IEEE802.1S) is the update for SST (Single spaning tree, IEEE8021.D/8021,W). SST can realize link redundant and eliminate loop, but all vlans share a tree may cause the waste of effective bandwidth and the overload of some link and backup of the rest. MST can supply the gap of above which can map different vlan to different spaning tree example to realize all functions of SST and the balance of load, that is, different spaning tree example can form different topology and data of different vlan can choose different transmission channel according to the spaning tree example where the vlan locates. # **8.4 MSTP configuration** # 8.4.1 MSTP configuration list Each parameter configured by MSTP can be effective in MSTP mode when spanning tree is enable. The configuration will be saved when MSTP is disable and it will be effective when MSTP is enable. The configuration list is as following: - Configure timer value of MSTP - Configure MSTP configuration mark - Configure MSTP net bridge privilege - Configure edge interface status of MSTP interface - Configure MSTP interface link type - Configure MSTP interface path cost - Configure MSTP interface privilege - Display MSTP configuration information # 8.4.2 Configure timer value of MSTP MSTP timer value includes: forward delay, hello time, max age and max hops. Configure it in global configuration mode Configure forward delay ## spanning-tree mst forward-time forward-time Configure hello time ## spanning-tree mst hello-time hello-time Configure max age ## spanning-tree mst max-age max-age Configure max hops ## spanning-tree mst max-hops max-hops # Example: ``` !Configure max hops to be 10 QTECH(config) #spanning-tree mst max-hops 10 ``` # 8.4.3 Configure MSTP configuration mark MSTP configuration mark includes: MSTP configuration name, MSTP modify level and the relations of MSTP example and vlan. MSTP will treat interconnected net bridge with the same configuration mark as a virtual net bridge. Configure it in global configuration mode: Configure MSTP configuration mark name #### spanning-tree mst name name Configure MSTP configuration mark modify level ## spanning-tree mst revision revision-level Configure mapping relation of MSTP example and VLAN of MSTP configuration mark ## spanning-tree mst instance instance-num vlan vlan-list #### Example: ``` !Configure MSTP configuration mark name to be test QTECH(config) #spanning-tree mst name test !Configure MSTP configuration mark modify level to be 10 QTECH(config) #spanning-tree mst revision 10 !Configure VLAN2~7 mapping to spaning tree example 5 QTECH(config) #spanning-tree mst instance 5 vlan 2-7 ``` # 8.4.4 Configure MSTP net bridge privilege In MSTP, the privilege of net bridge is based on the parameter of each STP example. net bridge privilege as well as interface privilege and interface path cost determine the topology of each STP example to construct the base of link load balance. Configure it in global configuration mode: Configure privilege of net bridge in MSTP example spanning-tree mst instance instance-num priority priority ## Example: !Confiureprivilege of net bridge in MSTP example 4 to be 4096 QTECH(config)#spanning-tree mst instance 4 priority 4096 # 8.4.5 Configure edge interface status of MSTP interface As SST, after linking up of interface with edge interface attribution, if it hasn't received any packet in two packet-sending periods, interface will be in forwarding status. Configure it in interface configuration mode: • Configure interface to be edge interface # spanning-tree mst portfast ## Example: !Configure interface 2 to be edge interface QTECH(config-if-ethernet-0/0/2) #spanning-tree mst portfast # 8.4.6 Configure MSTP interface link type Interface link type are twookinds: one is sharing medium (linking through hub), the other is point-to-point. Link type is used in suggestion-aggression mechanism. Only the interface of point-to-point can shift fast. Link type can be specified manually or self-detect by STP. #### Example: !Configure link type of interface 2 to be point-to-point for cefalse QTECH(config-if-ethernet-0/0/2) #spanning-tree mst link-type point-to-point for cefalse # 8.4.7 Configure MSTP interface path cost Interface path cost are internal cost and external cost. The former is based on each MSTP example configured parameter to determine topology of different example in each MSTP region. The latter is the parameter which has nothing to do with example and determine the CST topology formed by each region. Configure it in interface configuration mode: Configure the path cost of interface in some instance # spanning-tree mst instance instance-num cost cost Configure the external path cost of interface # spanning-tree mst external cost cost #### Example: !Configure the path cost of interface 2 in instance 1 to be 10 QTECH(config-if-ethernet-0/0/2) #spanning-tree mst instance 1 cost 10 !Configure the external path cost of interface 2 to be 10 QTECH(config-if-ethernet-0/0/2) #spanning-tree mst external cost 10 # 8.4.8 Configure MSTP interface privilege In
MSTP, interface privilege is the parameter based on each STP instance. Configure it in interface configuration mode: • Configure interface privilege in some instance spanning-tree mst instance instance-num port-priority priority !Configure privilege of interface 2 in instance 1 to be 16 QTECH(config-if-ethernet-0/0/2)#spanning-tree mst instance 1 port-priority 16 # 8.4.9 Display MSTP configuration information The basic information of MSTP includes: MSTP configuration mark information (includes configuration name, modify level and the mapping relations between vlan and MSTP instance); the configuration information of STP instance and interface. Use this command in any configuration mode: Display MSTP configuration mark information # show spanning-tree mst config-id Display interface information of some instance #### show spanning-tree mst instance instance-num interface [interface-list] #### Example: ``` !Display MSTP configuration mark information QTECH(config) #show spanning-tree mst config-id !Display information of interface 2 in instance 1 QTECH(config) #show spanning-tree mst instance 1 interface ethernet 0/0/2 ``` # **Chapter 9 802.1X Configuration Command** # 9.1 Brief introduction of 802.1X configuration IEEE 802.1X is the accessing management protocol standard based on interface accessing control passed in June, 2001. Traditional LAN does not provide accessing authentication. User can acess the devices and resources in LAN when connecting to the LAN, which is a security hidden trouble. For application of motional office and CPN, device provider hopes to control and configure user's connecting. There is also the need for accounting. IEEE 802.1X is a network accessing control technology based on interface which is the accessing devices authentication and control by physical accessing level of LAN devices. Physical accessing level here means the interface of LAN Switch devices. When authentication, switch is the in-between (agency) of client and authentication server. It obtains user's identity from client of accessing switch and verifies the information through authentication server. If the authentication passes, this user is allowed to access LAN resources or it will be refused. System realizes IEEE 802.1X authentication. Use IEEE 802.1X authentication needs: RADIUS server which system can access to make the authentication information to send to; IEEE 802.1X authentication client software installed in accessing user's device (such as PC). # 9.2 802.1X Configuration Configure system or interface related parameter before enabling 802.1X authentication and these configurations will be saved after disabling 802.1X. And the parameter will be effective after re-enabling 802.1X. 802.1X configuration list is as following: - Configure RADIUS project - Configure domain - Configure 802.1X # 9.2.1 AAA configuration mode Finish necessary configuration of domain and RADIUS project of 802.1X authentication. Use aaa command in global configuration mode to enter AAA configuration mode. #### For example: !Enter AAA configuration mode QTECH(config) #aaa QTECH(config-aaa) # +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 # 9.2.2 RADIUS Server Configuration RADIUS server saves valid user's identity. When authentication, system transfers user's identity to RADIUS server and transfer the validation to user. User accessing to system can access LAN resources after authentication of RADIUS server. RADIUS server configurations are as following: - radius host - primary-ip - realtime-account - second-ip - secret-key - username-format - radius accounting - server-disconnect drop radius 1x - show radius host The order of configuration can be as following: 1. In AAA mode, use radius host command to enter RADIUS server configuration mode (if the RADIUS server does not exist, create it first), use no radius command to remove specified RADIUS server. The name of RADIUS server ranges from 1 to 32 charaters with no difference in upper-case type and lower case letters and without space. ## For example: ``` !Enter RADIUS server test QTECH(config-aaa) #radius host test QTECH(config-aaa-radius-test) # ``` In RADIUS server configuration mode, use **primary-ip** command to configure ip address and authentication of current primary authentication server (the default authentication port is 1812 and accounting port is 1813). Use **no primary-ip** command to remove ip address of primary server. # For example: ``` ! Configure ip address of primary authentication server to be 192.168.0.100, and authentication port to be 1812, accounting port to be 1813 QTECH(config-aaa-radius-test) #primary-ip 192.168.0.100 1812 1813 ``` 3. In RADIUS server configuration mode, use **realtime-account** command to enable realtime accounting. Use **no realtime-account** command to disable it. It is defaulted to enable and the interval of sending accounting packet is 12 minutes. # Example: !Configure the interval of sending accounting packet to be 10 minutes QTECH(config-aaa-radius-test) #realtime-account interval 10 !Disable realtime accounting QTECH(config-aaa-radius-test) #no realtime-account 4. In RADIUS server configuration mode, use **second-ip** command to configure ip adress and authentication and accounting port of second authentication server (the default authentication port is 1812 and the accounting port is 1813). Use **no second-ip** command to remove it. #### For example: !Configure the ip address of the second authentication server of the RADIUS server with the name of test to be 192.168.0.200, and authentication port to be 1812 and accounting port to be 1813 QTECH(config-aaa-radius-test) #second-ip 192.168.0.200 1812 1813 5. Use **secret-key** command to configure a shared key for the RADIUS server. Use **no secret-key** command to restore the default shared key Switch. #### For example: !Configure the shared key for the RADIUS server with the name of test to be test QTECH(config-aaa-radius-test) #secret-key test 6. Use **username-format** command to configure the format of the usernames to be sent to RADIUS servers. **With-domain** means user name with domain name. **Without-domain** means user name without domain name. #### For example: !Configure the username sent to the RADIUS server with the name of test not to carry domain name. QTECH(config-aaa-radius-test) #username-format without-domain 7. Use **radius accounting** command to enable accounting function # For example: !Disable accounting. User can get on internet through authentication QTECH(config-aaa)#no radius accounting 8. Use **server-disconnect drop radius 1x** command to configure whether drop online user or not when accounting server is disconnected. ## For example: ``` !Drop online user when accounting server is disconnected QTECH(config-aaa) # server-disconnect drop radius 1x ``` 9. Use **show radius host** command to display RADIUS server information. # For example: ``` !Display RADIUS server information QTECH(config-aaa-radius-test) # show radius host test ``` # 9.2.3 Domain Configuration Client need provide username and password when authentication. Username contains user's ISP information, domain and ISP corresponded. The main information of domain is the RADIUS server authentication and accounting the user should be. The main configuration command of domain is as following: - domain - radius host binding - access-limit - state - default domain-name - show domain The order of configuration can be as following: In AAA configuration mode, use **domain** command to enter AAA configuration mode. If it doesn't exist, create it. Use **no domain** command to remove the domain. The name of the domain ranges from 1 to 24 charaters, no difference in upper-case type and lower case letters, and without space. ## For example: ``` !Create domain with the name of test.com QTECH(config-aaa) #domain test.com QTECH(config-aaa-test.com) # ``` 2. Use radius host command to choose a RADIUS server for current domain. Administrator specifies a existed RADIUS server to configure to be the RADIUS server of current domain. ## For example: !Configure current domain to use RADIUS configuration of "test" QTECH(config-aaa-test.com) #radius host test 3. Use **access-limit** to enable command to configure the maximum number of access user that can be contained in current domain. ## For example: !Configure the maximum number of access user that can be contained in domain test.com to 100 QTECH(config-aaa-test.com) #access-limit enable 100 4. Use **state** command to configure the state of the domain to be active or block. ## For example: ``` !Activate test.com QTECH(config-aaa-test.com) #state active ``` 5. Use **default domain-name** to enable command to configure a existed domain to be default domain. If the domain doesn't exist, the configuration fails. Use **default domain-name disable** command to disable the default domain. When the **default domain name** is disabled, switch will not deal with the invalid packet, if the username goes without the domain name. After the default domain name is enabling, switch will add @ and default domain name to a username wothout a domain name to authenticate. To configure a default domain which must be existed, or the configuration fails. ## For example: !Configure default domain name to be test.com and enable the default domain QTECH(config-aaa) #default domain-name enable test.com 6. Use **show domain** command to display the configuration of the domain. ## For example: !Display the configuration of the domain QTECH(config-aaa-test.com) #show domain # 9.2.4 Configure local-user When local-user authentication is configured, the local username and password should be added. - local-user - show local-user # 9.2.5 802.1X Configuration Related command of 802.1X configuration is as following: - dot1x - dot1x daemon - dot1x eap-finish - dot1x eap-transfer - dot1x re-authenticate - dot1x re-authentication - dot1x timeout re-authperiod - dot1x timeout
re-authperiod interface - dot1x port-control - dot1x max-user - dot1x user cut - Use dot1x command to enable 802.1x. Domain and RADIUS server configurations can be effective after this function enabling. Use no dot1x command to disable 802.1x. Use show dot1x command to display 802.1x authentication information. After enabling 802.1X, user accessed to system can access VLAN resources after authentication. By default, 802.1X disables. ## For example: ``` !Enable 802.1X QTECH(config) #dot1x !Display 802.1x authentication information QTECH(config) #show dot1x ``` 2. When **802.1x** enables, use this command to configure whether a port send 802.1x daemon and sending period. By default, **802.1x daemon** is not sent by default. When 802.1x enables, default interval to send daemon is 60seconds. ## For example: !Enable dot1x daemon on ethernet 0/5 with the period time of 20 seconds QTECH(config-if-ethernet-0/5) #dot1x daemon time 20 3. Use dot1x eap-finish and dot1x eap-transfer command to configure protocol type between system and RADIUS server: After using **dot1x eap-transfer** command, 802.1 authentication packet encapsulated by EAP frame from user is sent to RADIUS server after transfering to data frame encapsulated by other high level protocol. After using **dot1x eap-transfer** command, 802.1 authentication packet encapsulated by EAP frame from user is sent to RADIUS server without any changes. ## For example: !Configure authentication packet tramsitting to be eap-finish QTECH(config) #dot1x eap-finish - 4. Use dot1x re-authenticate command to re-authenticate current interface. Use dot1x re-authentication command to enable 802.1x re-authentication. Use no dot1x re-authentication command to disable 802.1x re-authentication. Use dot1x timeout re-authperiod command to configure 802.1x re-authperiod. Use dot1x timeout re-authperiod interface command to configure 802.1x re-authperiod of a specified interface. Please refer to command line configuration to see the details. - 5. Use **dot1x port-control** command to configure port control mode. After 802.1X authentication enables, all interfaces of the system default to be needing authentication, but interfaces of uplink and connecting to server need not authentication. Use **dot1x port-control** command to configure port control mode. Use **no dot1x port-control** command to restore the default port control. Use **show dot1x interface** command to display configuration of interface. Configure it in interface configuration mode: dot1x port-control { auto | forceauthorized | forceunauthorized } ## For example: ``` !Ethernet 0/5 is RADIUS server port. Configure port-control mode of ethernet 0/5 to be forceauthorized in interface configuration mode QTECH(config-if-ethernet-0/5) #dot1x port-control forceauthorized !Display 802.1X configuration of ethernet 0/5 QTECH(config) #show dot1x interface ethernet 0/5 port ctrlmode Reauth ReauthPeriod(s) MaxHosts e0/5 forceauthorized disabled 3600 160 Total [26] item(s), printed [1] item(s). ``` 6. Use **dot1x max-user** command to configure the maximum number of supplicant systems an ethernet port can accommodate. Use **no dot1x max-user** command to configure the maximum number to be 1. Configure it by using following command: dot1x max-user user-num # For example: !Configure the max-user of ethernet 0/5 is 10 in interface configuration mode QTECH(config-if-ethernet-0/5) #dot1x max-user 10 7. Use **dot1x user cut** command to remove specified online user. Remove specified online user by specified username and MAC address. # For example: !Remove user with username of aaa@gnnet.com QTECH(config)#dot1x user cut username aaa@gnnet.com # **Chapter 10 SNTP Client Configuration** # 10.1 Brief introduction of SNTP protocol The working theory of SNTP is as following: SNTPv4 can be worked in three modes: unicast, broadcast (multicast) and anycast. In *unicast* mode, client actively sends requirement to server, and server sends response packet to client according to the local time structure after receiving requirement. In *broadcast* and *multicast* modes, server sends broadcast and multicast packets to client timing, and client receives packet from server passively. In *anycast* mode, client actively uses local broadcast or multicast address to send requirement, and all servers in the network will response to the client. Client will choose the server whose response packet is first received to be the server, and drops packets from others. After choosing the server, working mode is the same as that of the unicast. In all modes, after receiving the response packet, client resolves this packet to obtain current standard time, and calculates network transmit delay and local time complementary, and then adjusts current time according them. # 10.2 SNTP client configuration SNTP client configuration command includes: - Enable/disable SNTP client - SNTP client working mode configuration - SNTP client unicast server configuration - SNTP client broadcast delay configuration - SNTP client multicast TTL configuration - SNTP client poll interval configuration - SNTP client retransmit configuration - SNTP client valid server configuration - SNTP client MD5 authentication configuration # 10.2.1 Enable/disable SNTP client Use sntp client command in global configuration mode to enable SNTP client. Use no sntp client command to disable SNTP client. After SNTP enabling, switch can obtain standard time through internet by SNTP protocol to adjust local system time. Enable SNTP client using following command: # sntp client no sntp client #### For example: !Enable SNTP client QTECH(config) #sntp client # 10.2.2 SNTP client working mode configuration SNTPv4 can work in three modes: *unicast, broadcast (multicast), anycast.* In *unicast* and *anycast*, client sends requirement and gets the response to adjust system time. In *broadcast* and *multicast*, client waits for the broadcast packet sent by server to adjust system time. sntp client mode { broadcast | unicast | anycast [key number] | multicast } no sntp client mode #### For example: !Configure SNTP client to operate in anycast QTECH(config) #sntp client mode anycast # 10.2.3 SNTP client unicast server configuration In unicast ode, SNTP client must configure server address. The related command is as following: sntp server ip-address [key number] no sntp server Only in unicast, configured server address can be effective. ## For example: !Configure unicast server ip-address to be 192.168.0.100 QTECH(config) #sntp server 192.168.0.100 # 10.2.4 SNTP client broadcast delay configuration SNTP client broadcast delay configuration is as following: # sntp client broadcastdelay milliseconds no sntp client broadcastdelay Only in broadcast (multicast), configured transmit delay can be effective. After configuration, SNTP client can add transmit delay after obtaining time from server to adjust current system time. #### For example: !Configure broadcastdelay to be 1 second QTECH(config) #sntp client broadcastdelay 1000 # 10.2.5 SNTP client multicast TTL configuration Use following command to configure ttl-value of multicast packet: # sntp client multicast ttl ttl-value no sntp client multicast ttl This command should be effective by sending packet through multicast address in anycast operation mode. In order to restrict the range of sending multicast packet, *TTL-value* setting is suggested. The default ttl-value is 255. ## For example: !Configure TTTL-value of sending multicast packet to be 5 QTECH(config) #sntp client multicast ttl 5 # 10.2.6 SNTP client poll interval configuration Use following command to configure poll-interval of SNTP client in unicast or anycas.: # sntp client poll-interval seconds no sntp client poll-interval Only in unicast and anycast mode, configured poll interval can be effective. SNTP client sends requirement in a poll interval to the server to adjust current time. #### For example: !Configure poll-interval to be 100 seconds QTECH(config) #sntp client poll-interval 100 # 10.2.7 SNTP client retransmit configuration Uses following command to configure retransmit times inunicast and anycast operation mode.: sntp client retransmit timesno sntp client retransmitsntp client retransmit-interval secondsno sntp client retransmit-interval This command is effective in unicast and anycast operation mode. SNTP requirement packet is UDP packet, overtime retransmission system is adopted because the requirement packet cannot be guaranteed to send to the destination. Use above commands to configure retransmit times and the interval. #### For example: !Configure overtime retransmission to be twice and the interval to be QTECH(config) #sntp client retransmit-interval 5 QTECH(config) #sntp client retransmit 2 # 10.2.8 SNTP client valid server configuration In broadcast and multicast mode, SNTP client receives protocol packets from all servers without distinction. When there is malice attacking server (it will not provide correct time), local time cannot be the standard time. To solve this problem, a series of valid servers can be listed to filtrate source address of the packet. Corresponded command is as following: sntp client valid-server no sntp client valid-server no sntp client valid-server all ## For example: !Configure servers in network interface 10.1.0.0/16 to be valid servers QTECH(config) #sntp client valid-server 10.1.0.0 0.0.255.255 # 10.2.9 SNTP client MD5 authentication configuration SNTP client can use valid server list to filtrate server, but when some malice attackers using valid server address to forge server packet and attack switch, switch can use MD5 authentication to filtrate packet, and authenticated packet can be accepted by client. Configuration command is as following: sntp client authenticate no sntp client authenticate sntp client authentication-key number md5 value no sntp client authentication-key number sntp trusted-key number no sntp trusted-key number ## For example: !Configure
SNTP client MD5 authentication-key, with the key ID being 12, and the key being abc and trusted-key being 12 QTECH(config) #sntp client authenticate QTECH(config) #sntp client authentication-key 12 md5 abc QTECH(config) #sntp trusted-key 12 # 10.2.10 Summer time configuration for SNTP client Configure it in global configuration mode: sntp client summer-time no sntp client summer-time # For example: !Configure 00:00:00 April 1st to 23:59:59 October 31st every year to be the summer time QTECH(config)#sntp client summer-time dayly 4 1 00:00:00 10 31 23:59:59 # **Chapter 11 Syslog Configiration** # 11.1 Brief introduction of Syslog Syslog is system information center, which handles and outputs information uniformly. Other modules send the information to be outputted to Syslog, and Syslog confirms the form of the outputting of the information according to user's configuration, and outputs the information to specified displaying devices according to the information switch and filtration rules of all outputting directions. Because of Syslog, information producer all modules of outputting information need not care where the information should be send at last, console, telnet terminal or logging host (Syslog server). They only need send information to Syslog. The information consumer console, Telnet terminal, logging buffer, logging host and SNMP Agent can choose the information they need and drop what they needn't for suitable filtration rules. Syslog information level reference: | severe level | Description | corresponded explanation | |------------------|----------------------------|---| | 0: emergencies | the most emergent error | need reboot | | 1: alerts | need correct immediately | self-loop, hardware error | | 2: critical | key error | memory, resources distribution error | | 3: errors | non-key errors need | general error; invalid parameter which is | | | cautions | hard to restore | | 4: warnings | Warning for some error | alarm; losing packet which is not | | | which may exist | important; disconnect with the exterior | | | | server | | 5: notifications | information needs cautions | Trap backup outputting | | 6: informational | general prompt information | command line operation log; set operation | | | | for MIB node | | 7: debugging | debug information | debugging outputting; process, data of | | | | service protocol | # 11.2 Syslog Configiration Syslog configuration command includes: - Enable/disable Syslog - Syslog sequence number configuration - Syslog time stamps configuration - Syslog logging language configuration - Syslog terminal outputting configuration - Syslog logging buffered outputting configuration - Syslog Flash storage outputting configuration - Syslog logging host outputting configuration - Syslog SNMP Agent outputting configuration - Module debug configuration # 11.2.1 Enable/disable Syslog Use **logging** command in global configuration mode to enable Syslog. Use **no logging** command to disable Syslog and no information will be displayed. Configuration command is as following: # logging no logging ## For example: !Enable Syslog QTECH(config)#logging # 11.2.2 Syslog sequence number configuration Use **logging sequence-numbers** command to configure global sequence number to be displayed in Syslog. Use **no logging sequence-numbers** command to configure global sequence number not to be displayed in Syslog. # logging sequence-numbers no logging sequence-numbers #### For example: !Configure global sequence number to be displayed in Syslog outputting information. QTECH(config) #logging sequence-numbers # 11.2.3 Syslog time stamps configuration Use following command to configure the type of timestamps in Syslog. There 3 types of timestamps: timestamps are not displayed, uptime is the timestamps, and datatime is the timestamps. Configure command is as following: logging timestamps { notime | uptime | datetime } no logging timestamps ## For example: !Configure datetime to be the timestamps QTECH(config) #logging timestamps datetime # 11.2.4 Syslog terminal outputting configuration Use following command in global configuration mode to enable monitor logging and configure filter regulation. 1. Logging monitor configuration command is as following: logging monitor { all | monitor-no } no logging monitor { all | monitor-no } monitor-no: 0 means console, and 1 to 2 means Telnet terminal. # For example: ``` !Enable monitor logging QTECH(config) #logging monitor 0 ``` 2. Terminal monitor configuration command is as following: ## terminal monitor # no terminal monitor This command has influence on current terminal and current log in. #### For example: ``` !Enable current terminal information displaying OTECH#terminal monitor ``` 3. Logging monitor configuration command is as following: ``` logging monitor { all | monitor-no } { level | none | level-list { level [to level] } &<1-8> } [module { xxx | ... } *] ``` ``` no logging monitor { all | monitor-no } filter ``` xxx: means the name of the module. ... means other modules are omitted #### For example: ``` !Configure filter regulations of all terminals to allow all modules of levels 0 to 7 to output information QTECH(config) #logging monitor 0 7 ``` # 11.2.5 Syslog logging buffered outputting configuration Use **logging buffered** command in global configuration mode to enable buffered logging and configure filter regulations. Use **no logging buffered** command to disable buffered logging and restore to default filter regulations. 1. Logging buffered configuration command is as following: # logging buffered no logging buffered ## For example: !Enable buffered logging QTECH(config)# logging buffered 2. Filtration rules configuration command is as following: logging buffered { $level \mid$ none | level-list { level [to level] } &<1-8>} [module { $xxx \mid ... \}$ *] no logging buffered filter xxx: means the name of the module. ... means other modules are omitted. ## For example: !Configure filter regulations of all terminals to allow all module of level 0 to 6 to output information QTECH(config) #logging buffered 6 # 11.2.6 Syslog Flash storage outputting configuration Use **logging flash** command in global configuration command to enable flash logging and configure filter regulations. 1. Logging buffered configuration command is as following # logging flash no logging flash #### For example: !Enable flash logging QTECH(config) # logging flash 2. Filtration rules configuration command is as following: logging flash { level | none | level-list { level [to level] } &<1-8> } [module { xxx | ... } *] no logging flash filter xxx: means the name of the module. ... means other modules are omitted. #### For example: !Configure filter regulations of all terminals to allow all modules to output information with the level of 0, 1, 2, 6 QTECH(config) $\#\log 1$ flash level-list 0 to 2 6 # 11.2.7 Syslog logging host outputting configuration Use following command to configure host ip address, and enable host logging, and configure filter regulation of Syslog server. 1. Server address configuration command is as following: logging ip-address no logging ip-address At most 15 logging hosts are allowed to configure. ## For exaple: ``` !Configure server address to be 1.1.1.1: QTECH(config) #logging 1.1.1.1 ``` 2. Logging buffered configuration command is as following: ``` logging host { all | ip-address } no logging host { all | ip-address } ``` #### For example:: ``` !Enable logging host 1.1.1.1 QTECH(config) #logging host 1.1.1.1 ``` 3. Filtration rules configuration command is as following: logging host { all | ip-address } { level | none | level-list { level [to level] } &<1-8> } [module { xxx | ... } *] no logging host { all | ip-address } filter xxx: means the name of the module. ... means other modules are omitted. #### For example: ``` !Configure filter regulations of logging host 1.1.1.1 to allow module vlan of level 7 to output information QTECH(config) #logging host 1.1.1.1 none QTECH(config) #logging host 1.1.1.1 level-list 7 module vlan ``` 4. Logging facility configuration command is as following: ``` logging facility \{ xxx \mid \dots \} ``` #### no logging facility xxx: The name of logging facilities.... means other logging facilities are omitted. #### For example: ``` !Configure logging facility to be localuse7 QTECH(config)#logging facility localuse7 ``` 5. Fixed source address configuration command is as following: # logging source ip-address # no logging source ip-address must be an interface address of a device. ## For example: ``` !Configure logging host outputting to use fixed source address 1.1.1.2: QTECH(config) #logging source 1.1.1.2 ``` # 11.2.8 Syslog SNMP Agent outputting configuration Use **logging snmp-agent** command to enable SNMP Agent logging and configure filter configuration. Use **no logging snmp-agent** command to disable SNMP Agent logging and restore to default filter configuration. Configure Trap host ip address for Syslog information to send to SNMP Workstation by Trap packet. (refer to SNMP configuration) 1. Logging buffered configuration command is as following: # logging snmp-agent no logging snmp-agent ## For example: ``` !Enable SNMP Agent logging QTECH(config) #logging snmp-agent ``` 2. Filtration rules configuration command is as following: ``` logging snmp-agent { level | none | level-list { level [to level] } &<1-8> } [module { xxx | ... } *] ``` ## no logging snmp-agent filter xxx: means the name of the module. ... means other modules are omitted. # For example: ``` !Configure SNMP Agent filtrate rules to be permitting information with the level 0\sim5 QTECH(config)#logging snmp-agent 5 ``` # 11.2.9 Module debug configuration Use **debug** command to enable debug of a module. Use **no debug** command to disable debug of a module: ``` debug { all | { xxx | ... } * } no debug { all | { xxx | ... } * } ``` xxx: means the name of the module. ... means other
modules are omitted. #### For example: ``` +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 ``` !Enable debug of module vlan QTECH(config)#debug vlan ## **Chapter 12 .SSH Configuration** ### 12.1 Brief introduction of SSH SSH is short for Secure Shell. Users can access to the device via standard SSH client, and sent up safe connection with device. The Data that transmitted via SSH connection are encrypt, which assure the transmitted sensitive data, management data and configuration data, such as password, between the users and devices will not be wiretapped or acquired illegally by the third party. SSH can replace Telnet, providing users with means of safely management and device configuration. ## 12.2 SSH Configuration The configuration task list of SSH is as follows - Enable/disable SSH function of the device - SSH secret key configuration - Others ## 12.2.1 Enable/disable SSH function of the device Enable/disable SSH function of the device in global mode, users can not access to the devices via SSH client when SSH function is closed. To access to the device via SSH client, users need to configure correct secret key and upload the secret key in the device besides opening up the SSH function. Configuration command is as following: ssh no ssh #### Example: !Enable SSH QTECH(config)#ssh ## 12.2.2 SSH key configuration Use SSH secret key in privileged mode. User cannot use SSH client to log in if there is no secret key or the key is incorrect or the key is not load. In order to log in by SSH client, configure correct key and load it with SSH enabling. The configured secret key should be RSA. There are two kinds of keys: public and private. It can use the default key and also can download keyfile to device by tftp and ftp. Configured key can be used after loading. Configured key is stored in Flash storage which will be load when system booting. It also can load the key stored in Flash storage by command line when system booting. If configured key is not ESA key or public and private key are not matched, user cannot log in by SSH. Keyfile contains explanation and key explain line and the key. Explain line must contain ":" or space. Key contains the key coded by Base64, excluding ":" and space. Private keyfile cannot contain public key. Private keyfile cannot use password to encrypt. 1. Configure default key. The command is as following: #### Crypto key generate rsa #### Example: !Configure SSH key to be default key QTECH#crypto key generate rsa 2. Download or upload key by tftp or ftp. The command is as following: load keyfile { public | private } tftp server-ip filename load keyfile { public | private } tftp server-ip filename username passwd upload keyfile { public | private } tftp server-ip filename upload keyfile { public | private } tftp server-ip filename username passwd #### Example: ``` !Download keyfile pub.txt from tftp server 1.1.1.1 to be SSH public key QTECH#load keyfile public tftp 1.1.1.1 pub.txt ``` 3. Clear configured key. This command will clear all keyfiles storaged in Flash storage. The configuration command is as following: #### crypto key zeroize rsa #### Example: ``` !Clear configured SSH key QTECH#crypto key zeroize rsa ``` 4. Load new key. After configuring new SSH key, it restored in Flash storage without loading. This command can read configured key from Flash storage and update the current key. When system booting, it will detect Flash storage, if SSH key is configured, it will load automatically. The configuration command is as following: #### crypto key refresh #### Example: !Load new SSH key: QTECH#crypto key refresh ### 12.2.3 Others 1. Use following command to display SSH configuration #### show ssh This command is used to display SSH version number, enabling/disabling SSH and SSH keyfile. The SSH keyfile is "available" when the key is configured and loaded. 2. Use following command to display configured keyfile show keyfile { public | private } 3. Use following command to display logged in SSH client #### show users This command is used to display all logged in Telnet and SSH client. 4. Use following command to force logged in SSH client to stop **stop username** This command can force logged in SSH client to stop. Username is the logged in user name. 5. It allows at most 5 SSH clients to logged in. If Telnet client has logged in, the total number of SSH and Telnet clients is no more than 5. For example, if there are 2 Telnet clients in device, at most 3 SSH clients can log in. ## **Chapter 13 Switch Manage and Maintenance** ## 13.1 Configuration Files Management ## 13.1.1 Edit configuration files Configuration files adopts text formatting which can be upload to PC feom devices by FTP and TFTP protocol. Use text edit tool (such as windows nootbook) to edit uploaded configuration files. System is defaulted to execute configuration files in global configuration mode, so there are two initial commands: "enable", and "configure terminal". There is entering symbol after each command. ## 13.1.2 Modify and save current configuration User can modify and save system current configuration by command line interface to make current configuration be initial configuration of system next booting. Copy **running-config startup-config** command is needed to save current configuration. When executing configuration files, if there is un-executed command, it will be displayed as "[Line:xxxx]invalid: commandString". If there is command with executing failure, it will be displayed as "[Line:xxxx]failed: commandString". If there is a command beyond 512 characters, it will be displayed as "[Line:xxxx]failed: too long command: commandString", and only first 16 characters of this command will be displayed, and end up with ..., in which "xxxx" means the line number of the command, and commandString means command character string. Unexecutive command includes command with grammar fault and un-matching pattern. Use following command in privileged mode. QTECH#copy running-config startup-config ## 13.1.3 Erase configuration Use **clear startup-config** command to clear saved configuration. After using this command to clear saved configuration and reboot switch. The switch will restore to original configuration. Use this command in privileged mode. QTECH#clear startup-config # 13.1.4 Save minmum manageable configuration of network administration Use command line interface to save minmum manageable configuration of network administration. Minmum manageable configuration of network administration only contains configuration of one vlan interface. Use **copy nm-interface-config startup-config** command to save minmum manageable configuration of network administration. #### Example: !Save configuration of VLAN interface 1 which has been configured IP address QTECH#copy nm-interface-config startup-config !Save configuration of VLAN interface 1 which has been configured IP address QTECH#copy nm-interface-config startup-config 2 !Save configuration of user-defined VLAN interface 2 QTECH#copy nm-interface-config startup-config 2 192.168.0.100 255.255.255.0 192.168.0.1 ## 13.1.5 Execute saved configuration User can restore saved configuration by commang line interface by using copy startup-config running-config command in privileged mode to execute saved configuration. QTECH#copy startup-config running-config ## 13.1.6 Display saved configuration User can display system saved configuration information in the form of text by command line interface. Use following command to display system saved configuration: ## show startup-config [module-list] *module-list*: Optional module. If the module name is unoptioned, all information of configuration files will be displayed. If choose one or same of the modules, the specified information will be displayed. This command can be used in any configuration mode. #### For example: !Display all saved configuration QTECH#show running-config !Display saved configuration of GARP and OAM module QTECH#show running-config garp oam #### Display current configuration User can display system current configuration information in the form of text by command line interface. Use following command to display system current configuration: show running-config [module-list] module-list: Optional module. If the module name is unoptioned, all information of configuration files will be displayed. If choose one or same of the modules, the specified information will be displayed. #### For example: !Display all configurations QTECH#show running-config +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 !Display configuration of GARP and OAM module QTECH#show running-config garp oam ## 13.1.7 Configure file executing mode shift User can change executing mode of configuration file by command line interface. System saved configuration filescan be executed in stop and continue mode. When coming across errors, the executing will not stop; it will display errors and continue executing. It is defaulted to be non-stop mode. Use buildrun mode stop to configure executing mode to be stopped. Use buildrun mode continue command to configure buildrun mode to be continune. Use these commands in privileged mode. #### For example: !Configure buildrun mode to be stop. QTECH#buildrun mode stop !Configure buildrun mode to be continune OTECH#buildrun mode continue ## 13.2 Online Loading Upgrade Program System can upgrade application program and load configuration files on line by TFTP, FTP, Xmodem, and can upload configuration files, logging files, alarm information by TFTP and FTP. ## 13.2.1 Upload and download files by TFTP Use following command to upload files by TFTP: #### upload { alarm | configuration | logging } tftp tftpserver-ip filename Use following command to download files by TFTP: #### load {application | configuration | whole-bootrom } tftp tftpserver-ip filename *tftpserver-ip* is the IP address of TFTP server. *Filename* is the file name to be loaded which cannot be system
key words (such as con cannot be file name in windows operation system). Open TFTP server and set file upload path before use this command. Suppose IP address of TFTP server is 192.168.0.100, file name is abc. Open TFTP server to configure upload and download path in privileged mode. #### For example: !Upload configuration to 192.168.0.100 by FTP and saved as abc QTECH#upload configuration ftp 192.168.0.100 abc username password Configuration information saved when uploading is successful. !Download configuration program abc to 192.168.0.100 by TFTP QTECH#load configuration ftp 192.168.0.100 abc Reboot the switch after successful download and run new configuration program. !Upload alarm to 192.168.0.100 by TFTP and saved as abc QTECH#upload alarm tftp 192.168.0.100 abc !Upload logging to 192.168.0.100 by TFTP and saved as abc QTECH#upload logging tftp 192.168.0.100 abc !Download application program app.arj to 192.168.0.100 by TFTP QTECH#load application tftp 192.168.0.100 app.arj Reboot the switch after successful download and run new application program. !Download whole-bootrom abc to 192.168.0.100 by TFTP QTECH#load whole-bootrom tftp 192.168.0.100 rom3x26.bin ## 13.2.2 Upload and download files by FTP • Use following command to upload files by FTP: upload { alarm | configuration | logging } ftp ftpserver-ip filename username userpassword • Use following command to download files by FTP: **load** { **application** | **configuration** | **whole-bootrom**} **ftp** *ftpserver-ip filename username userpassword* ftpserver-ip is the IP address of FTP server. Filename is the file name to be loaded which cannot be system key words (such as con cannot be file name in windows operation system). Open FTP server and set username, password and file upload path before use this command. Suppose IP address of TFTP server is 192.168.0.100, file name is abc. Open TFTP server to configure username to be user, password to be 1234 and file download path in privileged mode. #### For example: !Upload configuration to 192.168.0.100 by FTP and saved as abc QTECH#upload configuration ftp 192.168.0.100 abc user 1234 Configuration information saved when uploading is successful. !Download configuration program abc to 192.168.0.100 by FTP QTECH#load configuration ftp 192.168.0.100 abc user 1234 Reboot the switch after successful download and run new configuration program. !Download application program abc to 192.168.0.100 by FTP QTECH#load application ftp 192.168.0.100 abc user 1234 Reboot the switch after successful download and run new application program. !Upload alarm to 192.168.0.100 by FTP and saved as abc QTECH#upload alarm ftp 192.168.0.100 abc user 1234 !Upload logging to 192.168.0.100 by FTP and saved as abc QTECH#upload logging ftp 192.168.0.100 abc user 1234 !Download whole-bootrom abc to 192.168.0.100 by FTP +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 QTECH#load whole-bootrom ftp 192.168.0.100 abc user 1234 ## 13.2.3 Download files by Xmodem Use load application xmodem command to load application program by Xmodem protocol. #### load application xmodem #### Input following command in privileged mode: QTECH#load application xmodem Choose "send" -> "send file" in super terminal, and input full path and filename of the file in filename dialog box, and choose Xmodem protocol in "protocol", then click [send]. Reboot the switch after successful download and run new application program. Use **load configuration xmodem** command to load configuration program by Xmodem protocol. #### load configuration xmodem #### Input following command in privileged mode: QTECH#load configuration xmodem Choose "send" -> "send file" in super terminal, and input full path and filename of the file in filename dialog box, and choose Xmodem protocol in "protocol", then click [send]. Reboot the switch after successful download and run new application program. Use **load whole-bootrom xmodem** command to load whole bootrom by xmodem protocol. #### load whole-bootrom xmodem #### Input following command in privileged mode: QTECH#load whole-bootrom xmodem Choose "send" -> "send file" in super terminal, and input full path and filename of the file in filename dialog box, and choose Xmodem protocol in "protocol", then click [send]. Reboot the switch after successful download and run new BootRom program. ## 13.3 Facility management ## 13.3.1 MAC address table management ## 13.3.1.1 Brief introduction of MAC address table management System maintains a MAC address table which is used to transfer packet. The item of this table contains MAC address, VLAN ID and interface number of packet entering. When a packet entering switch, switch will look up the MAC address tablke according to destination MAC and VLAN ID of the packet. If it is found out, send packet according to the specified interface in the item of MAC address table, or the packet will be broadcasted in this VLAN. In SVL learning mode, look up the table only according to MAC in packet and neglect VLAN ID. System possesses MAC address learning. If the source MAC address of the received packet does not existed in MAC address table, system will add source MAC address, VLAN ID and port number of receiving this packet as a new item to MAC address table. MAC address table can be manual configured. Administrator can configure MAC address table according to the real situation of the network. Added or modified item can be static, permanent, blackhole and dynamic. System can provide MAC address aging. If a device does not receive any packet in a certain time, system will delete related MAC address table item. MAC address aging is effective on (dynamic) MAC address item which can be aging by learning or user configuration. #### 13.3.1.2 MAC address table management list - Configure system MAC address aging time - Configure MAC address item - Enable/disable MAC address learning ## 13.3.1.3 Configure system MAC address aging time Configure system MAC address aging time Use mac-address-table age-time command in global configuration mode to configure MAC address aging time. Use no mac-address age-time command to restore it to default time. mac-address-table age-time { agetime | disable } #### no mac-address-table age-time Agetime means MAC address aging time which ranges from 1 to 1048575 seconds. Default MAC address aging time is 300 seconds. Disable means MAC address not aging. Use no command to restore the default MAC address aging time. #### For example: !Configure MAC address aging time to be 3600 seconds QTECH(config) #mac-address-table age-time 3600 !Restore MAC address aging time to be 300 seconds QTECH(config) #no mac-address-table age-time Display MAC address aging time #### show mac-address-table age-time Use **show mac-address-table age-time** command to display MAC address aging time. #### For example: !Display MAC address aging time. QTECH(config) #show mac-address-table aging-time ## 13.3.1.4 Configure MAC address item Add MAC adress MAC address table can be added manually besides dynamically learning. mac-address-table { static | permanent | dynamic } mac interface interface-num vlan vlan-id Parameter *mac*, *vlan-id* and *interface-num* corresponded to the three attributions of the new MAC address table item. MAC address attribution can be configured to be dynamic, permanent and static. Dynamic MAC address can be aging; permanent MAC address will not be aging and this MAC address will exist after rebooting; static MAC address will not be aging, but it will be lost after rebooting. #### For example: !Add mac address 00:01:02:03:04:05 to be static address table. QTECH(config) #mac-address-table static 00:01:02:03:04:05 interface ethernet 0/1 vlan 1 Add blackhole MAC address System can configure MAC address table item to be blackhole item. When the source address or destination address is blackhole MAC address, it will be dropped. #### mac-address-table blackhole mac vlan vlan-id #### For example: !When tagged head of the packet is VLAN 1, forbid packet with its source address or destination address being 00:01:02:03:04:05 to go through system QTECH(config) #mac-address-table blackhole 00:01:02:03:04:05 vlan 1 Delete MAC address item Use **no mac-address-table** command to remove mac address table. **no mac-address-table** [**blackhole** | **dynamic** | **permanent** | **static**] *mac* **vlan** *vlan-id* **no mac-address-table** [**dynamic** | **permanent** | **static**] mac **interface** *interface-num* **vlan** *vlan-id* no mac-address-table [dynamic | permanent | static] interface interface-num no mac-address-table [blackhole | dynamic | permanent | static] vlan vlan-id no mac-address-table Vlan means delete MAC address table item according to vlan-id; mac means deleting a specified MAC address table item; interface-num means delete MAC address table item according to interface number; command **no mac-address-table** means delete all MAC address. #### For example: !Delete all MAC address table item QTECH(config) #no mac-address-table Display MAC address table Use **show mac-address** command to display MAC address table. ``` show mac-address-table { interface-num [vlan vlan-id] | cpu } show mac-address-table mac [vlan vlan-id] show mac-address-table mac [vlan vlan-id] show mac-address-table { blackhole | dynamic | permanent | static } [vlan vlan-id] show mac-address-table { blackhole | dynamic | permanent | static } interface interface-num [vlan vlan-id] show mac-address-table vlan vlan-id ``` The parameter meaning is the same as that of add/delete MAC address table item. #### 13.3.1.5 Enable/disable MAC address learning This command is a batch command in global configuration mode to configure all interfaces to be the same; in interface configuration mode, it can configure interface MAC address learning. When MAC address learning is forbidden in an interface, packet with unknown destination address received from other interface will not be transmitted to this
interface; and packet from this interface whose source address is not in this interface will not be transmitted. By default, all interface MAC address learning enable. ## mac-address-table learning no mac-address-table learning #### For example: !Enable MAC address learning on interface Ethernet 0/7. QTECH(config-if-ethernet-0/7) #no mac-address-table learning Display MAC address learning show mac-address learning [interface [interface-num]] Use show mac-address-table learning command to display MAC address learning Caution: When there is link convergence in system, the MAC address table related to link convergent port shows as corresponded convergent group number. It is not suggested using these commands which may cause confuse when adding or deleting MAC address for ## 13.3.1.6 Modify MAC address learning mode 3650 supports such two modes of learning as self-learning and control-learning and the former one is defaulted. User can configure it in global configuration mode and all dynamic mac address will be cleared after modifying learning mode. # mac-address-table control-learning no mac-address-table control-learning #### For example: !Modify MAC address to be control-learning QTECH(config) #mac-address-table control-learning ## 13.3.1.7 Configure the number of port MAC address allowed learning Configure the number of port MAC address allowed learning in interface configuration mode when MAC address learning mode is control-learning. By default, all ports of 3650 can learn 16384 MAC address and all dynamic mac address will be cleared after modifying the restrict number and dynamic MAC address number of this port will smaller than the restriction. ## mac-address-table max-mac-count 5 no mac-address-table max-mac-count #### For example: !Configure the maximum of MAC address allowed learning of Ethernet 0/7 to be 5 QTECH(config-if-ethernet-0/0/7) #mac-address-table max-mac-count 5 Display the number of port MAC address allowed learning show mac-address max-mac-count [interface [interface-num]] Use **show mac-address-table max-mac-count** command to display the number of port MAC address allowed learning. ## **13.3.2 Reboot** Use **reboot** command in privileged mode to reboot switch: QTECH#reboot ## 13.4 System Maintenance ## 13.4.1 Use show command to check system information **show command** can be divided into following categories: - Command of displaying system configuration - Command of displaying system opeation - Command of displaying system statistics **Show command** related to all protocols and interfaces refers to related chapters. Followings are system show commands. Use following commands in any configuration mode: • **show version** Display system version • **show username** Display administrator can be logged in show users Display administrators logged in • **show system** Display system information • **show memory** Display memory • **show clock** Display system clock • **show cpu** Display cpu information show ip fdb Display all L3 list • **show ip fdb ip** Display L3 list of specified ip show ip fdb ip mask Display L3 list of specified address range show dhcp-server clients Display DHCPSERVER HASH list #### For example: !Display system version OTECH# show version ## 13.4.2 Basic Configuration and Management System basic configuration and management includes: Configure host name Use **hostname** command in global configuration mode to configure system command line interface prompt. Use **no hostname** command to restore default host name. Configure system command line interface prompt. #### hostname hostname hostname: character strings range from 1 to 32, these strings can be printable, excluding such wildcards as '/',':','*','?','\\','<','>','|','"'etc. Use **no hostname** command in global configuration mode to restore default host name to be OTECH. #### For example: ``` !Configure hostname to beQTECHS3650 QTECH(config) #hostname QTECHS3650 QTECHS3650(config)# ``` Configure system clock Use **clock set** command in privileged mode to configure system clock. #### clock set HH:MM:SS YYYY/MM/DD #### For example: ``` !Configure system clock to be 2001/01/01 0:0:0 QTECH#clock set 0:0:0 2001/01/01 ``` • Configure clock timezone Use clock timezone command in privileged mode to configure clock timezone. #### clock timezone name hour minute #### For example: ``` !Configure the clock timezone to be CCT 8 0 QTECH(config) #clock timezone CCT 8 0 ``` ## 13.4.3 Network connecting test command Use **ping** command in privileged mode or user mode to check the network connection. **ping** [-c count] [-s packetsize] [-t timeout] host #### Parameter: -c count: The number of packet sending. Москва, Новозаводская ул., 18, стр. 1 - -s packetsize: The length of packet sending, with the unit of second - -t timeout: the time of waiting for replying after packet is sent, with the unit of second #### For example: ``` !Ping 192.168.0.100 QTECH#ping 192.168.0.100 PING 192.168.0.100: with 32 bytes of data: reply from 192.168.0.100: bytes=32 time<10ms TTL=127 reply from 192.168.0.100: bytes=32 time<10ms TTL=127 +7(495) 797-3311 www.qtech.ru ``` ``` reply from 192.168.0.100: bytes=32 time<10ms TTL=127 reply from 192.168.0.100: bytes=32 time<10ms TTL=127 reply from 192.168.0.100: bytes=32 time<10ms TTL=127 ----192.168.0.100 PING Statistics---- 5 packets transmitted, 5 packets received, 0% packet loss round-trip (ms) min/avg/max = 0/0/0</pre> ``` ## 13.4.4 Loopback test command In global configuration mode, loopback command is used to test exterior of all interfaces; in interface configuration mode, loopback command is used to test whether the interface is normal, and it can be divided into interior and exterior. When exterior testing, exterior wire must be inserted (receiving and sending lines of RJ 45 connected directly). Use 4 different wires when the speed is less than 100M. Using **loopback** command to do the loopback test, interface cannot transmit data packet correctly, and it will be automatically ended after a certain time. If **shutdown** command is executed, loopback test fails; when loopback test is executing, speed, duplex, mdi, vct and shutdown operations are forbindden. After exterior test, pull out the exterior wire to avoid abnormal communication. Loopback on all interfaces: #### loopback { internal | external } • Loopback on specified interface: #### loopback { external | internal } External means external loopback and internal means internal loopback #### For example: ``` !Loopback on interface Ethernet 0/1 QTECH(config-if-ethernet-0/1) #loopback external !Loopback on all interfaces QTECH(config) #loopback internal ``` #### 13.4.5 VCT test command In global configuration mode, use **vct run** command to do vct test of all interfaces; in interface configuration mode, use **vct run** command to do vct test of specified interface. If fault is found, the location of fault can be detected. The longest detect distance of vct is 182 meters. Extended interface does not support vct test. VCT test can detect normal, open and short of network wires. The correct conection of network wire is normal, open means the disconnection of network wire and short means the short circuit of network wire. System supports VCT auto-test. When vct auto-test enables, once detecting link down, vct auto-runs, and the test result will keep down to syslog. VCT test command in global/interface configuration command: vct run #### For example: !Vct run forinterface Ethernet 0/1 QTECH(config-if-ethernet-0/0/1)#vct run #### 13.4.6 Administration IP address restriction Managed ip address restriction can restrict host IP address or some network interface of switch by restricting web, telnet and snmp agent, but other IP address without configuration cannot manage switch. By default, three server possess an address interface of 0.0.0.0, so users of any IP address can manage switch. Different IP address and mask mean different information. The mask in reverse which is 0.0.0.0 means host address, or it means network interface. 255.255.255.255 means all hosts. When enabling a configuration, an item of 0.0.0.0 must be deleted. When receiving a packet, judge the IP address whether it is in the range of managed IP address. If it does not belong to it, drop the packet and shutdown telnet connection. login-access-list { web | snmp | telnet } ip-address wildcard Web means accessing IP address restriction of web server; *snmp* means accessing IP address restriction of snmp agent; *telnet* means accessing IP address restriction of telnet; *ipaddress* means IP address; *wildcard* means mask wildcard which is in the form of mask in reverse. *0* means mask this bit, and *1* meams does not mask this bit. When mask in reserve is 0.0.0.0, it means host address, and 255.255.255 means all hosts. Use the **no** command to delete corresponding item. #### For example: ``` !Configure ip address allowed by telnet management system to be 192.168.0.0/255.255.0.0 QTECH(config) #login-access-list telnet 192.168.0.0 0.0.255.255 QTECH(config) #no login-access-list telnet 0.0.0.0 255.255.255 ``` Use **show login-access-list** command to display all ip address allowed by web, snmp, telnet management system. show login-access-list #### 13.4.7 The number of Telnet user restriction Configure the max number of Telnet users. This function can restrict the number of Telnet user (0-5) to enter privileged mode at the same time. The user logged in without entering privileged mode will not be restricted but restricts by the max number. Administrator and super user will not be restricted and can be logged in through series interface. Display the configuration by **show users** command. Configure it in global configuration mode: login-access-list telnet-limit limit-no no login-access-list telnet-limit #### Example: !Configure only 2 Telnet users can enter privileged mode QTECH(config) #login-access-list telnet-limit 2 ## 13.4.8 Routing tracert command **Tracert** is used for routing
detecting and network examination. Configure it in privileged mode: **tracert** [-u | -c][-p udpport | -f first_ttl | -h maximum_hops | -w time_out] target_name Parameter: **-u** means sending udp packet,-c means sending echo packet of icmp. It is defaulted to be **-c**; udpport:destination interface address for sending udp packet which is in the range of 1 to 65535 and defaulted to be 62929; *first_ttl*: initial ttl of sending packet which is in the range of 1 to 255 and defaulted to be 1; *maximum_hops*: the max ttl of sending packet which is in the range of 1 to 255 and defaulted to be 30; *time_out*: the overtime of waiting for the response which is in the range of 10 to 60 with the unit of second and default to be 10 seconds; target_name: destination host or router address #### Example: ``` !Tracert 192.168.1.2 QTECH#tracert 192.168.1.2 ``` ## 13.4.9 cpu-car command cpu-car is used to configure cpu rate for receiving packet. no cpu-car is used to restore to default cpu rate for receiving packet. Configure it in global configuration mode: cpu-car target-rate #### no cpu-car Parameter: target-rate: cpu rate for receiving packet, which is in the range of 1 to 1000pps and the default rate is 50pps.. #### Example: ``` !Configure cpu rate for receiving packet to be 100pps ``` ## 13.5 Monitor system by SNMP #### 13.5.1 Brief introduction of SNMP SNMP (Simple Network Management Protocol) is an important network management protocol in TCP/IP network. It realizes network management by exchanging information packets. SNMP protocol provides possibility of concentrated management to large sized network. Its aim is guaranteeing packet transmission between any two points to be convenient for network administrator to search information, modify and search fault, finish fault diagnosising, capacity planning and creation reporting at any network node. It consists of NMS and Agent. NMS (Network Management Station) is the working station of client program running, and Agent is server software running in network devices. NMS can send GetRequest, GetNextRequest and SetRequest packet to Agent. After receiving requirement packet of NMS, Agent will Read or Write management variable according to packet type and create Response packet, and return it to NMS. On the other hand, the Trap packet of abnormity of cold boot or hot boot of devices will send to NMS. System supports SNMP version of v1, v2c and v3. v1 provides simple authentication mechanism which does not support the communication between administrator to administrator and v1 Trap does not possess authentication mechanism. V2c strengthens management model (security), manages information structure, protocol operation, the communications between managers, and it can create and delete table, and strengthen communication capacity of managers, and reduce the storage operation of agency. V3 realizes user distinguishing mechanism and packet encryption mechanism, and greatly improves security of SNMP protocol. ## 13.5.2 Configuration SNMP configuration command list: - Configure community - Configure sysContact - Configure Trap destination host adress - Configure sysLocation - Configure sysName - Configure notify - Configure trap sending source address - Configure engine id - Configure view - Configure group - Configure user ## 13.5.2.1 Configure community SNMP adopts community authentication. The SNMP packets which are not matching the authenticated community name will be dropped. SNMP community name is a character string. Different community can possess the accessing right of read-only or read-write. Community with the riht of read-only can only query system information, but the one with the right of read-write can configure system. System can configure at most 8 community names. It is defaulted to configure without community name. Configure it in global configuration mode. • Configure community name and accessing right. This command can also used to modify community attribution with character string communityname being the same. snmp-server community community-name { ro | rw } { deny | permit } [view view-name] community-name is a printable character string of 1 to 20 characters; ro, rw means read only or can be read and write; permit, deny means community can or cannot be activated; View-name is view configured for community, The default configuration view is iso. Delete community name and accessing right no snmp-server community community-name community-name is existed community name. #### For example: ``` !Add community test, and configure privilege to be rw, and permit QTECH(config) #snmp-server community test rw permit !Remove community test QTECH(config) #no snmp-server community test ``` Display community name in any mode #### show snmp community #### For example: ``` !Display SNMP community information QTECH(config) #show snmp community ``` ## 13.5.2.2 Configure sysContact sysContact is a managing variable in system group in MIB II, the content of which is the contact way of the administrator. Configure it in global configuration mode: ## snmp-server contact no snmp-server contact syscontact: Contact way to administrator ranges from 1 to 255 printable characters. Use the **no** command to restore default way of contacting to administrator. #### For example: !Configure administrator contact way to be support@test.com QTECH(config)#snmp-server contact support@test.com Caution: Use quotation mark to quote space in charater string. Use **show snmp contact** command in any configuration mode to display how to contact to administrator: #### show snmp contact #### For example: !Display how to contact with administrator QTECH(config) #show snmp contact ## 13.5.2.3 Configure Trap destination host adress Use this configuration to configure or delete IP address of destination host. Configure it in global configuration mode. Configure notify destination host address **snmp-server host** *host-addr* [**version {1 | 2c | 3 [auth | noauth | priv]}**] *community-string* [**udp-port** *port*] [**notify-type** [*notify-type-list*]] Delete notify destination host address #### no snmp-server host ip-address community-string { 1 | 2c | 3 } *ip-address* and *snmp-server* means IP address in SNMP server notify sending list. *community-string* means the security name IP corresponded in snmp-server notify table item. Security name is the community name for snmpvi and snmp v2c, and username for snmp v3. **1, 2c, 3** mean SNMP versions. *Port* means the port number sent to. *Notifytype-list* means optional notify list. If it is unoptioned, default to choose all type. Only optionaed type will be sent to destination host. #### For example: !Configure SNMP server, the IP address is configured to be 192.168.0.100, and SNMP version to be 2c, and community name to be user QTECH(config) #snmp-server host 192.168.0.100 version 2c user !Delete the item with the notify destination host being 192.168.0.100 and community name being user QTECH(config) #no snmp-server host 192.168.0.100 user Display snmp-server notify item in any configuration mode:: #### show snmp host !Display Trap information of snmp QTECH(config)#show snmp host #### 13.5.2.4 Configure sysLocation sysLocation is a managing variable in system group of MIB which is used to denote location of devices be managed. Configure it in global configuration mode: #### snmp-server location syslocation #### no snmp-server location *Syslocation* is the charater string of system location ranges from 1 to 255 printable characters. Use the **no** command to restore to default syslocation. #### For example: !Configure system location to be sample sysLocation factory QTECH(config) #snmp-server location "sample sysLocation factory" Use quotation mark to quote space in charater string. Use **show snmp location** command in any configuration mode to display system location: **show snmp location** ## 13.5.2.5 Configure sysName **sysName** is a managing variable in system group of MIB II which is switch name. Configure it in global configuration mode: snmp-server name sysname #### no snmp-server name Sysname means the character string of system name ranges from 1 to 255 printable characters. #### For example: !Configure system name to be QTECH S2926V QTECH(config) #snmp-server name "QTECH S2926V" Caution: Use quotation mark to quote space in charater string. ## 13.5.2.6 Configure notify Enable/disable sending all kinds of notify types by configuring notify sending. The defaulted notify sending is trap. After disabling notify sending, trap will not be sent. Notify sending is defaulted to disable. Configure it in global configuration mode: snmp-server enable traps [notificationtype-list] no snmp-server enable traps [notificationtype-list] notificationtype-list. Notificationtype list defined by system. To enable or disable specified notification type by choose one or serval type. If the keyword is vacant, all types of notification are enabled or disabled. Notify types are as following: bridge: Enable/disable STP interfaces: interface LinkUp/LinkDown snmp: accessing control; cold boot/heat boot of system gbnsavecfg: save configuration rmon: RMON trap gbn: self-define Trap, such as GN-Link Trap, interface Blocking, CAR, loopback detect #### For example: ``` !Enable notificationtype gbn QTECH(config)# snmp-server enable traps gbn ``` #### 13.5.2.7 Configure trap sending source address Use this command to configure trap sending vlan or supervlan interface belonged to source address. When configured port contains primary ip,trap sending source address is egress ip. The default trap sending address is egress ip. Configure it in global configuration mode: # snmp-server trap-source { vlan-interface vlan-id | supervlan-interface supervlan-id } no snmp-server trap-source *vlan-id* or *supervlan-id* is corresponded vlan or supervlan number belonged to the port of trap sending address to be configured. *vlan-id* is in the range of 1-4094 and *supervlan-id* is in the
range of 1-11. #### For example: ``` !Configure ip whose trap source address is vlan 1 QTECH(config)# snmp-server trap-source vlan-interface 1 ``` ## 13.5.2.8 Configure engine id This configuration is used to configure local engine-id or recognizable remote engine-id. Default local engine id is 1346400000000000000000000 which cannot be deleted but modified. It is defaulted to have no recognizable remote engine-id which can be added and deleted. Once delete a recognizable remote engine the corresponded user can also be deleted. At most 32 engines can be configured. Use no snmp-server engineID command to restore default local engine-id or remove remote engine-id. Configure it in global configuration mode: **snmp-server engineID** { **local** engineid-string | **remote** ip-address [**udp-port** port-number] engineid-string } **no snmp-server engineID** { **local** | **remote** *ip-address* [**udp-port** *port-number*] } Display current engine configuration in any configuration mode: show snmp engineID [local | remote] engineid-string is an engine id that can only be recognized in a network. This system only supports printable characters of engine id which excludes space. Ip-address is remote engine ip address. Local ip address is not allowed to input. Port-number is remote engine port number. Default port number is 162 #### For example: ``` !Configure local engine id to be 12345 QTECH(config) # snmp-server engineid local 12345 !Configure remote engine that can be recognized locally. Configure remote engine ip to be 1.1.1.1, and port number to be 888, and id to be 1234 QTECH(config) # snmp-server engineid remote 1.1.1.1 udp-port 888 1234 !Display local engine configuration QTECH(config) # show snmp engineid local ``` ## 13.5.2.9 Configure view Use **snmp-server view** command to configure view and its subtree. Iso, internet and sysview are the default views. At most 64 views can be configured. View Internet must not delete and modify. Configure it in global configuration mode: snmp-server view view-name oid-tree { included | excluded } no snmp-server view view-name [oid-tree] View-name means the name of the view to be added. It ranges from 1 to 32, excluding space. *Oid-tree* means the subtree of the view which corresponds to such a mib node as "1.3.6.1"; The substring of OID must be the integer between 0 and 2147483647. The sum of the number of characters in view name string and the number of oid nodes should not be more than 62. When configuring view subtree to be exclude, the node in this subtree cannot be accessed which does not mean the node excluded this subtree can be accessed. When configuring notify destination host, if the security name is the community, sending notify is not effected on view; if the user with the security name being SNMPv3, sending notify is controlled by notify view of this user. What this notify view controlled is the accessing of the node that variable belongs to and it is not influence accessing attribution of trap OID that notify belonged to. If notify does not contain binded variable, sending notify is not effected on view. #### For example: ``` !Add view "view1", and configure it to have a subtree "1.3.6.1" QTECH(config) # snmp-server view view1 1.3.6.1 include !Add a subtree "1.3.6.2" for existed view "view1" QTECH(config) # snmp-server view view1 1.3.6.2 include !Remove existed view "view1" QTECH(config) # no snmp-server view view1 !Display configured view QTECH(config) # show snmp view ``` ### 13.5.2.10 Configure group Use this configuration to configure a accessing conreol group. Following groups are default to exist: 1. security model is v3, the security level is differentiated group initial; 2. security model is v3, the security level is differentiated encrypt group initial. At most 64 groups can be configured. Configure it in global configuration mode: snmp-server group groupname { 1 | 2c | 3 [auth | noauth | priv] [context context-name]} [read readview][wrete writeview] [notify notifyview] no snmp-server group groupname {1 | 2c | 3 [auth | noauth | priv] [context context-name]} Display configured group in any configuration mode: #### show snmp group groupname means group name, which ranges from 1 to 32 characters, excluding space. Readview is a view name, which means the right to read in the view. If the keyword is vacant, it is default not to include readable view. Writeview is a view name, which means the right to read and write in the view. If the keyword is vacant, it is default not to include readable and writable view. Notifyview is a view name, which means the right to send notification in the view. If the keyword is vacant, it is default not to include notify sending view. Context-name is facility context. If the keyword is vacant, it is default to be local facility. #### For example: ``` !Add group "group1" to local facility, using security model 1, and configure read, write, and notify view to be internet QTECH(config)# snmp-server group group1 1 read internet write internet notify Internet !Remove group "group1" from local facility QTECH(config)# no snmp-server group group1 1 ``` !Display current group configuration. QTECH(config) # show snmp group #### 13.5.2.11 Configure user Use this configuration to configure user for local engine and recognizable remote engine. Following users are default to exist: 1. initialmd5 (required md5 authentication), 2. Initial sha (required sha authentication), 3. Initial none (non-authentication). The above three users are reserved for system not for user. The engine the user belonged to must be recognizable. When deleting recognizable engine, contained users are all deleted. At most 64 users can be configured. Configure it in global configuration mode: snmp-server user username groupname [remote host [udp-port port]] [auth { md5 | sha } { authpassword { encrypt-authpassword authpassword | authpassword } | authkey { encrypt-authkey authkey | authkey } } [priv des { privpassword { encrypt-privpassword privpassword | privpassword } | privkey { encrypt-privkey privkey | privkey } }] no snmp-server user username [remote host [udp-port port]] Display configured user in any configuration mode: #### show snmp user *Username* is the username to be configured. It ranges from 1 to 32 characters, excluding space. *Groupname* is the groupname that user going to be added. It ranges from 1 to 32 characters, excluding space. Host is remote engine ip address. If it is vacant, it is default to be local engine. *Port* is the port number of remote engine. If it is vacant, it is default to be 162. Authpassword is authentication password. Unencrypted password ranges from 1 to 32 characters. To avoid disclosing, this password should be encrypted. To configured encrypted password needs client-side which supports encryption to encrypt password, and use encrypted cryptograph to do the configuration. Cryptograph is different by different encryption. Input cryptograph in the form of hexadecimal system, such as "a20102b32123c45508f91232a4d47a5c" *Privpassword* is encryption password. Unencrypted password ranges from 1 to 32 characters. To avoid disclosing, this password should be encrypted. To configured encrypted password needs client-side which supports encryption to encrypt password, and use encrypted cryptograph to do the configuration. Cryptograph is different by different encryption. Input cryptograph in the form of hexadecimal system, such as "a20102b32123c45508f91232a4d47a5c" Authkey is authentication key. Unauthenticated key is in the range of 16 byte (using md5 key folding) or 20 byte (using SHA-1 key folding). Authenticated key is in the range of 16 byte (using md5 key folding) or 24 byte (using SHA-1 key folding). *Privkey* is encrpted key. Unencypted key ranes from 16 byte, and encrypted key ranes from 16 byte. Keyword *encrypt-authpassword*, *encrypt-authkey*, *encrypt-privpassword*, *encrypt-privkey* are only used in command line created by compile to prevent leaking plain text password and key. When deconfiguring SNMP, user cannot use above keywords. #### For example: !Add user "user1" for local engine to group "grp1", and configure this user not to use authentication and encryption. QTECH(config) # snmp-server user user1 grp1 !Add user "user2" for local engine to group "grp2", and configure this user to use md5 authentication and non-encryption with the auth-password to be 1234 QTECH(config)# snmp-server user user2 grp2 auth md5 auth-password 1234 !Add user "user3" for local engine to group "grp3", and configure this user to use md5 authentication and des encryption with the authpassword to be 1234 and privpassword to be 4321 QTECH(config)# snmp-server user user3 grp3 auth md5 auth-password 1234 priv des priv-password 4321 ## 13.6 Enable/disable dlf forword packet Use dlf-forward command to enable dlf forword. # dlf-forward { multicast | unicast } no dlf-forward { multicast | unicast } • Use **dlf-forward** command in global configuration mode or interface configuration mode to enable dlf forward. Use **no dlf-forward** command to disable dlf forward: # dlf-forward { multicast | unicast } no dlf-forward { multicast | unicast } #### For example: !Disable dlf forward for unicast QTECH(config) #no dlf-forward unicast !Disable dlf forward for multicast QTECH(config) #no dlf-forward multicast ## 13.7 Enable/disable source dlf forward Use this command to control switch to transmit source address unknown packet. It can only be effective when port address learning is disabled. Configure it in interface configuration mode: ``` src_dlf_forward no src_dlf_forward ``` #### For example: ``` !Disable src_dlf_forward of port 3 QTECH(config-if-ethernet-0/0/3)#no src_dlf_forward !Enable src_dlf_forward of port 3 QTECH(config-if-ethernet-0/0/3)# src dlf forward ``` ## 13.8 Enable/disable dropping BPDU packet Use this command to control enable/disable dropping specified typed BPDU packet. Configure it in global configuration mode: ##
discard-bpdu no discard-bpdu #### Example: ``` !Disable dropping bpdu packet QTECH(config) #no discard-bpdu !Enable dropping bpdu packet QTECH(config) #discard-bpdu ``` ### 13.9 Telnet client Logging in switch by control terminal, enable Telnet client in switch to log in other switch or Telnet server of other standard. • Enable Telnet client in privileged mode: #### telnet ip-addr [port-num] [/localecho] *ip-addr* is IP address of Telnet server. *port-num* is Telnet server port which is defaulted to be 23. /**localecho** means enable local echo options. It is defaulted to disable. Generally, Telnet client will not echo but Telnet server will echo. Display Telnet client running information in any configuration mode. #### show telnet client Using user name "admin" in following command to force running Telnet client to stop in stop telnet client { all | term-id } All means stop all Telnet client. term-id means the terminal number of Telnet client which is in the range of 0-5,0 means console ,1-5 means Telnet terminal 1-5 ## 13.10 CPU Alarm Configuration ## 13.10.1 Brief introduction of CPU alarm configuration System can monitor CPU usage. If CPU usage rate is beyond cpu busy threshold, cpu busy alarm is sent because the cpu is busy. In this status, if cpu is below cpu unbusy threshold, cpu unbusy alarm is sent. This function can report current CPU usage to user. ## 13.10.2 CPU alarm configuration list CPU alarm configuration command includes: - Enable/disable CPU alarm - Configure CPU busy or unbusy threshold - Display CPU alarm information #### 13.10.3 Enable/disable CPU alarm Configure it in global configuration mode: Enable CPU alarm #### alarm cpu Disable CPU alarm #### no alarm cpu by default, CPU alarm enables. #### For example: !Enable CPU alarm QTECH(config)#alarm cpu ## 13.10.4 Configure CPU busy or unbusy threshold Use **alarm cpu threshold** command in global configuration mode to configure CPU busy or unbusy threshold.: Configure CPU busy or unbusy threshold alarm cpu threshold [busy busy] [unbusy unbusy] busy > unbusy. Default CPU busy threshold is 90%, and CPU unbusy threshold is 60%. #### For example: !Configure CPU busy threshold to be 30%, and CPU unbusy threshold to be 10% QTECH(config) #alarm cpu threshold busy 30 unbusy 10 ## 13.10.5 Display CPU alarm information Use **show alarm cpu** command in any mode to display cpu alarm information: **show alarm cpu** #### For example: !Display CPU alarm information QTECH(config) #show alarm cpu ## 13.11 Mail Alarm Configuration Mail alarm configuration includes: - Configure enable/disable mailalarm - Configure mailalarm server - · Configure mailalarm receiver - Configure mailalarm ccaddr - Configure enable/disable mailalarm smtp authentication - Configure mailalarm logging level ## 13.11.1 Configure enable/disable mailalarm Configure enable/disable mailalarm in global configuration mode: #### mailalarm no mailalarm #### Example: !Configure enable mailalarm: QTECH(config)#mailalarm ## 13.11.2 Configure mailalarm server Configure it in global configuration mode: mailalarm server server-addr no mailalarm server +7(495) 797-3311 www.qtech.ru #### Example: !Configure smtp server address to be 10.11.0.252: QTECH(config) #mailalarm server 10.11.0.252 ## 13.11.3 Configure mailalarm receiver Configure it in global configuration mode: mailalarm receiver receiver-addr no mailalarm receiver #### Example: !Configure email of mail receiver to be :system@switch.net QTECH(config) #mailalarm receiver system@switch.net ## 13.11.4 Configure mailalarm ccaddr Configure it in global configuration mode: mailalarm ccaddr cc-addr no mailalarm ccaddr cc-addr At most 4 carbon copy addresses can be configured. #### Example: !Configure mail address of carbon copy receiver to be system2@switch.net QTECH#mailalarm ccaddr system2@switch.net ## 13.11.5 Configure enable/disable mailalarm smtp authentication Configure it in global configuration mode: mailalarm smtp authentication username username { passwd passwd | encrypt-passwd encrypt-passwd } no mailalarm smtp authentication Keyword *encrypt-passwd* can only be used in the command generated by decompilation. #### Example: !Enable smtp authentication with the username to be system, and password to be 123 QTECH#mailalarm smtp authentication username system passwd 123 ## 13.11.6 Configure mailalarm logging level Configure it in global configuration mode: # mailalarm logging level *level* no mailalarm logging level When the *level* of syslog information is lower than the configured value, the syslog information will be encapsulated to the mail and sent to the specified mail box. #### Example: !Configure the syslog level of sending mail alarm to be 4 QTECH#mailalarm logging level 4 #### 13.12 Anti-DOS Attack ## 13.12.1 IP segment anti-attack The IP segment packet number which can be received by system do not occupy resources of all receiving packets, which can normally handle other non-segment packets when receiving IP segment attack and the range of IP segment receiving number can be configured. 0 means system will not handle IP segment packet so that system can avoid the influence on segment attack. Configure it in global configuration mode #### anti-dos ip fragment maxnum Display related information #### show anti-dos ## 13.12.2 Enable/disable global TTL System can enable or disable receiving the packet with TTL=0. Configure it in global configuration mode #### anti-dos ip ttl Display corresponded information #### show anti-dos ## **Chapter 14 LLDP configuration** ## 14.1 Brief introduction of LLDP protocol LLDP (Link Layer Discovery Protocol) is the new protocol defined by IEEE 802.1AB. It realizes proclaiming information about itself to other neighbor devices through network and receives the bulletin information from neighbor devices and stores it to standard MIB of LLDP. It is convenient for user to check the device model and linked interfaces of downlink neighbor devices and maintains central office and manage network. Network administrator can know the link of network layer 2 by accessing MIB. ## 14.2 LLDP configuration ## 14.2.1 LLDP configuration list The configuration can be effective only after LLDP enables. Configure related parameter of devices or Ethernet interface before enabling LLDP and these configurations will be saved after disabling LLDP. And the parameter will be effective after re-enabling LLDP. LLDP configuration list is as following: - Enable/disable global LLDP - Configure LLDP hello-time - Configure LLDP hold-time - Interface LLDP packet receiving/sending mode configuration - Display LLDP information ## 14.2.1.1 Enable/disable global LLDP Use following command in global configuration mode: Enable global LLDP #### lldp Disable global LLDP #### no IIdp By default, global LLDP disables. #### For example: !Enable global LLDP OTECH(config)#lldp #### 14.2.1.2 Configure LLDP hello-time Use following command in global configuration mode: Configure LLDP hello-time #### Ildp hello-time <5-32768> Restore default LLDP hello-time #### no IIdp hello-time The default LLDP hello-time is 30 seconds #### For example: !Configure LLDP hello-time to be 10 QTECH(config) #lldp hello-time 10 ### 14.2.1.3 Configure LLDP hold-time Use following command in global configuration mode: Configure LLDP hold-time #### Ildp hold-time <2-10> Restore default LLDP hold-time #### no IIdp hold-time The default LLDP hold-time is 4 #### For example: !Configure LLDP hold-time to be 2 QTECH(config)#lldp hold-time 2 ## 14.2.1.4 Interface LLDP packet receiving/sending mode configuration Use following command in interface configuration mode: Configure interface LLDP packet receiving/sending mode #### **IIdp** { **rx** | **tx** | **rxtx** } #### Parameter: rx: only receive LLDP packettx: only send LLDP packet rxtx: receiving/sending LLDP packet Disable interface LLDP packet receiving/sending #### no Ildp +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 #### By default, interface LLDP packet receiving/sending mode is rxtx #### For example: !Configure e 0/1 only to send LLDP packet QTECH(config-if-ethernet-0/1) #lldp tx ## 14.2.1.5 Display LLDP information Display followings in any configuration mode: - Enable/disable global LLDP - Related parameter of global LLDP - Interface packet receiving/sending mode - Interface packet receiving/sending statistics - Neighbour devices information found show IIdp interface [<interface-list>] #### For example: !Display LLDP information of interface Ethernet 0/0/1 QTECH(config) #show lldp interface ethernet 0/0/1 ## **Chapter 15 ERRP Command Configuration** ### 15.1 Brief introduction of ERRP ERRP (Ethernet Redundant Ring Protocol) is the private Ethernet ring protocol of QTECH which is used to protect real-time service (vedio/voice delay sessitive service). The basic working theory is many switches serial connect to be ring to provide link redundancy, and a master device detects/maintains the ring. The master device provides redundant port which can release redundant port when the ring break down to guarantee the service smooth. The calculation is less, so the convergency is faster than STP. ## 15.2 ERRP Configuration ## 15.2.1 ERRP Configuration list Only when ERRP and ring enable, the configuration can be effective.theconfiguration will be reserved when ERRP and ring disable and it will be effective when ERRP and ring enable next time. - ERRP configuration - Configure ERRP timer - Enter ERRP configuration mode - Configure ERRP working mode - Configure control-vlan in ERRP domain - Create ERRP ring - Enable/disable ERRP ring - Show ERRP domain and ring - ERRP Query Solicitation ## 15.2.2 ERRP configuration Configure it in global configuration mode: **ERRP** no ERRP It is defaulted to disable ERRP. For example: !Enable ERRP QTECH(config)#ERRP ## 15.2.3 Configure ERRP timer Configure it in global configuration mode: Configure packet overtime #### ERRP fail-timer timer-value #### Parameter:
timer-value: integrity in the range of 1-10 Configure packet sending interval #### ERRP hello-timer timer-value #### Parameter: timer-value: integrity in the range of 1-10 #### For example: !Configure ERRP packet sending interval to be 1 second OTECH(config) #ERRP hello-timer 1 ## 15.2.4 Enter ERRP configuration mode Configure it in global configuration mode: #### **ERRP domain** domain-id #### Parameter: domain-id: ERRP domain id #### For example: !Configure ERRP domain 0 QTECH(config)#ERRP domain 0 ## 15.2.5 Configure ERRP domain working mode In order to work with other vendor, we add ERRP domain working mode. Configure it in ERRP domain configuration mode: #### workmode { standard | huawei } #### Parameter: standard: protocol packet uses standard destination MAC and format in RFC3619. By default, it is standard mode. *huawei*: protocol packet uses huawei private destination MAC and format. It can make switch work with Huawei's RRPP. #### For example: !Configure ERRP domain 0 working mode to be standard QTECH(config-errp-domain-0)#workmode standard ## 15.2.6 Configure control-vlan of ERRP domain Configure it in ERRP domain mode: control-vlan vlan-id no control-vlan #### Parameter: vlan-id:control vlan id of ERRP domain which is the integrty in the range of 1-4093. #### Note: Control VLAN is relative to data VLAN. Data VLAN is for transmitting date packet and control VLAN is only for transmitting ERRP protocol packet. Every ERRP domain owns two control VLANs, that are master control VLAN and sub-control VLAN. Protocol packet of master ring is transmitted in master control-VLAN and protocol packet of sub-ring is transmitted in sub-control VLAN. When configuring, specify master control. When configuring, specify master control VLAN, and sub-control VLAN is the one whose VLAN ID is 1 bigger than that of the master control VIAN. Port only accessing to Ethernet ring (ERRP port) of each switch belong to control VLAN. ERRP port of master ring belong to both master control VLAN and sub-control VLAN. ERRP port of sub-ring belongs to sub-control VLAN only. There can be ERRP port and non- ERRP port in data VLAN. Master ring is taken as a logical nod of sub-ring. The protocol packet of sub-ring is transparent transmitted through master ring and handled as data packet in master ring. The protocol packet of master ring can only be transmitted in master ring. Add all ERRP port to corresponded master and sub-control VLAN before or after handed down ERRP configuration and configure master and sub-control VLAN being tag vlan. #### Example: !Configure control VLAN of ERRP domain 0 being 25 QTECH(config-ERRP-0) #control-vlan 25 !Delete control VLAN of ERRP domain 0. if there is activated ring, the control VLAN will not allow to be deleted. QTECH(config-ERRP-0) #no control-vlan ## 15.2.7 Create ERRP ring Configure it in ERRP configuration mode: Create master role ring ring-id role master primary-port pri-port secondary-port sec-port level level Create transit role ring ring-id role transit primary-port pri-port secondary-port sec-port level level • Create edge role ring ring-id role edge common-port common-port edge-port edge-port Create Create assistant-edge role ring ring-id role assistant-edge common-port common-port edge-port #### Parameter: ring-id: ring id which is in the range of 0-15 pri-port: port id such as ethernet 0/1 sec-port: port id such as ethernet 0/1 common-port: port id such as ethernet 0/1 sec-port: port id such as ethernet 0/1 level: ring level. 0 means primary ring and 1 means secondary. #### For example: !Configure primary ring 0 with role mode being master, primary port being 1 and secondary port being 2 QTECH(config-ERRP) #ring 0 role master primary-port ethernet 0/1 secondary-port ethernet 0/2 level 0 ## 15.2.8 Enable/disable ERRP ring Configure it in ERRP configuration mode: ring ring-id { enable | disable } #### Parameter: ring-id: ring id enable: activate a ring diable: inactivate a ring #### For example: !Enable ring 0 QTECH(config-ERRP)#ring 0 enable ## 15.2.9 Display ERRP domain and ring information #### Display in any configuration: #### show ERRP [domain domain-id [ring ring-id]] Parameter: domain-id: domain id ring-id: ring id #### Example: !Display ring 1 of ERRP domain 0 QTECH(config)#show ERRP domain 0 ring 1 ## 15.2.10 ERRP Query Solicitation Use this command to cooperate IGMP SNOOPING. When ERRP ring topology changed, it will inform IGMP to resend IGMP query for updating IGMP SNOOPING multicast data. Main nod is defaulted to enable Query Solicitation but other nods are defaulted to disableQuery Solicitation. Configure it in ERRP mode: ring ring-id query-solicit no ring ring-id query-solicit Parameter: ring-id: ring id #### Example: !Enable Query Solicitation of ERRP0 ring0 QTECH(config-errp-domain-0)#ring 0 query-solicit # **Chapter 16 CFM Configuration** #### 16.1 Brief introduction of CFM CFM (Connectivity Fault Management) is a point-to-point OAM protocol defined by IEEE 802.1ag standard which is used to manage failure of operating network, including continuity detection, loopback, tracert, trap alarm and remote failure alarm. ## **16.2 CFM Configuration** ## 16.2.1 CFM Configuration list Configure domain before configuring other parameter when enabling CFM. CFM command list is as following: - Create/delete MD - Configure MD parameter - Create/delete MA - Configure MA parameter - Create/delete MEP - Create/delete RMEP - Create/delete MIP - loopback - linktrace - Show MD - Show MA - Show MP(MEP/MIP/RMEP) - Show/clear CCM statistics - Show/clear CCM database - Show cfm error ### 16.2.2 Create/delete MD There are at most 8 MD in a switch. Configure it in global configuration mode: Create cfm md and enter cfm md configuration mode #### cfm md md-index Delete cfm md no cfm md md-index Parameter: md-index:MD index in 4 byte integer without any symbols #### Example: !Create MD with index being 10 QTECH(config) #cfm md 10 ## 16.2.3 Configure MD parameter Use following commands in cfm md configuration mode: Configure cfm md dns name and level cfm md format none level md-level cfm md format { dns-name | mac-uint | string } name md-name level md-level #### Parameter: none: MD dns name is not specified dns-name: dns name is a RFC1035 DNS name, Example: support@test.com mac-uint. dns name consists of MAC and 2 byte decimal integer without symbols, Example: 00:1f:ce:00:00:01-1 string: dns name is a string, Example: abcd md-name: MD name content, which has to be the same as the name format md-level: MD level ranges from 0~7 #### Example: ``` !Specify dns name of md 10 is abcd-3 with level 3 QTECH(config-cfm-md-10) #cfm md format string name abcd-3 level 3 ``` #### 16.2.4 Create/delete MA In a MD, there can be multiple MA, and CFM will detect connection for each MA. There can be 48 MA in a MD and also in a switch. Configure it in cfm md configuration mode: Create cfm ma and enter cfm ma configuration mode #### cfm ma ma-index Delete cfm ma no cfm ma ma-index #### Parameter: ma-index: MA index in 4 byte integer without any symbols #### Example: !Configure ma index 10 in MD 10 QTECH(config-cfm-md-10)#cfm ma 10 ## 16.2.5 Configure MA parameter Use following commands in cfm maconfiguration mode: Configure cfm ma format name and vlan cfm ma format { primary-vid | string | uint16 | vpn-id } name ma-name primary-vlan vlan-id #### Parameter: primary-vid: format name is a VLAN ID, which can be specified as MA primary VLAN ranges from 1~4094 string: format name is a string, Example: abcd uint16: format name is a 2 byte decimal integer without any symbol, Example: 65535 *vpn-id*: format name is a 3 byte OUI and 4 byte decimal integer without any symbol, Example: 000a5a-12 *ma-name*: MA name content, which has to be the same as name format *vlan-id*: MA primary VLAN ranges from 1~4094 Configure cfm ma ccm sending interval #### cfm cc interval { 1 | 10 | 60 | 600 } Restore to default ccm sending interval 1s #### no cfm cc interval #### Example: !Specify format name of ma 10 in md 10 is abcd with primary VLAN 3 QTECH(config-cfm-md-10-ma-10) #cfm ma format string name abcd primary-vlan 3 !Specify ccm sending interval of ma 10 in md 10 is 10s QTECH(config-cfm-md-10-ma-10) #cfm cc interval 10 #### 16.2.6 Create/delete MEP There can be 255 MP(including MEP/MIP/RMEP) in each MA and each switch. Configure it in cfm ma configuration: Create mep, specify mep direction, primary vlan and port cfm mep mep-id direction { up | down } [primary-vlan vlan-id] interface ethernet port-id Parameter: mep-id: mep id, it cannot be duplicated in a MA, which ranges from 1~8191 up: mep direction up. This mep should connect to other MP with other port down: mep direction down. This mep connects to other MP by this port vlan-id: mep primary VLAN. If VLAN is not specified, it will use MA's primary VLAN, ranges from 1~4094 port-id: mep port • Delete mep #### no cfm mep mep-id • Enable/disable mep status #### cfm mep mep-id state { enable | disable } Enable/disable mep ccm #### cfm mep mep-id cc { enable | disable } Configure mep priority for sending ccm/ltm, ranges from 0~7 #### cfm mep mep-id priority priority-id • Restore priority of mep sending ccm/ltm to be 0 #### no cfm mep mep-id priority #### Example: !Create mep in md 10 ma 10 with id being 1, direction being down, port being 1 $\label{lem:qtemp} \mbox{QTECH(config-cfm-md-10-ma-10) \#cfm mep 1 direction down interface ethernet 0/1 }$ #### 16.2.7 Create/delete RMEP Use following command in cfm ma configuration mode: Create rmep and specify corresponded mep #### cfm rmep rmep-id mep mep-id #### Parameter: *rmep-id*: rmep id, all other mep id except local mep in MA, which ranges from 1~8191 *mep-id*: mep id. Local mep id in MA, which ranges from 1~8191 Delete rmep no cfm rmep rmep-id #### Example: !Create rmep with id being 2 in md 10 ma 10 and corresponded to mep 1 QTECH(config-cfm-md-10-ma-10) #cfm rmep 2 mep 1 #### 16.2.8 Create/delete MIP Use following command in cfm ma
configuration mode: Create mip and specify the port cfm mip mip-id interface ethernet port-id #### Parameter: *mip-id*: local mip id in MA, ranges from 1~8191 *port-id*: mip port Delete mip no cfm mip mip-id #### Example: ``` !Create mip in md 10 ma 10 with id being 1 and port being 1 QTECH(config-cfm-md-10-ma-10) \#cfm mip 1 interface ethernet 0/1 ``` ## 16.2.9 Loopback Use following command in cfm ma mode: cfm loopback **cfm loopback mep** *mep-id* { *dst-mac mac-address* | **dst-mep** *rmep-id* } [**priority** *pri-id* | **count** *pkt-num* | **length** *data-len* | **data** *pkt-data*] #### Parameter: ``` mep-id: mep for cfm loopback, ranges from 1~8191 mac-address: destination MAC. It is remote mep or mip MAC. rmep-id: destination mep id, ranges from 1~8191, it is remote mep pri-id: priority for sending loopback packets, ranges from 0~7. The default priority is 0. pkt-num: number for sending loopback packets, ranges from 1~1024. The default number is 5 data-len: length of sending loopback packets, ranges from 1~1500 byte. The default length is 0 pkt-data: data content for sending loopback packets, ranges from 1~400 bytes. The default data is empty. ``` #### Example: ``` !Loopback mep1 to mep2 in md 10 ma 10 QTECH(config-cfm-md-10-ma-10) #cfm loopback mep 1 dst-mep 2 !Loopback mep1 to 00:1f:ce:00:04:1e in md 10 ma 10 QTECH(config-cfm-md-10-ma-10) #cfm loopback mep 1 dst-mac 00:1f:ce:00:04:1e ``` #### **16.2.10 Linktrace** Please configure it in cfm ma configuration mode: cfm linktrace **cfm linktrace mep** *mep-id* **{ dst-mac** *mac-address* | **dst-mep** *rmep-id* **}** [**timeout** *pkt-time* | **ttl** *pkt-ttl* | **flag** { *use-mpdb* | *unuse-mpdb* **}**] Parameter: mep-id: mep id for tracing mep, ranges from 1~8191 mac-address: destination MAC. It is remote mep or mip MAC rmep-id: destination mep id. It is remote mep, ranges from 1~8191 pkt-time: timeout for sending packets response, ranges from 3~60s. 5s is by default. pkt-ttl: initial ttl of sending packets, ranges from 1~255. 64 is by default. use-mpdb: CCM forwarding packet id. Searching MAC addr first, then searching CCM database unuse-mpdb: packet forwarding id. Only searching MAC addr table #### Example: ``` !Trace mep1 to mep2 in md 10 ma 10 QTECH(config-cfm-md-10-ma-10) #cfm linktrace mep 1 dst-mep 2 !Trace mep1 to 00:1f:ce:00:04:1e in md 10 ma 10 QTECH(config-cfm-md-10-ma-10) #cfm linktrace mep 1 dst-mac 00:1f:ce:00:04:1e ``` #### 16.2.11 Show MD In any configuration mode: Show MD show cfm md [md-index] #### Example: ``` !Show md all QTECH(config) #show cfm md ``` #### 16.2.12 Show MA In any configuration mode: Show MA #### show cfm ma #### Example: ``` !show cfm ma all ``` QTECH (config) #show cfm ma ## 16.2.13 Show MP(MEP/MIP/RMEP) In any configuration mode: Show local MP(mep/mip) #### show cfm mp local • Show remote MP(rmep) #### show cfm mp remote #### Example: ``` !Show local MP QTECH(config) # show cfm mp local !Show remote MP QTECH(config) # show cfm mp remote ``` #### 16.2.14 Show/clear CCM statistics Show in any configuration mode and clear data in global configuration mode: Show CCM statistics #### show cfm cc Clear CCM statistics #### clear cfm cc #### Example: ``` !Show CCM statistics QTECH(config) #show cfm cc !Clear CCM statistics QTECH(config) #clear cfm cc ``` ## 16.2.15 Show/clear CCM database Show in any configuration mode and clear data in global configuration mode: Show CCM database #### show cfm cc database Clear CCM database #### clear cfm cc database #### Example: !Show CCM database QTECH(config) # show cfm cc database ## 16.2.16 Show cfm error In any configuration mode: • Show cfm error #### show cfm errors ## Example: !Show cfm error QTECH(config) # show cfm errors # **Chapter 17 PPPoE Plus Configuration** #### 17.1 Brief Introduction of PPPoE Plus PPPoE+ is short for PPPoE Intermediate agent which is proposed early in DSL FORM to define according to user line mark propertion of RFC 3046. The realization theory is similar to DHCP Option82 which makes some complement on PPPoE protocol packet. After accessing device get PPPoE protocol packet, insert user physical information for uplink direction and strip it for downlink direction before transmission. ## 17.2 PPPoE Plus Configuration ## 17.2.1 PPPoE Plus Configuration list PPPoE Plus Configuration list is as following: - Enable/disable PPPoE Plus - Configure PPPoE Plus type - Configure PPPoE port type - Configure Circuit ID - Configure Remote ID - Configure Remote ID format - Configure PPPoE Plus vendor-specific-tag overwrite #### 17.2.2 Enable/disable PPPoE Plus Configure it in global configuration mode: Enable global PPPoE Plus #### pppoeplus Disable global PPPoE Plus #### no pppoeplus By default, PPPoE Plus is disabled. #### Example: !Enable global PPPoE Plus QTECH(config) #pppoeplus To display PPPoE Plus, configure it in any configuration mode: Display PPPoE Plus show pppoeplus ## 17.2.3 Configure PPPoE Plus type Configure it in global configuration mode: • Configure PPPoE Plus type #### pppoeplus type { standard | huawei } The default type is standard. The adding tag form will include hostname information when the type is huawei. ## 17.2.4 Configure PPPoE port type Configure it in interface configuration mode: Configure PPPoE port to be trust port #### pppoeplus trust By default, port is untrust. #### 17.2.5 Self-defined Circuit ID Configure it in interface configuration mode: Self-defined port Circuit ID #### pppoeplus circuit-id circuit-id Cancel self-defined port Circuit ID no pppoeplus circuit-id ## 17.2.6 Configure Remote ID Configure it in interface configuration mode: Configure port Remote ID pppoeplus remote-id { client-mac | switch-mac} Default port Remote ID is switch mac. ## 17.2.7 Configure Remote ID format Configure it in interface configuration mode: Configure Remote ID format #### pppoeplus remote-id format { binary | ascii } Default port Remote ID format is binary. ## 17.2.8 Configure PPPoE Plus vendor -specific-tag overwrite Configure it in interface configuration mode: Enable vendor -specific-tag overwrite ## pppoeplus vendor-specific-tag overwrite • Disable vendor -specific-tag overwrite no pppoeplus vendor-specific-tag overwrite ## **Chapter 18 Flex links Configuration** #### 18.1 Brief introduction of Flex links Flex links is layer 2 links backup protocol which provides for STP option scheme. Choose Flex links to realize link backup when the STP is not wanted in customer network. If STP enables, flex links is disabled. Flex links consists of a pair of interfaces(can be ports or convergent interface). One interface is transmitting data, the other is standby. The backup interface starts transmitting data when there is default in master link. The failure interface will be standby when it turns well and it will be transmitting data in 60 seconds when preempt mechanism is set. Flex links interface should disable STP and Flex links interface can configure bandwidth and delay being preempt mechanism and the superior one will be the master interface. There must be trap alarm when master or backup link default. ## 18.2 Flex links Configuration ## 18.2.1 Flex links Configuration list - Enable or disable Flex links of interface(or convergent interface) - Configure Flex links preemption mode - Configure Flex links preemption mode delay - Disaply Flex links information # 18.2.2 Enable or disable Flex links of interface(or convergent interface) Configure interface Flex links in interface configuration mode switchport backup { interface interface-num | channel-group channel-group-number} Configure channel-group Flex links in global configuration mode: **channel-group** channel-group-number **backup** { **interface** interface-num | **channel-group** channel-group-number} #### For example: !Configure flex links backup interface of e0/0/1 to be e0/0/2 QTECH(config-if-ethernet-0/0/1) #switchport backup interface Ethernet 0/0/2 !Configure flex links backup interface of channel-group 1 to be e0/0/2 QTECH(config) #channel group 1 backup interface Ethernet 0/0/2 +7(495) 797-3311 www.qtech.ru Москва, Новозаводская ул., 18, стр. 1 ## 18.2.3 Configure Flex links preemption mode Configure interface Flex links in interface configuration mode switchport backup { interface interface-num | channel-group channel-group-number} preemption mode {Forced|Bandwidth|Off} • Configure channel-group Flex links in global configuration mode: **channel-group** channel-group-number **backup** { **interface** interface-num | **channel-group** channel-group-number} **preemption** mode {Forced|Bandwidth|Off} #### For example: !Configure flex links preemption mode of e0/0/1 to be Forced QTECH(config-if-ethernet-0/0/1) #switchport backup interface Ethernet 0/0/2 preemption mode Forced !Configure flex links preemption mode of channel-group 1 to be Forced QTECH(config) #channel group 1 backup interface Ethernet 0/0/2 preemption mode Forced ## 18.2.4 Configure Flex links preemption mode delay Configure interface Flex links in interface configuration mode **switchport** backup { interface interface-num | channel-group channel-group-number} **preemption** delay delay-time Configure channel-group Flex links in global configuration mode: **channel-group** channel-group-number **backup** { **interface** interface-num | **channel-group** channel-group-number} **preemption** delay delay-time #### For example: !Configure flex links preemption delay of e0/0/1 to be 60 seconds QTECH(config-if-ethernet-0/0/1) #switchport backup interface Ethernet 0/0/2 preemption delay 60 !Configure flex links preemption delay of channel-group 1 to be 60 seconds QTECH(config)#channel group 1 backup interface Ethernet 0/0/2 preemption delay 60 ## 18.2.5 Disaply Flex links information In any configuration mode: It will display as following: Flex links master interface status - Flex links backup interface status - Flex links preemption mode - Flex links preemption delay #### show interface switchport backup #### For
example: !Display all Flex links information QTECH(config) # show interface switchport backup ## 18.2.6 Configure MacMoveUpdate of Flex links When active port down, the backup one will be active. Enable MacMoveUpdate to accelerate the recover. After enabling MacMoveUpdate, backup port will be active and it will send the mac address learnt from other ports. When receiving MacMoveUpdate packet, it will be transmitted and the local mac address will be updated after receiving it if MacMoveUpdate enables. Enable MacMoveUpdate Configure it in global mode: mac-address-table move update transmit #### Example: QTECH(config) #mac-address-table move update transmit Enable MacMoveUpdate Configure it in global mode: mac-address-table move update receive #### Example: QTECH(config) #mac-address-table move update receive Show MacMoveUpdate Configure it in global mode: show mac-address-table move update #### Example: QTECH(config) # show mac-address-table move update # **Chapter 19 EFM Configuration** ## 19.1 EFM Overview EFM (ethernet of first mile), defined by IEEE 802.3ah, is for management and maitainenance on P2P Ethernet link between two devices. There are five main functions: EFM node discovery, remote failure indication, link monitoring, remote loopback and polling of MIB variables. ## 19.2 EFM Configuration ## 19.2.1 EFM configuration list EFM configuration list: - Enable/disable EFM - Configure EFM working mode - Configure EFM pdu-timeout - · Configure link timeout - Configure response timeout - Configure link monitoring - Enable/disable remote failure indication - Enable/disable link monitoring - Enable/disable remote MIB variable obtaining - Enable/disable remote loopback - Enable/stop remote loopback - Configure handling remote loopback querying packet - Show EFM status - Show EFM info - Show EFM discovery - Show/clear EFM statistics - Show remote MIB #### 19.2.2 Enable/disable EFM Configure it in interface configuration mode: Enable EFM #### **EFM** Disable EFM #### no EFM By default, EFM is disabled. #### For example: !Enable EFM QTECH(config-if-ethernet-0/1)#EFM ## 19.2.3 Configure EFM working mode Configure it in interface configuration mode: Configure EFM working mode #### EFM mode { passive | active } Parameter: passive: passive mode active: active mode By default, EFM working mode is active. #### For example: !Configure EFM working mode to be passive QTECH(config-if-ethernet-0/1) #EFM mode passive ## 19.2.4 Configure EFM pdu-timeout Configure pdu timeout to EFM pdu request packet. Discard the received EFMPDU response packets after timeout.: Configure EFM pdu-timeout #### efm pdu-timeout time #### Parameter: time: EFM pdu timeout which is in the range of 1 to 60s. The default is 1s. It cannot be more than 1/3 of efm link-timeout. Restore to default efm pdu-timeout #### no efm pdu-timeout #### For example: !Configure efm pdu-timeout to be 5s QTECH(config-if-ethernet-0/1)#efm pdu-timeout 5 ## 19.2.5 Configure link timeout Configure EFM link timeout. When it is timeout, EFM link will be re-started. Configure it in interface mode: Configure link timeout #### efm link-timeout time #### Parameter: time: EFM link timeout which is in the range of 1 to 60s. The default is 1s. It cannot be less than3 times of EFM pdu timeout. Restore default EFM link timeout #### no efm link-timeout #### For example: ``` !Configure efm link-timeout to be 15s OTECH(config-if-ethernet-0/1) #efm link-timeout 15 ``` ## 19.2.6 Configure response timeout Configure response timeout to EFMPDU request packet. Discard the received EFMPDU response packets after timeout. Configure it in interface configuration mode: Configure response timeout to EFMPDU request packet. #### **EFM remote-response-timeout** *time* #### Parameter: time: response timeout which is in the range of 1 to 10s. The default is 2s. Restore to default response timeout. #### no EFM remote-response-timeout #### For example: ``` !Configure response timeout to be 5s QTECH(config-if-ethernet-0/1) #EFM remote-response-timeout 5 ``` ## 19.2.7 Configure link monitoring Configure it in interface configuration mode: Configure window and threshold in errored-symbol-period # EFM link-monitor errored-symbol-period window high win-value1 low win-value2 EFM link-monitor errored-symbol-period threshold high th-value1 low th-value2 #### Parameter: threshold: received error symbol number(8 bytes), which is in the range of 1~0xfffffffffffff. The default is 1,th-value1 and th-value2 represent 4 high bytes and low bytes. Configure window and threshold in errored-frame # EFM link-monitor errored-frame window win-value EFM link-monitor errored-frame threshold th-value #### Parameter: win-value: received time, which is in the range of 10(100ms)~600(100ms). The default is 10(100ms) th-value: received failure frame number, which is in the range of 1~0xffffffff. The default is 1 • Configure window and threshold in errored-frame-period # EFM link-monitor errored-frame-period window win-value EFM link-monitor errored-frame-period threshold th-value #### Parameter: win-value: received frame number which is in the range of 1~0xffffffff. The default is 10000 th-value: received failure frame number, which is in the range of 1~0xffffffff. The default is 1 Configure window and threshold in errored-frame-seconds # EFM link-monitor errored-frame-seconds window win-value EFM link-monitor errored-frame-seconds threshold th-value #### Parameter: win-value: received time, which is in the range of 100(100ms)~9000(100ms). The default is 600(100ms) th-value: received failure second, which is in the range of 1~900. The default is 1. Restore to default link monitoring configuration no EFM link-monitor { errored-symbol-period | errored-frame | errored-frame-period | errored-frame-seconds } window no EFM link-monitor { errored-symbol-period | errored-frame | errored-frame-period | errored-frame-seconds } threshold #### For example: !Configure window in errored-symbol-period to be 50000 QTECH(config-if-ethernet-0/1) #EFM link-monitor errored-symbol-period window high 0 low 50000 #### 19.2.8 Enable/disable remote failure indication Enable/disable EFM remote failure indication. This function is used for detecting EFM urgent connecting. Configure it in interface configuration mode: Enable EFM failure indicator #### EFM remote-failure { link-fault | dying-gasp | critical-event } Parameter: **link-fault**: detect local receiving failure **dying-gasp**: detecting way undefined **critical-event**: detecting way undefined Disable EFM remote failure indication #### no EFM remote-failure { link-fault | dying-gasp | critical-event } By default, this function is enabled. #### Example: ``` !Disable link-fault QTECH(config-if-ethernet-0/1) #no EFM remote-failure link-fault ``` ## 19.2.9 Enable/disable link monitoring Enable/disable EFM link monitoring. This function is for real-time link monitoring. Configure it in interface configuration mode: Enable link monitoring EFM link-monitor { errored-symbol-period | errored-frame | errored-frame-period | errored-frame-seconds } Disable link monitoring no EFM link-monitor { errored-symbol-period | errored-frame | errored-frame-period | errored-frame-seconds } By default, link monitoring is enabled. #### For example: ``` !Enable errored-frame QTECH(config-if-ethernet-0/1)#EFM link-monitor errored-frame ``` ## 19.2.10 Enable/disable remote MIB variable obtaining Enable/disable EFM remote MIB variable obtaining. This function is for checking remote MIB variable. Configure it in interface configuration mode: Enable remote MIB variable obtaining #### **EFM** variable-retrieval Disable remote MIB variable obtaining #### no EFM variable-retrieval #### For example: !Disable remote MIB variable obtaining QTECH(config-if-ethernet-0/1)#no EFM variable-retrieval ## 19.2.11 Enable/disable remote loopback Enable/disable EFM remote loopback. This function is for detecting link status. Configure it in interface configuration mode: Enable remote loopback #### **EFM** remote-loopback Disable remote loopback #### no EFM remote-loopback #### For example: ``` !Disable remote loopback QTECH(config-if-ethernet-0/1) #no EFM remote-loopback ``` ## 19.2.12 Enable/stop remote loopback Enable/stop remote loopback.Configure it in interface configuration mode: Enable/stop remote loopback #### EFM remote-loopback { start | stop } #### Parameter: start: enable remote loopback stop: stop remote loopback #### For example: ``` !Enable remote loopback QTECH(config-if-ethernet-0/1)#EFM remote-loopback start ``` ## 19.2.13 Configure handling remote loopback querying packet Configure handling remote loopback querying EFMPDU. Configure it in interface configuration mode: Configure handling remote loopback querying packet #### EFM remote-loopback { ignore | process } Parameter: ignore: ignore handling process: process #### For example: !Process remote loopback query EFMPDU QTECH(config-if-ethernet-0/1) #EFM remote-loopback process #### 19.2.14 Show EFM status Use commands in any configuration mode: Followings will be displayed: - EFM status - EFM working mode - Remote failure indicator status - Link monitoring status - Link monitoring parameter #### **show EFM status interface** [*interface-name*] Parameter: interface-name: EFM port number #### For example: !Display all EFM status QTECH(config) #show EFM status interface #### 19.2.15 Show **EFM** info Use commands in any configuration mode: Followings will be displayed: - Remote MAC address - Remote OUI - Local EFM working mode - Local EFM capacity - Local remote loopback status #### **show EFM summary** #### For example: !Display EFM summary QTECH(config)#show EFM summary ## 19.2.16 Show EFM discovery Use commands in any configuration mode: Followings will be displayed: - Local EFM working mode - Local EFM capacity - The mac EFMPDU length supported locally - · Local port operation status - Local port loopback status - Local EFMPDU revision - Remote MAC address - Remote Vendor -
Remote OUI - Remote EFMPDU revision - Remote EFM working mode - Remote EFM capacity - The mac EFMPDU length supported remotely #### **show EFM discovery interface** [interface-name] Parameter: interface-name: EFM port number #### For example: !Display all EFM discovery interface QTECH(config) #show EFM discovery interface ### 19.2.17 Show/clear EFM statistics "show" command can be used in any mode but "clear" command can only be used in global #### configuration mode: #### Followings will be displayed: - Receiving and sending numbers of local EFMPDU - Local and remote Remote failure numbers - Local and remote link monitoring numbers - Display EFM statistics #### **show EFM statistics interface** [*interface-name*] Clear EFM statistics #### clear EFM statistics interface [interface-name] #### For example: !Display EFM statistics interface QTECH(config) #show EFM statistics interface #### 19.2.18 Show remote MIB Configure it in interface configuration mode: Show port MIB variable #### **show EFM port** *port-id-list* **remote-mib** { **phyadminstate** | **autonegadminstate** } Show global MIB variable #### show EFM remote-mib { fecability | fecmode } Parameter: phyadminstate: port status autonegadminstate: auto-negotiation status **fecability**: FEC capacity **fecmode**: FEC mode #### For example: !show EFM status of port 1 QTECH(config-if-ethernet-0/1) #show EFM port 1 remote-mib phyadminstate # **Chapter 20 PoE function** ### 20.1 PoE Overview PoE (Power over Ethernet) is to provide DC power supply for terminal devices through ethernet Cat.5. A complete PoE system contains PSE (Power Sourcing Equipment) and PD (Powerred Device). System supports PSE with ieee 802.3af/3at. Note: It needs hardware support. ## 20.2 PoE Configuration ## 20.2.1 PoE configuration list PoE configuration list: - · Configure global max-power - Enable/disable port PoE - Configure interface max-power - Configure port PoE priority - Show PoE configuration ## 20.2.2 Configure global max-power Configure the global max power. When there is new port need power supply, switch will stop the power supply of the priority port to support the high priority. Configure it in global configuration mode: #### poe max-power <value> ``` !Configure PoE max-power QTECH(config) # poe max-power 380 ``` ## 20.2.3 Enable/disable port PoE Enable/disable PoE power supply of specific port. Configure it in interface configuration mode: #### [no] poe #### For example: Москва, Новозаводская ул., 18, стр. 1 ``` !Disable PoE power supply of port 1 QTECH(config-if-ethernet-0/0/1) #no poe +7(495) 797-3311 www.qtech.ru ``` ## 20.2.4 Configure interface max-power Use this command to restrict port POE max-power. When the power consumption of power devices is beyond the threshold, the port will stop the power supply. It is suggested configuring this value 3W more than the power consumption the power devices needed. Configure it in interface configuration mode: poe max-power < value> #### For example: ``` !Configure the max-power of port 1 to be 16W QTECH(config-if-ethernet-0/0/1) #poe max-power 16000 ``` ## 20.2.5 Configure port PoE priority There are three priority: *critical, high and low.* If two ports have the same priority, the port with small port-number will have higher priority. The default port priority is low. Configure it in interface configuration mode: poe priority { critical | high | low } #### For example: ``` !Configure priority of port 1 to be high QTECH(config-if-ethernet-0/0/1)# poe priority high ``` ## 20.2.6 Show PoE configuration Use this command to show configurations and power consumption. Configure it in any configuration mode: show poe [interface <interfacelist>] #### For example: ``` !Show global configuration for POE QTECH(config) #show poe !Show power info of port 1 QTECH(config) #show poe interface ethernet 0/0/1 ``` # **Chapter 21 Mac authentication configuration** ### 21.1 Mac-authentication Overview Mac-authentication supports two types: - Radius server authentication; - Local-user authentication; ## 21.2 mac-authentication Configuration ## 21.2.1 mac-authentication configuration list mac-authentication configuration list: - AAA authentication domain configuration - mac-authentication user-name-format - Radius authentication configuration - Enable/disable mac-authentication - mac-authentication timer offline-detect - mac-authentication timer quiet - mac vlan - guest vlan - mac-authentication max-users ## 21.2.2 AAA authentication domain configuration If it is not configured, it will use system configured default authentication domain. If default authentication domain is not configured, authentication failed. Configure it in global configuration mode: #### mac-authentication domain < name> #### For example: !Configure mac-authentication uses ngn.com domain QTECH(config) # mac-authentication domain ngn.com ## 21.2.3 mac-authentication user-name-format There are two ways to configure username and format: By mac. Use mac to be the username and password for authentication. A 12-character string, for example, mac=00:1f:ce:00:03:02, the username and password are all "000a5a000302"; fixed username and password; Mac for authentication is defaulted. • Configure it in global configuration mode: mac-authentication user-name-format { fixed account <name> password <psw> } | mac-address #### For example: !Configure username user and password 123 to be the fixed account QTECH(config)# mac-authentication user-name-format fixed account user password 123 ## 21.2.4 Radius authentication configuration There are two ways for radius server authentication:1. pap; 2. chap The default is pap. • Configure it in global configuration mode: #### mac-authentication encryption {pap|chap} #### For example: !Configure radius authentication is chap QTECH(config) # mac-authentication encryption chap #### 21.2.5 Enable/disable mac-authentication Max-authentication should be effective when global and interface mode are all enabled. Configure it in global or interface configuration mode: #### mac-authentication #### For example: ``` !Enable mac-authentication on port 5 QTECH(config) # mac-authentication QTECH(config-if-ethernet-0/0/5) # mac-authentication ``` ## 21.2.6 mac-authentication timer offline-detect When timer did not detect the traffic on user side during the two time period, the user will be offline. Configure it in global or interface configuration mode: #### mac-authentication timer offline-detect <offline-time> #### For example: ``` !Configure offline detect timer to be 120s QTECH(config) # mac-authentication timer offline-detect 120 ``` ## 21.2.7 mac-authentication timer quiet If user's mac authentication failed, it will be in quiet status, and user cannot be authenticated again in this status. After the quiet timer, user can continue authentication again. • Configure it in global or interface configuration mode: #### mac-authentication timer quiet <quiet-time> #### For example: ``` !Configure the timer quiet to be 60s QTECH(config) # mac-authentication timer quiet 60 ``` #### 21.2.8 mac vlan After enable it, server will send back user's vlan ID to match mac-vlan entry and create this vlan dynamically. User's port will be added to this vlan. If this mac address has matched static mac-vlan, the dynamic mac-vlan will be configured failure, and user will be in quiet status. Enable mac-vlan • Configure it in global configuration mode: #### mac-authentication mac-vlan When create vlan dynamically, system will add uplink port to this vlan and configure it as tag. By default, GE port is uplink port. Configure it in interface configuration mode: #### mac-authentication uplink #### For example: ``` !Enable mac-vlan and configure port 5 to be uplink port QTECH(config) # mac-authentication mac-vlan QTECH(config-if-ethernet-0/0/5) # mac-authentication uplink ``` ## 21.2.9 guest vlan When authentication failed, user will be in quiet status. If permitting user accessing some specific vlan, we can enable guest vlan. After enabling it, user will not be in quiet status but online status when authentication failed, user's vlan is guest vlan. User's data will be deleted after offline timer. When user is online in guest vlan, system will start the timer of re-authentication. If re-authentication succeed, user will be not online in guest vlan but online normally. Configure it in interface configuration mode: #### mac-authentication guest-vlan <vid> • Configure it in global configuration mode: #### mac-authentication timer guest-vlan-reauth <ime> #### For example: !Configure vlan 10 on port 5 to be guest vlan QTECH(config-if-ethernet-0/0/5) # mac-authentication guest-vlan 10 !Configure re-authentication time of guest vlan to be 120s QTECH(config) # mac-authentication timer guest-vlan-reauth 120 #### 21.2.10 mac-authentication max-users Use this command to restrict max user on port. • Configure it in interface configuration mode: #### mac-authentication max-users < number> #### For example: !Configure max-user on port 5 to be 10 QTECH(config-if-ethernet-0/0/5)# mac-authentication max-users 10