

Трансивер 1550 нм SFP+ 10 Гбит/с 80 км

QSC-SFP+80G10E-55

Оглавление

1. ОСОБЕННОСТИ ПРОДУКТА	3
2. ОПИСАНИЕ ПРОДУКТА	4
3. МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ	5
4. РЕКОМЕНДУЕМЫЕ УСЛОВИЯ РАБОТЫ	6
5. ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ	7
6. ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОГО ИНТЕРФЕЙСА	8
7. ОПИСАНИЕ ПИНОВ	9
8. ФУНКЦИИ ЦИФРОВОЙ ДИАГНОСТИКИ	11
9. РЕКОМЕНДУЕМАЯ СХЕМА ИНТЕРФЕЙСА	12
10. НАРУЖНЫЕ ГАБАРИТЫ	13
11 СООТВЕТСТВИЕ НОРМАТИВНЫМ ТРЕБОВАНИЯМ	14

Особенности продукта

1. ОСОБЕННОСТИ ПРОДУКТА

- Скорость передачи данных до 11.1 Гбит/с
- Дистанция передачи до 80 км на одномодовом волокне
- Лазерный трансмиттер EML и ресивер APD
- Металлическая оболочка для лучшей защиты от электромагнитных помех
- Интерфейс I2С с интегрированными средствами цифровой диагностики
- Функция горячей замены
- Соответствует SFF 8472
- Cовместим с SFP+ MSA с разъемом LC
- Напряжение питания 3,3 В
- Рабочая температура 0 − 70°C
- Рассеиваемая мощностьменее 1,5 Вт

Применение

• 10GBASE-ZR/ZW

Стандарты:

- Совместим с SFF-8431
- Совместим с SFF 8472
- Соответствует RoHS

2. ОПИСАНИЕ ПРОДУКТА

Трансивер QSC-SFP+80G10E-55 разработан для использования в каналах 10 Gigabit Ethernet на расстоянии до 80 км по одномодовому волокну. Модуль состоит из: лазера 1550 EML, APD и предусилителя. В соответствии со спецификацией SFF8472, трансиверы обеспечивают цифровые диагностические функции через 2-проводной последовательный интерфейс. Дистанция передачи данных - до 80 км по одномодовому волокну 9/125 мкм.

Максимальные значения

3. МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ

Параметры	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Температура хранения	Ts	-40	-	85	ōС	
Влажность при хранении	НА	5	-	95	%	
Влажность при работе	RH	-	-	85	%	
Напряжение питания	VCC	-0,3	-	4	В	
Напряжение входного сигнала		Vcc-0.3	-	Vcc+0.3	В	

4. РЕКОМЕНДУЕМЫЕ УСЛОВИЯ РАБОТЫ

Параметры	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Рабочая температура	Tcase	0	-	70	ōС	Без движения воздуха
Напряжение питания	VCC	3,14	3,3	3,47	В	
Ток блока питания	ICC	-		450	мА	
Скорость передачи данных:	BR		10,3125		Гбит/с	
Дальность передачи	TD		-	80	км	
Совместимое волокно	Одномодовое волокно					9/125 MKM SMF

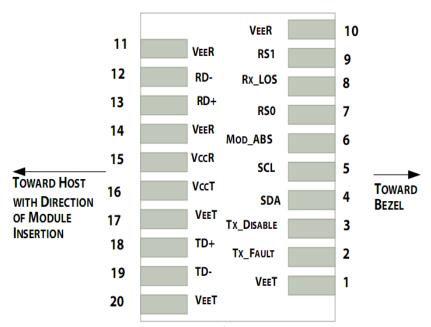
5. ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Параметры	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.		
Трансмиттер								
Мощность передатчика	РО	0		4	дБм	Прим. (1)		
Коэффициент затухания	ER	6			дБ			
Средняя длина волны	λc	1530	1550	1565	нм			
Спектральная полоса пропускания (RMS)	σ			1,0	нм			
SMSR		30			дБ			
Выходная мощность трансмиттера OFF	POff -30		-30	дБм				
Усиление дисперсии при передаче	TDP 3,0		дБ					
Выходная глазковая диаграмма	Совме	стима с	IEEE 80	2.3ae				
	Ресивер	ı						
Входная длина волны	λ	1270		1610	нм			
Чувствительность приёмника		-23		-23	дБм	Прим. (2)		
Перегрузка	Psat -7			дБм				
Отражательная способность ресивера	Rrx			-27	дБ			
LOS Detect -Assert Power	PA	-32			дБм			
LOS Detect - Deassert Power	PD			-24	дБм			
LOS Detect -Гистерезис	PHYS	0,5			дБ			

Прим.:

- 1. Средняя мощность запуска это мощность, соединенная в одномодовое волокно с мастерразъемом.
- 2. Измеряется с помощью тестового сигнала соответствия для BER = $10^{-12}.@10.3125$ Гбит/с, PRBS= 2^{31-1} , NRZ

6. ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОГО ИНТЕРФЕЙСА


Параметры	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Напряжение питания	Vcc	3,14	3,3	3,46	В	
Ток потребления	Icc			450	мА	
Трансмиттер						
Входное дифференциальное сопротивление	Rin		100		Ω	1
Односторонний ввод	Vin,pp	180		700	мВ	
Напряжение отключения трансмиттера	VD	Vcc- 1.3		Vcc	В	
Напряжение включения трансмиттера	VEN	Vee		Vee+ 0.8	В	2
Время подтверждения отключения трансмиттера				10	мкс	
Ресивер						
Дифференциальный вывод данных	Vout,pp	300		850	мВ	3
Время нарастания выходных данных	tr	28			пс	4
Время затухания выходных данных	tf	28			пс	4
Отказ LOS	Отказ VLOS	Vcc- 1.3		VccHOST	В	5
Нормальный LOS	Нормальный VLOS	Vee		Vee+ 0.8	В	5
Отказ блока питания	PSR	100			mVpp	6

Прим.:

- 1. Подключено напрямую к контактным разъемам входа трансмиттера. Последовательность переменного тока.
- 2. Либо разомкнутая цепь
- 3. Входное дифференциальное окончание 100 Ом.
- 4. 20 80 %.
- 5. Потеря сигнала является LVTTL Логика 0 означает нормальную работу, логика 1 информирует о потере сигнала. Чувствительность приемника соответствует синусоидальной модуляции питания от 20 Гц до 1,5 МГц до заданного значения, подаваемого через рекомендованный фильтрующий блок питания.

7. ОПИСАНИЕ ПИНОВ

Контактные разъемы на выходе блока коннектора хост-платы

Пин	Символ	Название/Описание			
1	BeeT	Земля трансмиттера (общая с землёй ресивера)			
2	T _{FAULT}	Ошибка трансмиттера	2		
3	T _{DIS}	Отключение трансмиттера	3		
4	SDA	2-проводная Скорость передачи данных последовательного интерфейса	4		
5	SCL	2-проводная Скорость передачи тактовых сигналов последовательного интерфейса			
6	MOD_ABS	Модуль отсутствует. Заземлено в пределах модуля			
7	RS0	Выбор скорости 0			
8	LOS	Индикация потери сигнала. Логика 0 сигнализирует о нормальной работе.			
9	RS1	Не требует подключения			
10	BeeR	Земля ресивера (общая с землёй трансмиттера)			
11	BeeR	Земля ресивера (общая с землёй трансмиттера)			
12	RD-	Инвертированный выход DATA ресивера.Дублированные AC			
13	RD+	Неинвертированный выход DATA ресивера. Дублированные AC			

Описание пинов

14	BeeR	Земля ресивера (общая с землёй трансмиттера)	1
15	BccR	Питание ресивера	
16	ВссТ	Блок питания трансмиттера	
17	BeeT	Земля трансмиттера (общая с землёй ресивера)	1
18	TD+	Неинвертированный вход DATA трансмиттера. Сдвоенный AC	
19	TD-	Инвертированный вход DATA трансмиттера. Сдвоенный AC	
20	BeeT	Земля трансмиттера (общая с землёй ресивера)	1

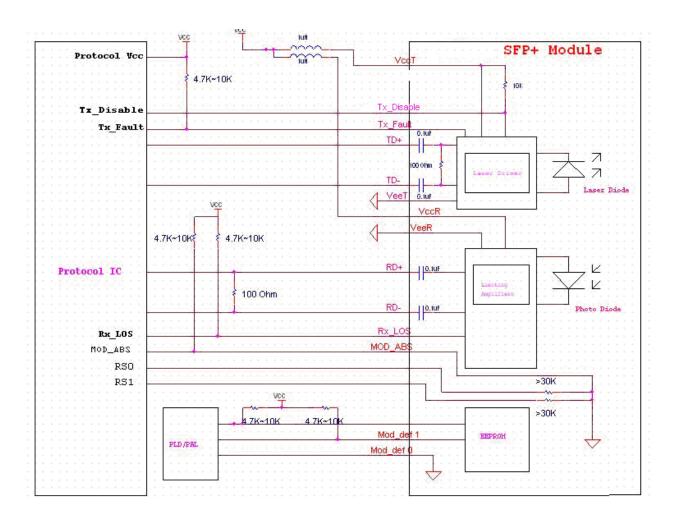
Прим.:

- 1. Заземление контура внутренне изолировано от заземления шасси.
- 2. Тfault Представляет собой выход со свободным коллектором /выпуском, который должен быть поднят с резистором 4.7 10 кОм на хост-плате, предназначенной для использования. Повышенное напряжение должно находиться в промежутке между 2.0 В и Vcc +0.3 В. Высокие выходные значения указывают на неисправность трансмиттера, вызванную либо током смещения, либо ситуацией, когда выходное значение трансмиттера превышает предустановленный порог аварийного оповещения. Низкие выходные значения указывают на нормальную работу. В низком состоянии выходное значение повышается до <0,8 В.
- 3. Выходное излучение лазера отключается при Tdis >2.0 В или открытом, включается при Tdis <0.8 В.
- 4. Необходимо поднять значение напряжения при помощи хост-платы $4.7 k\Omega$ $10 k\Omega$ до 2.0-3.6 В. MOD_ABS понижает линию, чтобы указать что модуль подключен.
- 5. Внутренне понижено на SFF-8431 Rev 4.1.
- 6. LOS представляет собой выходное значение открытого коллектора. Значение напряжения должно быть поднято при помощи хост-платы $4.7 k\Omega 10 k\Omega$ до 2.0-3.6 В. Логика 0 означает нормальную работу, логика 1 информирует о потере сигнала.

8. ФУНКЦИИ ЦИФРОВОЙ ДИАГНОСТИКИ

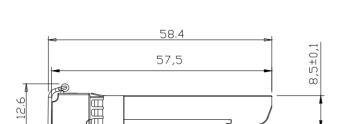
Трансиверы QSC-SFP+80G10E-55 поддерживают последовательный 2-проводной коммуникационный протокол, согласно стандартам SFP+ MSA.

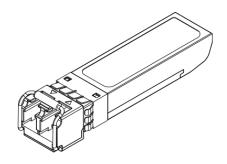
Стандартный серийный идентификатор SFP обеспечивает доступ к такой информации, как возможности трансивера, стандартные интерфейсы, изготовитель и т.д.


Кроме того, трансиверы SFP+ обеспечивают интерфейс цифрового мониторинга, который позволяет в режиме реального времени получать доступ к рабочим параметрам устройства, таким как температура приемопередатчика, ток смещения лазера, оптическая мощность трансмиттера и ресивера, а также напряжение питания трансивера. Система предупреждений и оповещений уведомляет пользователя, как только значения рабочих параметров выходят за пределы рабочего диапазона.

SFP+ MSA определяет 256-байтовую карту памяти в EEPROM, которая доступна через двухпроводной последовательный интерфейс по 8-битовому адресу 1010000X (A0h). Интерфейс цифрового мониторинга использует 8-разрядный адрес 1010001X (A2h), поэтому изначально определенная карта памяти последовательного идентификатора остается неизменной.

Информация о работе и диагностике контролируется и сообщается контроллером цифровой диагностики (DDTC) внутри трансивера, к которому осуществляется доступ через двухпроводной последовательный интерфейс. Когда последовательный протокол активирован, последовательный тактовый сигнал (SCL, Mod Def 1) генерируется хостом. Положительный фронт записывает данные в трансивере SFP в те сегменты E2PROM, которые не защищены от записи. Отрицательный фронт синхронизирует данные, получая новые с трансивера SFP. Сигнал последовательных данных (SDA, Mod Def 2) является двунаправленным для последовательной передачи данных. Хост использует SDA совместно с SCL, чтобы отметить начало и конец активации последовательного протокола. Память организована как серия 8-битных слов данных, которые могут быть рассмотрены индивидуально или последовательно.


9. РЕКОМЕНДУЕМАЯ СХЕМА ИНТЕРФЕЙСА



10. НАРУЖНЫЕ ГАБАРИТЫ

11. СООТВЕТСТВИЕ НОРМАТИВНЫМ ТРЕБОВАНИЯМ

Тип	Документ	Характеристика
Электростатические разряды (ESD)	IEC/EN 61000-4-2	Совместимость со стандартами
Электромагнитные помехи	FCC Part 15 Class B EN 55022 Class B (CISPR 22A)	Совместимость со стандартами
Безопасность лазера для глаз	езопасность лазера для глаз FDA 21CFR 1040.10, 1040.11 IEC/EN 60825-1, 2	
Распознавание компонентов	IEC/EN 60950 ,UL	Совместимость со стандартами
ROHS 2002/95/ EC		Совместимость со стандартами
EMC EN61000-3		Совместимость со стандартами

