

Multicast QSR-1920, QSR-2920, QSR-3920

www.qtech.ru

Оглавление

	www.qtech.ru	
Оглавление		
1. L2 MULTICAST BASICS	1	
1.1. Overview	1	
1.2. L2 Multicast Basics Function Configuration	1	
1.2.1. Configure Unknown Packet Forwarding Policy of L2 Multicast	1	
1.2.2. Monitoring and Maintaining of L2 Multicast Basis	2	
2. IGMP SNOOPING	1	
2.1. Overview	1	
2.2. IGMP snooping Function Configuration	1	
2.2.1. Configure IGMP snooping Basic Functions	2	
2.2.2. Configure IGMP snooping Querier	4	
2.2.3. Configure IGMP snooping Router Port	7	
2.2.4. Configure IGMP snooping TCN Event	8	
2.2.5. Configure IGMP snooping Policy	10	
2.2.6. Configure IGMP Snooping Proxy	13	
2.2.7. IGMP snooping Monitoring and Maintaining	14	
2.3. Typical Configuration Example of IGMP snooping	16	
2.3.1. Configure IGMP snooping	16	
2.3.2. Configure Multicast Receiving Control	17	
2.3.3. Configure IGMP Snooping Proxy	21	
3. IPV4 MULTICAST BASICS	25	
3.1. Overview	25	
3.2. Basic Function Configuration of IPv4 Multicast	25	
3.2.1. Enable IP Multicast Forwarding	25	
3.2.2. Configure IP Multicast Forwarding Rule	26	
3.2.3. Monitoring and Maintaining of IPv4 Multicast Basics	29	
4. IGMP	30	
4.1. Overview	30	
4.2. IGMP Function Configuration	30	
4.2.1. Configure IGMP Basic Functions	31	
4.2.2. Adjust and Optimize IGMP Network	34	
4.2.3. Configure IGMP SSM Mapping	38	
4.2.4. Configure IGMP Proxy	39	
4.2.5. IGMP Monitoring and Maintaining	40	
4.3. IGMP Typical Configuration Example	41	
4.3.1. Configure IGMP Basic Functions	41	
4.3.2. Configure IGMP Static Adding	43	

ala mu

Оглавление

	www.qtech.ru	••••
4.3.3. Configure IGMP SSM Mapping	46	
4.3.4. Configure IGMP Multicast Group Filter	53	
4.3.5. Configure IGMP Proxying	57	
5. PIM-DM	61	
5.1. Overview	61	
5.2. PIM-DM Function Configuration	61	
5.2.1. Configure PIM-DM Basic Functions	61	
5.2.2. Configure PIM-DM Neighbor	62	
5.2.3. Configure Status Refresh Parameters	64	
5.2.4. PIM-DM Monitoring and Maintaining	65	
5.3. PIM-DM Typical Configuration Example	65	
5.3.1. Configure PIM-DM Basic Functions	65	
6. PIM-SM	69	
6.1. Overview	69	
6.2. PIM-SM Function Configuration	69	
6.2.1. Configure PIM-SM Basic Functions	70	
6.2.2. Configure PIM-SM Aggregation Router	71	
6.2.3. Configure PIM-SM Bootstrap Router	72	
6.2.4. Configure PIM-SM Multicast Source Register	74	
6.2.5. Configure PIM-SM Neighbor Parameters	76	
6.2.6. Configure PIM-SM SPT Switching	78	
6.2.7. Configure PIM-SSM	79	
6.2.8. Configure PIM Adaptive Basic Function	80	
6.2.9. Configure PIM-SM Supporting (*,*,rp)	81	
6.2.10. Configure PIM-SM BFD	81	
6.2.11. PIM-SM Monitoring and Maintaining	82	
6.3. PIM-SM Typical Configuration Example	83	
6.3.1. Configure PIM-SM Basic Functions	83	
6.3.2. Configure PIM-SSM	92	
6.3.3. Configure PIM-SM Multicast Forwarding Control	98	
6.3.4. Configure PIM Adaptive Function	107	
7. MVPN	115	
7.1. Overview	115	
7.2. MVPN Function Configuration	115	
7.2.1. Configure MVPN Basic Functions	115	
7.2.2. Configure RPF Proxy	117	
7.2.3. Configure BGP MDT Address Stack	118	

Оглавление

	www.qtech.ru	••••
7.2.4. MVPN Monitoring and Maintaining	119	
7.3. MVPN Typical Configuration Example	119	
7.3.1. MVPN Typical Configuration in Single AS	119	
7.3.2. Across-AS MVPN Typical Configuration	131	
8. NG MVPN	150	
8.1. Overview	150	
8.2. NG MVPN Function Configuration	150	
8.2.1. Configure NG MVPN Basic Functions	151	
8.2.2. Configure BGP MVPN Address Family	155	
8.2.3. Configure MVPN ORF	156	
8.2.4. NG MVPN Monitoring and Maintaining	157	
8.3. NG MVPN Typical Configuration Example	159	
8.3.1. Configure NG MVPN with the Adding Mode of Private Multicast as (S, Public Tunnel as mLDP P2MP	G) and 159	
8.3.2. Configure NG MVPN with the Adding Mode of Private Multicast as (S, Public Tunnel as RSVP-TE P2MP	G) and 181	
8.3.3. Configure S-PMSI Tunnel Switching	203	
9. MSDP	224	
9.1. Overview	224	
9.2. MSDP Function Configuration	224	
9.2.1. Configure MSDP Peer	224	
9.2.2. Configure MSDP Peer Connection	225	
9.2.3. Configure SA Packet	227	
9.2.4. MSDP Monitoring and Maintaining	228	
9.3. MSDP Typical Configuration Example	229	
9.3.1. Configure Inter-PIM-SM Domain Multicast	229	
9.3.2. Configure Anycast RP	240	
10. MLD	253	
10.1. Overview	253	
10.2. MLD Function Configuration	253	
10.2.1. Configure MLD Basic Functions	253	
10.2.2. Adjust and Optimize the MLD Network	256	
10.2.3. Configure the MLD SSM Mapping	259	
10.2.4. MLD Monitoring and Maintaining	260	
10.3. MLD Typical Configuration Example	261	
10.3.1. Configure MLD Basic Functions	261	
10.3.2. Configure IGMP Static Adding	263	
10.3.3. Configure MLD SSM Mapping	266	

Руководство по настройке QSR-1920, QSR-2920, QSR-3920

Оглавление

	www.qtech	ru
10.3.4. Configure MLD Multicast Group Filter		272
11. IPV6 MULTICAST BASICS		277
11.1. Overview		277
11.1.1. Enable IPv6 Multicast Forwarding		277
11.1.2. Configure IPV6 Muticast Forwarding Rul	es	278
Monitoring and Maintaining of IPv6 Multicast Ba	sics	280
12. PIM-SMV6		281
12.1. Overview		281
12.2. PIM-SMv6 Function Configuration	:	281
12.2.1. Configure PIM-SMv6 Basic Functions	:	282
12.2.2. Configure PIM-SMv6 Aggregation Route	r :	282
12.2.3. Configure PIM-SMv6 Bootstrap Router	:	284
12.2.4. Configure PIM-SMv6 Multicast Source R	egister	285
12.2.5. Configure PIM-SMv6 Neighbor Parameter	ers	288
12.2.6. Configure PIM-SMv6 SPT Switching	:	290
12.2.7. Configure IPv6 PIM-SSM	:	291
12.2.8. Configure PIM6-SM BFD	:	292
12.2.9. PIM-SMv6 Monitoring and Maintaining	:	292
12.3. PIM-SMv6 Typical Configuration Example	:	293
12.3.1. Configure PIM-SMv6 Basic Functions	:	293
12.3.2. Configure IPv6 PIM-SSM	:	304
12.3.3. Configure PIM-SMv6 Multicast Forwardi	ng Control	311
13. ОБЩАЯ ИНФОРМАЦИЯ	:	323
13.1. Замечания и предложения		323
13.2. Гарантия и сервис	:	323
13.3. Техническая поддержка	:	323
13.4. Электронная версия документа	Ошибка! Закладка не определе	на.

1. L2 MULTICAST BASICS

1.1. Overview

The main task of L2 multicast basis is to maintain the L2 multicast forwarding table. The application modules of L2 multicast generates their L2 multicast tables by static configuration and dynamic learning, and then synchronize the information to the L2 multicast basis modules. L2 multicast basis modules integrate the information to form the L2 multicast forwarding table.

1.2. L2 Multicast Basics Function Configuration

Table 1-1 Configuration list of L2 multicast basics

Configuration Task

Configure the unknown packet forwarding policy of L2 multicast

Configure unknown packet MAC forwarding policy of L2 multicast

1.2.1. Configure Unknown Packet Forwarding Policy of L2 Multicast

Unknown multicast service packets have two kinds of forwarding policies: drop unknown multicast service packets, or make the unknown multicast service packets flood.

Configuration Condition

Before configuring the unknown packet forwarding policy of L2 multicast, first complete the following task:

• Configure corresponding VLAN

Configure Unknown Packet MAC Forwarding Policy of L2 Multicast

In the L2 multicast MAC forwarding mode, the multicast service packets are forwarded by matching VLAN and destination MAC address. When the multicast service packet does not match the forwarding table, it is unknown multicast service packet. The device has two kinds of forwarding policies for the unknown multicast service packets: drop unknown multicast service packets, or make unknown multicast service packets flood.

L2 MULTICAST BASICS

 $\bullet \bullet \bullet \bullet$

....

Table 1-2 Configure unknown packet MAC forwarding policy of L2 multicast

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter VLAN configuration mode	vlan vlan-id	-
Configure L2 multicast forwarding policy	I2-multicast drop-unknown	Optional By default, the function of dropping unknown multicast service packets is not enabled in VLAN.

1.2.2. Monitoring and Maintaining of L2 Multicast Basis

Table 1-3 Monitoring and maintaining of L2 multicast basis

Command	Description
show I2-multicast ip-entry	Display the IP forwarding table information of L2 multicast
show I2-multicast I3-ip-entry	Display the L3 IP forwarding table information of L2 multicast
show I2-multicast mac-entry { all forward }	Display the L2 multicast table
<pre>show I2-multicast vlan-setting { all vlan-id }</pre>	Display the L2 multicast VLAN information

2. IGMP SNOOPING

2.1. Overview

IGMP Snooping (Internet Group Management Protocol snooping) is the function designed for the device that does not support IGMP to reduce the spreading range of the multicast service packet and prevent the multicast packet from being spread to the network segments that do not need the multicast packet. It forms and maintains the downstream member port list of each multicast group at the local by listening to IGMP packets. In this way, when receiving multicast service packet, forward at the specified downstream member port. Meanwhile, IGMP Snooping can listen to the IGMP protocol packets and cooperate with the upstream multicast router to manage and control multicast services.

IGMP Snooping mainly realizes the following functions:

- Listen to the IGMP packets to set up multicast information. IGMP Snooping gets the downstream multicast receiver information by listening to IGMP packets, realizing the forwarding of multicast service packets at the specified member port.
- Listen to the IGMP protocol packets. In this way, the upstream multicast router can correctly maintain IGMP member relation table.

2.2. IGMP snooping Function Configuration

Table 2-1 IGMP snooping function configuration list

Configuration Task		
Configure basic functions of IGMP	Enable the IGMP Snooping function	
	Configure the IGMP snooping version	
	Enable the IGMP snooping L2 forwarding function	
Configure IGMP snooping querier	Enable the IGMP snooping querier	
	Configure the source IP address of the IGMP query packet	
	Configure general group query interval	
	Configure the maximum response time	
	Configure the query interval of the specified group	
	Configure fast-leave	
Configure IGMP snooping router port	Configure IGMP snooping router port	

|--|

-	

Configuration Task		
	Configure the age time of IGMP snooping dynamic router port	
Configure IGMP snooping TCN event	Enable fast convergence	
	Configure the query interval of TCN event	
	Configure the query times of TCN event	
Configure IGMP snooping policy	Configure the port filter rule	
	Configure maximum items of port multicast group	
	Configure the upper-limiting policy of port multicast group	
Configure IGMP snooping proxy	Configure the IGMP snooping proxy	

2.2.1. Configure IGMP snooping Basic Functions

In the configuration tasks of IGMP snooping, you should first enable the IGMP snooping function so that the configuration of the other functions can take effect.

Configuration Condition

Before configuring the basic functions of IGMP snooping, first complete the following task:

• Configure VLAN

www.qtech.ru

Enable IGMP snooping Function

After enabling IGMP snooping function, the device can run the IGMP snooping function.

Table 2-2 Enable IGMP snooping function

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable global IGMP snooping function	ip igmp snooping	Mandatory By default, the global IGMP snooping function is not enabled.
Enable the IGMP snooping function of the specified VLAN	ip igmp snooping vlan <i>vlan-</i> <i>id</i>	Mandatory By default, the IGMP snooping function is not enabled in the VLAN.

Note:

• After enabling the global IGMP snooping function, you can enable the IGMP snooping function of the specified VLAN.

Configure IGMP snooping Version

The configured IGMP snooping version and the processing rules of the IGMP protocol packets are as follows:

The configured IGMP snooping version is V3 and the device can process IGMP protocol packets of V1, V2 and V3;

The configured IGMP snooping version is V2 and the device can process the IGMP protocol packets of V1 and V2 and does not process V3 protocol packets, but make V3 protocol packets flood in VLAN.

The configured IGMP snooping version is V1 and the device can process the IGMP protocol packets of V1 and does not process V2 or V3 protocol packets, but make V2 and V3 protocol packets flood in VLAN.

Table 2-3 Configure IGMP snooping version

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure IGMP snooping version	ip igmp snooping vlan vlan- id version version-number	Optional By default, the IGMP snooping version is 2.

2.2.2. Configure IGMP snooping Querier

If there is no L3 multicast device in the network, it cannot realize the related functions of the IGMP querier. To solve the problem, you can configure the IGMP snooping querier on the L2 multicast device to realize the IGMP querier function so that L2 multicast device can set up and maintain multicast forwarding entry, so as to forward multicast service packets normally.

Configuration Condition

Before configuring the basic functions of IGMP snooping querier, first complete the following task:

• Enable global and VLAN IGMP snooping function

Enable IGMP snooping Querier

You should first enable the IGMP snooping querier function so that the configuration of the other features of the querier can take effect.

Table 2-4 Enable IGMP snooping querier

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable the IGMP snooping querier	ip igmp snooping vlan <i>vlan-</i> id querier	Mandatory By default, the IGMP snooping querier of the specified VLAN is not enabled.

Configure Querier IP Address

The querier configured with IP address takes part in the election of the IGMP querier in VLAN and the querier fills the IP address in the source IP address field of the sent IGMP group query packet.

www.qtech.ru

Table 2-5 Configure querier IP address

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the IP address of the querier	ip igmp snooping vlan <i>vlan- id</i> querier address <i>ip- address</i>	Mandatory By default, the querier IP address of the specified VLAN is not configured.

Note:

• When the querier IP address is not configured, the default source IP address of the querier is 0.0.0.0, but the querier does not send the IGMP group query packet with source IP address 0.0.0.0.

Configure Query Interval of General Group

IGMP querier periodically sends the query packets of the general group to maintain the group member relation. You can modify the interval of sending the IGMP general group query packets according to the actuality of the network. For example, if the configured general group query interval is long, it can reduce the number of the IGMP protocol packets in the network, avoiding the network congestion.

Table 2-6 Configure query interval of general group

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure query interval of general group	ip igmp snooping vlan <i>vlan- id</i> querier query-interval <i>interval-value</i>	Optional By default, the query interval of the general group is 125s.

Note:

• In the same VLAN, the configured query interval of the general group should be larger than the maximum response time. Otherwise, the configuration cannot succeed.

Configure Max. Response Time

The general group query packet sent by IGMPv2 querier contains the maximum response time field. The multicast receiver sends the member report packets within the maximum response interval.

Table 2-7 Configure the maximum response time

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the maximum response time	ip igmp snooping vlan vlan- id querier max-response- time time-value	Optional By default, the maximum response time is 10s.

Note:

• In one VLAN, the configured maximum response time should be smaller than the query interval of the general group. Otherwise, the configuration cannot succeed.

Configure Query Interval of Specified Group

When the IGMP querier receives the leave packet of one multicast group, it sends the query packet of the specified group to query the segment for the multicast group, so as to know whether the subnet has the member of the multicast group. If not receiving the member report packet of the multicast group after waiting for "last life period", delete the information of the multicast group.

 Table 2-8 Configure query interval of specified group

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure query interval of specified group	ip igmp snooping vlan vlan- id last-member-query- interval interval-value	Optional By default, the query interval of the specified group is 1000 ms.

Configure Fast Leave

If the device receives the leave packet of one multicast group after configuring fast leave, the device does not send the query packet of the specified group to the port any more and the information of the multicast group is deleted at once.

www.qtech.ru

Table 2-9 Configure fast leave

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the fast leave	ip igmp snooping vlan <i>vlan-</i> id immediate-leave	Mandatory By default, the fast leave function of the specified VLAN is not enabled.

Note:

• There are multiple receivers of the same multicast group in the device port at the same time. When the port receives the IGMP leave packet of the multicast group sent by one receiver and if fast leave is configured in the VLAN of the device port, the multicast services of the other receivers are interrupted.

2.2.3. Configure IGMP snooping Router Port

IGMP snooping router port is the port receiving IGMP group query packets or multicast routing protocol packets. When the device receives the IGMP member report or leave packet, forward the packet via IGMP snooping router port. In this way, the upper-connected router can maintain the IGMP member relation table correctly.

IGMP snooping router port can be dynamically learned or configured manually. IGMP snooping dynamic router port refreshes the age time by regularly receiving the IGMP group query packets or multicast routing protocol packets. IGMP snooping static router port does not age.

Configuration Condition

Before configuring the IGMP snooping router port functions, first complete the following tasks:

- Enable global and VLAN IGMP snooping function
- Add port member in VLAN

Configure IGMP snooping Static Router Port

After configuring IGMP snooping static router port, the device can forward the IGMP protocol packet via the port even the port does not receive the IGMP group query packet or multicast routing protocol packet. It can prevent the problem that the router port ages because the services of the upper-connected L3 multicast device are interrupted.

Table 2-10 Configure IGMP snooping static router port

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure IGMP snooping static router port	ip igmp snooping vlan <i>vlan- id</i> mrouter { interface <i>interface-name</i> link- aggregation <i>link-</i> <i>aggregation-id</i> }	Mandatory By default, the IGMP snooping static router port is not configured.

Configure Age Time of IGMP snooping Dynamic Router Port

If the configured age time of the IGMP snooping dynamic router port is longer, it can prevent the problem that the router port of the upper-connected L3 multicast device is aged fast because of the service interruption.

 Table 2-11 Configure age time of IGMP snooping dynamic router port

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure age time of IGMP snooping dynamic router port	ip igmp snooping vlan vlan- id timer router-port expiry expiry-value	Optional By default, the age time of IGMP snooping dynamic router port is 255s.

2.2.4. Configure IGMP snooping TCN Event

Configuration Condition

Before configuring the IGMP snooping TCN event function, first complete the following task:

Enable global and VLAN IGMP snooping function

Enable fast convergence

When the network topology changes, generate the TCN event and the spanning tree root port actively sends the global IMGP leave packets (group address: 0.0.0.0) to request the IGMP querier to send the general group query packet, reaching the fast convergence.

After enabling IGMP snooping TCN event fast convergence, non-spanning tree root port also actively sends the global IGMP leave packet (group address: 0.0.0.0), reaching the fast convergence.

www.qtech.ru

Table 2-12 Enable fast convergence

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable fast convergence	ip igmp snooping tcn query solicit	Mandatory By default, the fast convergence is not enabled in the TCN event.

Configure Query Interval of TCN Event

When the TCN event happens, IGMP snooping querier sends the general group query according to the TCN event query interval.

Table 2-13 Configure query interval of TCN event

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the query interval of the TCN event	ip igmp snooping vlan vlan- id querier tcn query interval interval-value	Optional By default, the query interval of the TCN event is 31s.

Configure Query Times of TCN Event

When the TCN event happens, IGMP snooping querier sends the general group query according to the query interval of the TCN event. After the sending times reaches the configured query times of the TCN event, restore to the query interval of the general group.

Table 2-14 Configure query times of TCN event

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the query times of the TCN event	ip igmp snooping vlan <i>vlan- id</i> querier tcn query count <i>count-number</i>	Optional By default, the query times of the TCN event is 2.

2.2.5. Configure IGMP snooping Policy

IGMP snooping policy is mainly used to control the receiver on the port, so as to control the multicast flow and limit the receiver action. In the setup L2 multicast flow forwarding environment, you also can apply the IGMP snooping policy.

Configuration Condition

Before configuring the IGMP snooping policy, first complete the following task:

• Enable global and VLAN IGMP snooping function

Configure Port Filter Rule

When the receiver hopes to get the multicast service, actively initiate the IGMP member report packet and the device judges according to the applied port filter rule in the port: refuse the user to add the destination multicast group; permit the user to add the destination multicast group; limit the times and time of the user adding the destination multicast group.

Table 2-15 Configure port filter rule

Step	Command	Description	
Enter global configuration mode	configure terminal	-	
Enter the IGMP profile configuration mode	ip igmp profile profile-id	-	
Configure the range of the refused multicast group	deny { all <i>low-ip-address</i> [<i>high-ip-address</i>] }	Optional By default, the range of the refused multicasts group is not configured.	
Configure the range of the permitted multicast group	permit { all <i>low-ip-address</i> [<i>high-ip-address</i>] }	Optional By default, the range of the permitted multicasts group is not configured.	

14/14/14/	0100	
VV VV VV.	utet	611.I U

••••

Step	Command	Description	
Configure the preview multicast group rule	preview { all <i>low-ip-address</i> [<i>high-ip-address</i>] count <i>count-number</i> interval <i>interval-time</i> time <i>time-</i> <i>duration</i> }	Optional By default, the preview multicast group rule is not configured.	
Return to global configuration mode	exit	-	
Enter L2 Ethernet interface configuration mode	interface interface-name	You should select one of them.	
Enter aggregation group configuration mode	link-aggregation link- aggregation-id	After entering L2 Ethernet interface configuration mode, the subsequent configuration just takes effect on the current port; after entering the aggregation group configuration mode, the subsequent configuration just takes effect on the aggregation group.	
In the port, apply the IGMP port filter rule	ip igmp filter profile-number	Mandatory By default, the IGMP port filter rule is not applied in the port.	

Note:

- Multicast group address can only be in one IGMP profile filter rule: deny, permit and preview. The new rule covers the old rule.
- Reset period of preview times > preview time × preview times + preview interval × (preview time - 1).

Configure Maximum Number of Port Multicast Groups

The maximum number of the port multicast groups can limit the number of the multicast groups the receiver is added to.

Table 2-16 Maximum number of port multicast groups

Step	Command	Description
Enter global configuration mode	configure terminal	-

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Enter L2 Ethernet interface configuration mode	interface interface-name	You should select one of them.
Enter aggregation group configuration mode	link-aggregation link- aggregation-id	After entering L2 Ethernet interface configuration mode, the subsequent configuration just takes effect on the current port; after entering the aggregation group configuration mode, the subsequent configuration just takes effect on the aggregation group.
Configure maximum number of the multicast groups in the port	ip igmp max-groups number	Optional By default, the maximum number of the multicast groups the port can dynamically be added to is 500.

Configure Upper-limitation Policy of Port Multicast Groups

When the number of the multicast groups the receiver is added to exceeds the configured maximum number of the multicast groups: If the upper-limitation policy of the port multicast group is replace, the new added multicast group on the device automatically replaces the existing multicast group; if the upper-limitation policy of the port multicast group is refuse, refuse the new added multicast group.

Table 2-17 Configure upper-limitation policy of port multicast group

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter L2 Ethernet interface configuration mode	interface interface-name	You should select one of them.
Enter aggregation group configuration mode	link-aggregation link- aggregation-id	After entering L2 Ethernet interface configuration mode, the subsequent configuration just takes effect on the current port; after entering the aggregation group configuration mode, the subsequent configuration just

Step	Command	Description		
		takes effect on the aggregation group.		
Configure the upper-limitation policy of the port multicast group	ip igmp max-groups action { deny replace }	Optional By default, the processing action after the number of the multicast groups the port is dynamically added to reaches the maximum is refuse.		

Configure the Interface to Control the PIM JOIN Packet

After configuring the interface to control the PIM JOIN packet, the JOIN packet is processed by the software, not by hardware.

Table 2-18 Configure controlling the PIM JOIN packet of the interface

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the interface to control the PIM JOIN packet	ip igmp snooping vlan vlan- id ctrl-pim	Mandatory By default, do not control the PIM JOIN packet of the specified VLAN.

Note:

• Before enabling the function, flood the JOIN packet in the VLAN. After enabling the function, the packet is sent to CPU, and does not flood in the VLAN.

2.2.6. Configure IGMP Snooping Proxy

When there are many receivers of the multicast group in the network, to reduce the number of the IGMP member report and leave packets received by the upstream multicast device and reduce the system cost effectively, you can configure IGMP snooping proxy on the device.

IGMP snooping proxy deputizes the downstream receiver to send the IGMP member report packets and leave packets to the upstream device and also can answer the IGMP group query packet sent by the upstream multicast device and then send the IGMP group query packet to the downstream device.

Configuration Condition

Before configuring the IGMP snooping proxy function, first complete the following task:

• Enable global and VLAN IGMP snooping function

 $\bullet \bullet \bullet \bullet$

....

Configure IGMP Snooping Proxy

Table 2-19 Configure IGMP snooping proxy

Step	Command	Description	
Enter global configuration mode	configure terminal	-	
Configure IGMP snooping proxy	ip igmp snooping proxy vlan vlan-id upstream { interface interface-name link-aggregation link- aggregation-id }	Mandatory By default, IGMP agent port is not configured in VLAN.	

2.2.7. IGMP snooping Monitoring and Maintaining

Table 2-20 IGMP snooping monitoring and maintaining

Command	Description
clear ip igmp snooping groups [grp-addr <i>ip-address</i> vlan <i>vlan-id</i> [grp-addr <i>ip-</i> <i>address-in-vlan</i>]]	Clear the IGMP snooping group information
clear ip igmp snooping statistics vlan vlan- id [interface interface-name link- aggregation link-aggregation-id]	Clear the IGMP protocol packet statistics information
show ip igmp snooping proxy member database [vlan <i>vlan-id</i>]	Display the IGMP snooping proxy member database information
show ip igmp snooping proxy special query source-list [vlan vlan-id]	Display the source list of the specified source query received by IGMP snooping proxy
<pre>show ip igmp snooping proxy upstream [vlan vlan-id]</pre>	Display the IGMP snooping proxy running information
show ip igmp snooping debugging	Display the IGMP snooping debugging status information
show ip igmp snooping egress_table	Display the L2 forwarding table of IGMP snooping

 $\bullet \bullet \bullet \bullet$

....

Command	Description
show ip igmp snooping groups [vlan <i>vlan-id</i>] [grp-addr <i>ip-address</i>]	Display the IGMP snooping multicast group information
show ip igmp snooping groups [vlan vlan- id] count	Display the number of IGMP snooping multicast groups
<pre>show ip igmp snooping groups detail [vlan vlan-id] [grp-addr ip-address]</pre>	Display the details of IGMP snooping multicast group
show ip igmp snooping interface statistics	Configure the statistics information of the multicast groups the IGMP snooping port is added to
show ip igmp snooping I3_ip_table	Display the L3 IP forwarding table of IGMP snooping
show ip igmp snooping mcast_table	Display the forwarding table of IGMP snooping
show ip igmp snooping mrouter [vlan <i>vlan-id</i>]	Display the IGMP snooping router port information
show ip igmp snooping querier [vlan vlan- id]	Display the IGMP snooping querier information
show ip igmp snooping statistics vlan vlan-id [interface interface-name link- aggregation link-aggregation-id]	Display the IGMP packet statistics information of the IGMP snooping port
show ip igmp snooping [vlan <i>vlan-id</i> [info]]	Display the IGMP snooping information
show multicast control [all-info interface <i>interface-name</i> link-aggregation <i>link-</i> <i>aggregation-id</i>]	Display the information of the L2 multicast control

2.3. Typical Configuration Example of IGMP snooping

2.3.1. Configure IGMP snooping

Network Requirements

- Device1 configures the multicast route protocol; Device2 enables IGMP snooping; PC1 and PC2 are the receivers of the multicast service; PC3 is the receiver of the nonmulticast service.
- Multicast Server sends the multicast service packets; PC1 and PC2 can receive the multicast service packets; PC3 cannot receive the multicast service packet.

Network Topology

Figure 2-1 Network topology of IGMP snooping

Configuration Steps

- Step 1: Device1 configure the interface IP address and enables the multicast route protocol. (omitted)
- Step 2: Configure Device2.

#Create VLAN2 on Device2.

Device2#configure terminal

Device2(config)#vlan 2

Device2(config-vlan2)#exit

#Configure the link type of the port gigabitethernet0/2-gigabitethernet0/4 on Device2 as Access, permitting the services of VLAN2 to pass.

Device2(config)#interface gigabitethernet 0/2-0/4

Device2(config-if-range)#switchport access vlan 2

Device2(config-if-range)#exit

#Configure the link type of port gigabitethernet0/1 on Device2 as Trunk, permitting the services of VLAN2 to pass; PVID is configured as 1.

Device2(config)#interface gigabitethernet 0/1

Device2(config-if-gigabitethernet0/1)#switchport mode trunk

www.qtech.ru

Device2(config-if-gigabitethernet0/1)#switchport trunk allowed vlan add 2 Device2(config-if-gigabitethernet0/1)#switchport trunk pvid vlan 1 Device2(config-if-gigabitethernet0/1)#exit

#Enable dropping unknown multicast in VLAN2.

Device2(config)#vlan 2 Device2(config-vlan2)#l3-multicast drop-unknown Device2(config-vlan2)#exit

#Enable IGMP snooping.

Device2(config)#ip igmp snooping Device2(config)#ip igmp snooping vlan 2

Step 3: Check the result.

PC1 and PC2 send IGMPv2 member report packet to add multicast group 224.1.1.1.

#View the multicast member table of Device2.

Device2#show ip igmp snooping groups

VLAN ID Interface Name Group Address Expires Last Reporter V1 Expires V2 Expires Uptime

2	gi0/2	224.1.1.1	00:03:26	192.168.1.2	stopped	00:00:55	
2	gi0/3	224.1.1.1	00:03:44	192.168.1.3	stopped	d 00:00:40	

#Multicast Server sends the multicast service packet with destination address 224.1.1.1; PC1 and PC2 can correctly receive the multicast service packet; PC3 cannot receive the multicast service packet.

2.3.2. Configure Multicast Receiving Control

Network Requirements

- Device1 configures multicast routing protocol.
- Device2 enables IGMP snooping, configures multicast receiving control and applies to the corresponding port.
- Multicast Server sends the multicast service packet; PC1 and PC2 can receive the multicast service packet.

www.qtech.ru

Network Topology

Figure 2-2 Network topology of configuring multicast receiving control

Configuration Steps

- Step 1: Device1 configures the interface IP address and enables the multicast route protocol. (omitted)
- Step 2: Configure Device2.

#Create VLAN2 on Device2.

Device2#configure terminal

Device2(config)#vlan 2

Device2(config-vlan2)#exit

#Configure the link type of the port gigabitethernet0/2-gigabitethernet0/4 on Device2 as Access, permitting the services of VLAN2 to pass.

- Device2#configure terminal
- Device2(config)#vlan 2

Device2(config-vlan2)#exit

Device2(config)#interface gigabitethernet 0/2-0/4

Device2(config-if-range)#switchport access vlan 2

Device2(config-if-range)#exit

#Configure the link type of port gigabitethernet0/1 on Device2 as Trunk, permitting the services of VLAN2 to pass; PVID is configured as 1.

Device2(config)#interface gigabitethernet 0/1

Device2(config-if-gigabitethernet0/1)#switchport mode trunk

Device2(config-if-gigabitethernet0/1)#switchport trunk allowed vlan add 2

Device2(config-if-gigabitethernet0/1)#switchport trunk pvid vlan 1

Device2(config-if-gigabitethernet0/1)#exit

#Enable IGMP snooping.

Device2(config)#ip igmp snooping

Device2(config)#ip igmp snooping vlan 2

#Configure multicast receiving control policy profile1, permits to add multicast group 224.1.1.1 and apply to port gigabitethernet0/2.

Device2(config)#ip igmp profile 1

Device2(config-igmp-profile)#permit 224.1.1.1

Device2(config-igmp-profile)#exit

Device2(config)#interface gigabitethernet 0/2

Device2(config-if-gigabitethernet0/2)#ip igmp filter 1

Device2(config-if-gigabitethernet0/2)#exit

#Configure multicast receiving control policy profile2, preview multicast group 224.1.1.1 and apply to port gigabitethernet0/3.

Device2(config)#ip igmp profile 2

Device2(config-igmp-profile)#preview 224.1.1.1

Device2(config-igmp-profile)#exit

Device2(config)#interface gigabitethernet 0/3

Device2(config-if-gigabitethernet0/3)#ip igmp filter 2

Device2(config-if-gigabitethernet0/3)#exit

#Configure multicast receiving control policy profile3, refuse adding to multicast group 224.1.1.1 and apply to port gigabitethernet0/4.

- Device2(config)#ip igmp profile 3
- Device2(config-igmp-profile)#permit all

Device2(config-igmp-profile)#deny 224.1.1.1

Device2(config-igmp-profile)#exit

Device2(config)#interface gigabitethernet 0/4

Device2(config-if-gigabitethernet0/4)#ip igmp filter 3

Device2(config-if-gigabitethernet0/4)#exit

Step 3: Check the result.

#PC1, PC2 and PC3 send IGMPv2 member report packet to add to multicast group 224.1.1.1. #View multicast member table of Device2.

> Device2#show ip igmp snooping groups IGMP Snooping Group Membership Total 2 groups

VLAN ID Interface Name Group Address Expires Last Reporter V1 Expires V2 Expires Uptime

2	gi0/2	224.1.1.1	00:04:19	192.168.1.2 stopped	00:00:01
2	gi0/3	224.1.1.1	00:04:19	192.168.1.3 stopped	00:00:01
PC1 and PC2 can add to multicast group 224.1.1.1; PC3 does not add to multicast group 224.1.1.1.					

Multicast Server sends the multicast service packet with destination address 224.1.1.1.

PC1 and PC2 can correctly receive the multicast service packet; PC3 cannot receive the multicast service packet.

#After waiting for 10s, view the multicast member table of Device2 and multicast receiving control information of gigabitethernet0/3.

Device2#show ip igmp snooping groups IGMP Snooping Group Membership Total1 group

VLAN ID Interface Name Group Address Expires Last Reporter V1 Expires V2 Expires Uptime

2 gi0/2 224.1.1.1 00:04:10 192.168.1.2 stopped 00:00:10

Device2#show multicast control interface gigabitethernet 0/3

ip multicast control gigabitethernet0/3 vlan 2 information

profile: 2

group right information:

preview: 224.1.1.1

preview information:

preview count: 3

preview count remain: 2

preview time: 10 (s)

preview interval: 60 (s)

group information:

group: 224.1.1.1

uptime: 00:00:10

next preview time remain: 00:00:60

After the preview time of port gigabitethernet0/3 arrives (after 10s), the group member entry is deleted; PC1 can correctly receive the multicast service packet; PC2 and PC2 cannot receive the multicast service packet.

2.3.3. Configure IGMP Snooping Proxy

Network Requirements

- Device1 configures multicast routing protocol.
- Device2 enables IGMP snooping and GMP snooping proxy.
- Multicast Server sends the multicast service packet; PC1, PC2, and PC3 can correctly receive the multicast service packet.

Network Topology

Figure 2-3 Network topology of configuring IGMP snooping proxy

Configuration Steps

Step 1: Device1 configures the interface IP address and enables the multicast route protocol.

Device1#configure terminal Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet1.1 Device1(config-if-gigabitethernet1.1)# ip address 192.168.1.1 255.255.255.0 Device1(config-if-gigabitethernet1.1)# encapsulation dot1q 2 Device1(config-if-gigabitethernet1.1)# ip pim sparse-mode Device1(config-if-gigabitethernet1.1)# exit Device1(config-if-gigabitethernet2)# ip address 1.1.1.2 255.255.255.0 Device1(config-if-gigabitethernet2)# ip pim sparse-mode Device1(config-if-gigabitethernet2)# ip pim sparse-mode Device1(config-if-gigabitethernet2)# ip pim sparse-mode

Step 2: Configure Device2.

#Create VLAN2 on Device2.

Device2#configure terminal Device2(config)#vlan 2

Device2(config-vlan2)#exit

#Configure the link type of the port gigabitethernet0/2-gigabitethernet0/4 on Device2 as Access, permitting the services of VLAN2 to pass.

Device2(config)#interface gigabitethernet 0/2-0/4

Device2(config-if-range)#switchport access vlan 2

Device2(config-if-range)#exit

#Configure the link type of port gigabitethernet0/1 on Device2 as Trunk, permitting the services of VLAN2 to pass; PVID is configured as 1.

Device2(config)#interface gigabitethernet 0/1

Device2(config-if-gigabitethernet0/1)#switchport mode trunk

Device2(config-if-gigabitethernet0/1)#switchport trunk allowed vlan add 2

Device2(config-if-gigabitethernet0/1)#switchport trunk pvid vlan 1

Device2(config-if-gigabitethernet0/1)#exit

#Enable IGMP snooping in VLAN2; configure IGMP snooping querier address as 192.168.1.254.

Device2(config)#ip igmp snooping

Device2(config)#ip igmp snooping vlan 2

Device2(config)#ip igmp snooping vlan 2 querier

Device2(config)#ip igmp snooping vlan 2 querier address 192.168.1.254

#Configure IGMP snooping proxy.

Device2(config)#ip igmp snooping proxy vlan 2 upstream interface gigabitethernet 0/1

Device2(config)#exit

Step 3: Check the result.

#PC1, PC2 and PC3 successively sends IGMPv2 member report packets to add to multicast group 224.1.1.1.

#View the IGMP snooping proxy information of Device2.

Device2#show ip igmp snooping proxy upstream vlan 2

vlan 2 proxy upstream information:

upstream interface : gi0/1 upstream querier compatmode version : 2 upstream querier address : 192.168.1.1 upstream report source address : 192.168.1.4upstream querier query interval : 125s upstream querier query response interval: 10s upstream querier LMQI : 1s upstream querier LMQC : 2

upstream querier robustness variabl	e :2
upstream querier present timer	: 00:02:50
upstream V1 querier present timer	: stopped
upstream V2 querier present timer	: 00:02:55

#View multicast member table of Device2 and IGMP snooping proxy member database.

Device2#show ip igmp snooping groups IGMP Snooping Group Membership

Total 3 groups

VLAN ID Interface Name Group Address Expires Last Reporter V1 Expires V2 Expires Uptime

2	gi0/2	224.1.1.1	00:04:09	192.168.1.2 stopped	00:00:14	
2	gi0/3	224.1.1.1	00:04:09	192.168.1.3 stopped	00:00:11	
2	gi0/4	224.1.1.1	00:04:12	192.168.1.4 stopped	00:00:07	
You	can see tha	at PC1, PC2	and PC3 a	add to multicast group	224.1.1.1.	
Device2#show ip igmp snooping proxy member database vlan 2						
IGM	P Snooping	Proxy Mer	nber Data	base Table		
Total 1 group						

VLAN ID Group Address Mode Source Address

----- -----

2 224.1.1.1 EXCLUDE *

#View multicast member table of Device1.

Device1#show ip igmp groups IGMP Connected Group Membership Total 1 groups Group Address Interface Uptime Expires Last Reporter V1 Expires V2 Expires 224.1.1.1 gigabitethernet1.1 00:00:15 00:04:11 192.168.1.2 stopped

You can see that when PC adds to multicast group 224.1.1.1, Device2 can only forward the first IGMPv2 member report packet to Device1 and the other are all dropped.

#Multicast Server sends the multicast service packet with destination address 224.1.1.1; PC1, PC2 and PC3 can correctly receive the multicast service packet.

#PC1 and PC2 send IGMPv2 leave packet to leave multicast group 224.1.1.1.

Device2#show ip igmp snooping groups

IGMP Snooping Group Membership

Total 1 group

VLAN ID Interface Name Group Address Expires Last Reporter V1 Expires V2 Expires Uptime

2 gi0/4 224.1.1.1 00:03:54 192.168.1.4 stopped 00:06:37 Device1#show ip igmp groups IGMP Connected Group Membership Total 1 groups Group Address Interface Uptime Expires Last Reporter V1 Expires V2 Expires

224.1.1.1 gigabitethernet1.1 00:06:48 00:03:48 192.168.1.2 stopped

After PC1 and PC2 leave multicast group 224.1.1.1, PC3 does not leave the multicast group, so there is still group member PC3 in the multicast member table. Therefore, Device2 does not send the leave packet of the multicast group to Device1.

#PC3 sends the IGMPv2 leave packet to leave multicast group 224.1.1.1; view multicast member table of Device2 and Device1.

Device2#show ip igmp snooping groups

You can see that there is no multicast member table on Device2.

Device1#show ip igmp groups

There is no multicast member on Device1. When the last group member PC3 leaves the multicast group, Device2 sends the leave packet of the multicast group to Device1.

#PC1, PC2 and PC3 cannot receive the multicast service packet.

3. IPV4 MULTICAST BASICS

3.1. Overview

IPv4 multicast basics is the basis of running the IP multicast protocol and the common part of all multicast protocols. No matter which multicast route protocol runs, we first need to enable the IP multicast forwarding function so that the device can forward the multicast service packets.

3.2. Basic Function Configuration of IPv4 Multicast

Table 3-1 Basic function configuration list of IPv4 multicast

Configuration Task			
Enable IP multicast forwarding	Enable the IP multicast forwarding		
Configure IP multicast forwarding rule	Configure the multicast forwarding management edge		
	Configure the regular detection of the multicast forwarding		
	Configure the multicast route table limitation		
	Configure the multicast interface TTL threshold		

3.2.1. Enable IP Multicast Forwarding

IP multicast forwarding is the basic module of the multicast forwarding. The device can forward the IP multicast service packets only after enabling the IP multicast forwarding function. Both the general IP multicast forwarding and IP multicast fast forwarding are controlled by whether to enable the IP multicast forwarding.

IP multicast fast forwarding is one IPv4 fast multicast forwarding technology designed to improve the forwarding performance of the service packets. It completes the route selection and service processing for a time, so as to reduce the resource consumption caused by the switching between the internal tasks of the system and the packet cache management. At last, improve the data forwarding performance of the whole system.

Configuration Condition

Before configuring the IP multicast forwarding function, first complete the following task:

- Configure the IP address of the interface, making the neighboring node network layer reachable;
- Configure any unicast routing protocol, making the routes in the domain reachable;
- Configure any multicast routing protocol.

www.qtech.ru

Enable IP Multicast Forwarding

The device can forward the IP multicast service packets only after enabling the IP multicast forwarding function.

	Table 3-2	Enable IP	multicast	forwarding
--	-----------	-----------	-----------	------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable IP multicast forwarding	ip multicast-routing [vrf vrf-name]	Mandatory By default, the IP multicast forwarding is not enabled.

3.2.2. Configure IP Multicast Forwarding Rule

Configuration Condition

Before configuring the IP multicast forwarding rule, first complete the following task:

- Configure interface IP address, making the neighboring node network layer reachable;
- Configure any unicast routing protocol, making the routes in the domain reachable;
- Enable IP multicast forwarding;
- Configure any multicast route protocol.

Configure Multicast Forwarding Management Edge

The multicast forwarding management edge mainly realizes the filtering for the multicast packets. After configuring the management edge, the device can filter the multicast service packets and only the multicast service permitted by ACL can pass.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Table 3-3	Configure	multicast	forwarding	manageme	ent edge

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure multicast forwarding management edge	ip multicast boundary { access-list-number access-list-name }	Mandatory By default, the multicast forwarding management edge is not configured.

Configure Regular Detection of Multicast Forwarding

After configuring the regular detection of the multicast forwarding and if the number of the specified forwarded multicast service packets in the unit time is smaller than the configured minimum number, print the alarm information.

Table 3-4 Configure the regular detection of the multicast forwarding

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the regular detection of the multicast forwarding	ip multicast heartbeat group-ip-address source-ip-address minmum-packets interval-value [vrf vrf-name]	Mandatory By default, do not perform the regular detection of the multicast forwarding.

Configure Multicast Route Table Limitation

Configure the maximum quantity limitation of the multicast route table. After exceeding the maximum quantity limitation of the multicast route table, do not create new multicast route table any more.

www.qtech.ru

••••

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the multicast route table limitation	ip multicast route-limit <i>number-value</i> [vrf <i>vrf-name</i>]	Optional By default, the maximum number of the multicast route table is 8192.

Configure TTL Threshold of Multicast Interface

After configuring the TTL threshold of the multicast ingress interface, only the multicast service packet whose TTL is larger than the threshold can be accepted, while the multicast packet whose TTL is smaller than or equal to the threshold is dropped.

After configuring the TTL threshold of the multicast egress interface, only the multicast service packet whose TTL minus 1 is still larger than the threshold can be forwarded, while the multicast packet whose TTL is smaller than or equal to the threshold is dropped.

Table 3-6 Configure the	TTL threshold of the	multicast interface
-------------------------	----------------------	---------------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the TTL threshold of the multicast ingress interface	ip multicast in-threshold number-value	Optional By default, the TTL threshold of the multicast ingress interface is 0.
Configure the TTL threshold of the multicast egress interface	ip multicast out-threshold number-value	Optional By default, the TTL threshold of the multicast egress interface is 0.

 $\bullet \bullet \bullet \bullet$

....

3.2.3. Monitoring and Maintaining of IPv4 Multicast Basics

Table 3-7 Monitoring and maintaining of IPv4 multicast basics

Command	Description
clear ip mcache [source source-ip-address] [group group-ip-address] [all vrf vrf- name]	Clear the multicast route entry
show ip mcache [source source-ip-address] [group group-ip-address] [vrf vrf-name]	Display the multicast route table information
show ip mvif [vrf vrf-name]	Display the multicast virtual interface information

4. IGMP

4.1. Overview

IGMP (Internet Group Management Protocol) is the protocol for managing the IP multicast members in the TCP/IP protocol stack, used to set up and maintain the multicast group member relation between the IP host and the direct neighboring multicast device.

IGMP has three versions. Currently, the widely-used is IGMPv2. IGMPv2 has three kinds of packets: query packet, group member relation report packet, and group member leave packet.

Query packet includes the general query packet and the specified group query packet. The device gets to know which members there are in the direct-connected network via the general query packets and whether there are the members of one specified group in the direct-connected network via the specified group query packets.

Group member relation report: When the host wants to add into one multicast group, the host immediately sends the group member relation report to the desired multicast group. When the host receives one query packet, it also sends the group member relation report.

Group member leave packet: When the host leaves one multicast group, send one group member leave report. When the device receives the group member leave packet, send the specified group query to confirm whether one specified group has members.

4.2. IGMP Function Configuration

Table 4-1 IGMP function configuration list

Configuration Task	
Configure IGMP basic functions	Enable the IGMP protocol
	Configure the IGMP version
	Configure static group adding
	Configure multicast group filter
	Configure SSM multicast group filter
Adjust and optimize the IGMP network	Configure the query interval of the general group
	Configure the robustness factor
	Configure the maximum response time
	Configure the specified group query

www.qtech.ru

....

Configuration Task		
	Configure the other querier timeout	
	Configure the fast leave	
Configure the IGMP SSM mapping	Configure the IGMP SSM mapping	

4.2.1. Configure IGMP Basic Functions

Configuration Condition

Before configuring the IGMP basic functions, first complete the following task:

• Configure the interface network layer address, making the neighboring node network layer reachable

Enable IGMP Protocol

Table 4-2 Enable the IGMP protocol

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable the IP multicast forwarding	ip multicast-routing	Mandatory By default, the IP multicast forwarding is disabled.
Enter interface configuration mode	interface interface-name	-
Enable the IGMP protocol	ip pim sparse-mode	Mandatory By default, IGMP is disabled. When the interface enables the multicast route protocol, automatically enable IGMP. Only after enabling IGMP, all IGMP configurations can take effect.

Configure IGMP Version

Table 4-3 Configure the IGMP version

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the IGMP version	ip igmp version version- number	Mandatory By default, the IGMP version is 2.

Note:

• Because the packet structure and kind of different versions of IGMP protocols are different, it is suggested to configure the same version of IGMP for all devices on the same subnet.

Configure Static Group Adding

After configuring one static group or source group in the interface, the device regards that the interface has the receiver of the multicast group or source group.

Table 4-4 Configure static group adding

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the static group adding	ip igmp static-group group-ip-address [source-ip-address]	Mandatory By default, the interface is not added to any multicast group or source group in the static mode.

Configure Multicast Group Filter

The interface configured with the IGMP multicast group filter filters the group member relation report in the segment according to the ACL rules and only the group member relation report permitted by ACL is processed and the un-permitted is directly dropped. For the existing but not permitted by ACL multicast group, immediately delete the multicast group information.

www.qtech.ru

....

Table 4-5 Configure multicast group filter

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the IGMP multicast group filter	ip igmp access-group { access-list-number access-list-name }	Mandatory By default, the multicast group filter is not configured.

Note:

• ip igmp access-group Command only supports the standard ACL.

Configure SSM Multicast Group Filter

After configuring the range of the source groups received by IGMP, filter the received source group member relation report to limit the source group range the interface serves. For the groups belonging to the PIM-SSM range, only the IGMPv3 non (IS_EX, TO_EX) member relation report permitted by the access list (S, G) can be accepted.

Table 4-6 Configure the SSM multicast group filter

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the SSM multicast group filter	ip igmp ssm-access-group { access-list-number access-list-name }	Mandatory By default, do not filter to limit the SSM group members.

Note:

- ip igmp ssm-access-group can take effect only when the interface enables IGMPv3.
- **ip igmp ssm-access-group** takes effect only for the source groups in the PIM SSM range.
- **ip igmp ssm-access-group** only supports the extended ACL.

....

4.2.2. Adjust and Optimize IGMP Network

Configuration Condition

Before adjusting and optimizing the IGMP network, first complete the following task:

- Configure interface network layer address, making the neighboring node network layer reachable
- Enable the IGMP protocol

Configure Query Interval of General Group

IGMP querier periodically sends the general group query packets to maintain the group member relation. You can modify the interval of sending the IGMP general group query packets according to the actuality of the network.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the query interval of the general group	ip igmp query-interval interval-value	Optional By default, the interval of sending the IGMP general group query packets is 125s.

Table 4-7 Configure the query interval of the general group

Note:

- The genera query intervals of the devices on the same segment should try to keep consistent.
- The general group query interval should be larger than the maximum response time. Otherwise, the configuration cannot succeed.

www.qtech.ru

....

Configure Robustness Factor

Table 4-8 Configure robustness factor

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the robustness factor	ip igmp robustness-variable variable-value	Optional By default, the robustness factor of the IGMP querier is 2.

Note:

- After configuring the robustness factor, the following parameters also change with the robustness parameters:
- Group member timeout = Robustness factor * general group query time + maximum response time;
- Other querier timeout = Robustness factor * general group query time + maximum response time/2;
- The larger the robustness factor, the larger the IGMP group member timeout and other querier timeout. The user sets the value according to the actuality of the network.

Configure Maximum Response Time

The general group query packet sent by the IGMPv2 querier contains the maximum response time field and the receiver sends the group member relation report within the maximum response interval. If the receiver does not send the group member relation report within the maximum response time, the device regards that the subnet does not have the receiver of the multicast group and deletes the multicast group information immediately.

www.n	tech ru
	cconn a

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

Table 4-9 Configure the maximum response time

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the maximum response time	ip igmp query-max-response-time seconds	Optional By default, the maximum response time of the IGMP general group query is 10s.

Configure Specified Group Query

After the IGMP querier receives the leave packet of one multicast group, send the specified group query packet to query the multicast group on the segment for "Specified group query times". This is to know whether the subnet has the members of the multicast group. If not receiving the member relation report of the multicast group after waiting for "maximum response time", delete the information of the multicast group.

able 4-10 Configure the specified group query		
Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the query interval of the specified group	ip igmp last-member-query-interval interval-value	Optional By default, the interval of sending the specified group query packets is 1s.
Configure the query times of the specified group	ip igmp last-member-query-count count-value	Optional By default, the times of sending the specified group query packets is 2.

Т

....

Note:

• **ip igmp last-member-query-interval** and **ip igmp last-member-query-count** are invalid in IGMPv1, because the IGMPv1 host does not send leave packets when leaving one multicast group.

Configure Other Querier Timeout

The device with the smallest address in one subnet is elected as the querier and the other devices are called non-querier. On the non-queriers, set one timeout as the timer of "other querier timeout" (the other queriers have timer) for the querier. When the non-querier receives the query packet of the querier, refresh the timer. When the timer times out, it indicates that the current IGMP querier becomes invalid and you need to re-elect the querier.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the other querier timeout	ip igmp query-timeout seconds	Optional By default, the other querier timeout is 255s.

Table 4-11 Configure the other querier timeout

Caution:

• If the configure other querier timeout is smaller than the query interval, the querier in the network may change repeatedly.

Configure Fast Leave

The end segment in the network only connects to one host, which performs the switching action of the multicast group frequently. To reduce the leave delay, you can configure the fast leave of the multicast group on the device.

After configuring the fast leave, the device receives the leave packet of one multicast group and checks whether the multicast group belongs to the fast leave range. If yes, the device does not send the specified group query packet to the segment any more and deletes the information of the multicast group immediately.

www.qtech.ru

Table 4-12 Configure the fast leave

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the multicast group range of the fast leave	ip igmp immediate-leave group-list { access-list-number access-list-name }	Mandatory By default, do not permit the fast leave of the multicast group, applicable to IGMPv2.
Configure the source group range of the fast leave	ip igmp sg-immediate-leave sg-list { access-list-number access-list-name }	Mandatory By default, do not permit the fast leave of the source group, applicable to IGMPv3.

4.2.3. Configure IGMP SSM Mapping

Configuration Conditions

Before configuring the IGMP SSM mapping, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable;
- Enable the IGMP protocol.

Configure IGMP SSM Mapping

To provide the PIM-SSM service for the receiver not supporting IGMPv3 in the PIM-SSM network, we can configure the IGMP SSM Mapping function on the device.

The user can configure the IGMP SSM Mapping rule according to the demand of the network receiver. The group member relation report permitted by the rule is converted to the IGMPv3 non-member (IS_EX, TO_EX) relation report, and the multicast source address is the source address specified by the IGMP SSM mapping rule.

www.qtech.ru

Table 4-13 Configure the IGMP SSM mapping

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the IGMP SSM Mapping	ip igmp ssm-map enable [vrf vrf-name]	Mandatory By default, do not enable the IGMP SSM Mapping.
Configure the IGMP SSM Mapping rule	ip igmp ssm-map static { access-list-number access-list-name } source-ip-address [vrf vrf-name]	Mandatory By default, there is no IGMP SSM Mapping rule.

Note:

• The **ip igmp ssm-map static** command only supports the standard ACL.

4.2.4. Configure IGMP Proxy

Configuration Conditions

Before configuring the IGMP proxy, first complete the following task:

- Configure the network layer address of the interface, making the neighboring node network layer reachable;
- Enable the IGMP protocol.

Configure IGMP Proxy

IGMP proxy is an extension of the existing IGMP functions. IGMP proxy function refers to configuring one interface of the device as the upstream interface of IGMP proxy, and the other interfaces become the downstream interface of IGMP proxy. The IGMP proxy upstream interface acts as the IGMP host. The IGMP proxy will integrate the IGMP members learned by the downstream interface into the IGMP proxy member database, and the upstream interface of the IGMP proxy will send the IGMP report to the upstream IGMP inquirer according to the member status in the proxy member database.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Table 4-14 Configure the IGMP proxy

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the IGMP proxy	ip igmp proxying	Mandatory By default, do not enable the IGMP proxy.

4.2.5. IGMP Monitoring and Maintaining

Table 4-15 IGMP monitoring and maintaining

Command	Description
clear ip igmpstat	Clear the statistics information of the IGMP protocol packets
clear ip igmp group [group-ip-address] [interface-name] [vrf vrf-name]	Clear the IGMP multicast group information
clear ip igmp proxy statistic [vrf vrf-name]	Clear the IGMP proxy statistics information
clear ip igmp statistic interface interface-name [vrf vrf-name]	Clear the IGMP packet statistics information on the interface
<pre>show ip igmp groups [[static] [interface-name] [group-ip-address] [detail]] [vrf vrf-name]</pre>	Display the IGMP multicast group information
show ip igmp interface [<i>interface-name</i>] [vrf <i>vrf-name</i>]	Display the interface IGMP information
<pre>show ip igmp proxy { group statistic } [vrf vrf-name]</pre>	Display the IGMP proxy information
show ip igmp ssm-map [vrf vrf-name]	Display the IGMP SSM Mapping information

www.qtech.ru

Command	Description		
show ip igmp statistic interface interface-name [vrf vrf-name]	Display the statistics information of the IGMP packets		

4.3. IGMP Typical Configuration Example

4.3.1. Configure IGMP Basic Functions

Network Requirements

- The whole network runs the PIM-SM protocol.
- Device1, Device2, and Receiver are in the same LAN and Device2 is the querier.
- Receiver is one receiver of Device1 and Device2 end network.
- Run IGMPv2 between Device1, Device2 and end network.

Network Topology

Figure 4-1 Networking of configuring IGMP basic functions

Configuration Steps

- **Step 1:** Configure the IP address of the interface. (omitted)
- **Step 2:** Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the interface.

#Configure Device1.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device1(config)#configure terminal Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim sparse-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim sparse-mode Device1(config-if-gigabitethernet1)#ip pim sparse-mode

#Configure Device2.

www.qtech.ru

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device2(config)#configure terminal Device2(config)#ip multicast-routing Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip pim sparse-mode Device2(config-if-gigabitethernet0)#exit Device2(config)#interface gigabitethernet1 Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim sparse-mode

Step3: Check the result.

#View the IGMP version information and querier election result of Device2 interface gigabitethernet1.

Device2#show ip igmp interface gigabitethernet 1

Interface gigabitethernet1 (Index 50331921)

IGMP Active, Querier (4.0.0.1)

Default version 2

IP router alert option in IGMP V2 msgs: EXCLUDE

Internet address is 4.0.0.1

IGMP query interval is 125 seconds

IGMP querier timeout is 255 seconds

IGMP max query response time is 10 seconds

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

IGMP robustness variable is 2

#View the IGMP version information and querier election result of Device1 interface gigabitethernet1.

Device1#show ip igmp interface gigabitethernet 1 Interface gigabitethernet 1 (Index 50331921) IGMP Active, Non-Querier (4.0.0.1, Expires: 00:02:15) Default version 2 IP router alert option in IGMP V2 msgs: EXCLUDE Internet address is 4.0.0.2 IGMP query interval is 125 seconds IGMP querier timeout is 255 seconds

www.qtech.ru

 $\mathsf{IGMP}\xspace$ max query response time is 10 seconds configged, and 10 seconds is adopted

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

IGMP robustness variable is 2

#Receiver sends the IGMPv2 member relation report to add to multicast group 225.1.1.1.

#Query the multicast member table of Device1.

Device1#show ip igmp groups

IGMP Connected Group Membership

Total 1 groups

Group Address Interface Uptime Expires Last Reporter V1 Expires 225.1.1.1 gigabitethernet1 00:21:02 00:03:47 4.0.0.100 stopped

#Query the multicast member table of Device2.

Device2#show ip igmp groups

IGMP Connected Group Membership

Total 1 groups

Group Address Interface Uptime Expires Last Reporter V1 Expires 225.1.1.1 gigabitethernet1 00:21:02 00:03:47 4.0.0.100 stopped

Note:

- After configuring the multicast protocol on the interface, automatically enable the IGMP function and run the IGMPv2 by default. You can configure the running IGMP version of the interface via the command ip igmp version.
- When multiple devices run IGMP in one LAN, elect the IGMP querier and the one with the smallest address is elected as the IGMP querier of the LAN.

4.3.2. Configure IGMP Static Adding

Network Requirements

- The whole network runs the PIM-SM protocol.
- Receiver is one receiver of the Device end network.
- Run IGMPv2 between Device and the end network.
- Device interface gigabitethernet1 adds to multicast group 225.1.1.1 statically.

Network Topology

www.qtech.ru

Configuration Steps

Step 1: Configure the IP address of the interface. (omitted)

Step 2: Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the interface.

#Configure Device.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device(config)#configure terminal Device(config)#ip multicast-routing Device(config)#interface gigabitethernet0 Device(config-if-gigabitethernet0)#ip pim sparse-mode Device(config-if-gigabitethernet0)#exit Device(config)#interface gigabitethernet1 Device(config-if-gigabitethernet1)#ip pim sparse-mode Device(config-if-gigabitethernet1)#exit #View the IGMP information of Device interface gigabitethernet1. Device#show ip igmp interface gigabitethernet 1 Interface gigabitethernet1 (Index 50331921) IGMP Active, Querier (3.0.0.1) Default version 2 IP router alert option in IGMP V2 msgs: EXCLUDE Internet address is 3.0.0.1 IGMP guery interval is 125 seconds

IGMP querier timeout is 255 seconds

IGMP max query response time is 10 seconds

Last member query response interval is 1 seconds

- Last member query count is 2
- Group Membership interval is 260 seconds
- IGMP robustness variable is 2

Step 3: Device interface gigabitethernet 1 adds to multicast group 225.1.1.1 statically.

#Configure Device.

Device interface gigabitethernet 1 adds to multicast group 225.1.1.1 statically.

Device(config)#interface gigabitethernet1

Device(config-if-gigabitethernet1)#ip igmp static-group 225.1.1.1

Device(config-if-gigabitethernet1)#exit

www.qtech.ru

Step 4: Check the result.

#Source sends the multicast packet with multicast group 225.1.1.1. #View the multicast member table of Device.

> Device#show ip igmp groups IGMP Static Group Membership Total 1 static groups Group Address Source Address Interface 225.1.1.1 0.0.0.0 gigabitethernet1

#View the multicast route table of Device.

Device#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 1 (S,G) entry Total 1 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(*, 225.1.1.1) Up time: 00:08:12 RP: 0.0.0.0 RPF nbr: 0.0.0.0 RPF idx: None Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1 Joined interface list: Asserted interface list:

(192.168.1.1, 225.1.1.1)

www.qtech.ru

••••

Up time: 00:07:24 KAT time: 00:02:22 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED COULD REGISTER **Upstream State: JOINED** Local interface list: Joined interface list: register_vif0 Asserted interface list: **Outgoing interface list:** register_vif0 gigabitethernet1 Packet count 8646421 (192.168.1.1, 225.1.1.1, rpt) Up time: 00:07:24 RP: 0.0.0.0 Flags: **RPT JOIN DESIRED RPF SGRPT XG EQUAL Upstream State: NOT PRUNED** Local interface list: Pruned interface list: **Outgoing interface list:** gigabitethernet1

#Receiver can receive the multicast packet with multicast group 225.1.1.1 sent by Source.

4.3.3. Configure IGMP SSM Mapping

Network Requirements

- The whole network runs the PIM-SM protocol.
- Receiver1, Receiver2, Receiver3, and Device2 are all in one LAN.
- Run IGMPv3 between Device2 and the end network.
- Use the IGMP SSM mapping on Device2 so that Receiver2 and Receiver3 can only receive the multicast service packets sent by Source1.

www.qtech.ru

Network Topology

Configuration Steps

- **Step 1:** Configure the IP address of the interface. (omitted)
- **Step 2:** Enable the unicast routing OSPF so that all network devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal

Device1(config)#router ospf 100

Device1(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#network 192.168.1.0 0.0.0.255 area 0

Device1(config-ospf)#network 192.168.2.0 0.0.0.255 area 0

Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal

Device2(config)#router ospf 100

Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#exit

#View the route table of Device2.

Device2#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 2.0.0.0/24 is directly connected, 00:16:05, gigabitethernet0

- C 3.0.0.0/24 is directly connected, 00:06:36, gigabitethernet1
- 0 192.168.1.0/24 [110/2] via 2.0.0.1, 00:15:17, gigabitethernet0

0 192.168.2.0/24 [110/2] via 2.0.0.1, 00:00:51, gigabitethernet0

Note:

- The viewing method of Device1 is the same as that of Device2, so the viewing process is omitted.
- Step 3: Enable the multicast forwarding globally, configure PIM-SSM globally and the multicast group range of the SSM service is 232.0.0.0/8. On the interfaces, enable the multicast protocol PIM-SM. The interface gigabitethernet1 of Device2 runs IGMPv3.

#Configure Device1.

Enable the multicast forwarding globally, configure the PIM-SSM globally and enable the multicast protocol PIM-SM on the interface.

Device1(config)#ip multicast-routing

Device1(config)#ip pim ssm default

Device1(config)#interface gigabitethernet0

Device1(config-if-gigabitethernet0)#ip pim sparse-mode

Device1(config-if-gigabitethernet0)#exit

Device1(config)#interface gigabitethernet1

Device1(config-if-gigabitethernet1)#ip pim sparse-mode

Device1(config-if-gigabitethernet1)#exit

Device1(config)#interface gigabitethernet0/2/2

Device1(config-if-gigabitethernet0/2/2)#ip pim sparse-mode

Device1(config-if-gigabitethernet0/2/2)#exit

#Configure Device2.

Enable the multicast forwarding globally, configure the PIM-SSM globally, and enable the multicast protocol PIM-SM on the interface. The interface gigabitethernet1 runs IGMPv3.

Device2(config)#ip multicast-routing

Device2(config)#ip pim ssm default

Device2(config)#interface gigabitethernet0

Device2(config-if-gigabitethernet0)#ip pim sparse-mode

Device2(config-if-gigabitethernet0)#exit

Device2(config)#interface gigabitethernet1

Device2(config-if-gigabitethernet1)#ip pim sparse-mode

Device2(config-if-gigabitethernet1)#ip igmp version 3

Device2(config-if-gigabitethernet1)#exit

#View the IGMP information of the interface gigabitethernet1 on Device2.

Device2#show ip igmp interface gigabitethernet1

Interface gigabitethernet1 (Index 50331921)

IGMP Enabled, Active, Querier (3.0.0.1)

Configured for version 3 IP router alert option in IGMP V2 msgs: EXCLUDE Internet address is 3.0.0.1 IGMP query interval is 125 seconds IGMP querier timeout is 255 seconds IGMP max query response time is 10 seconds Last member query response interval is 1 seconds Last member query count is 2 Group Membership interval is 260 seconds IGMP robustness variable is 2

Step 4: Enable the IGMP SSM mapping on Device2 and configure the IGMP SSM mapping rule so that Receiver2 and Receiver3 can only receive the multicast service packets sent by Source1.

#Configure Device2.

Enable the IGMP SSM mapping, configure the multicast group range of the IGMP SSM as 232.0.0.0~232.255.255.255, and the multicast source address is 192.168.1.1.

Device2(config)#ip access-list standard 1

Device2(config-std-nacl)#permit 232.0.0.0 0.255.255.255

Device2(config-std-nacl)#exit

Device2(config)#ip igmp ssm-map enable

Device2(config)#ip igmp ssm-map static 1 192.168.1.1

#View the IGMP SSM mapping rule of Device2.

Device2#show ip igmp ssm-map

IGMP SSM-MAP Information : enable acl-name source-addr ------192.168.1.1

Step 5: Check the result.

Receiver1 sends the IGMPv3 member report packet of the specified source group to add to the multicast group 232.1.1.1 and the specified multicast source is 192.168.2.1; Receiver2 sends the IGMPv2 member report packet to add to the multicast group 232.1.1.2; Receiver3 sends the IGMPv1 member report packet to add to multicast group 232.1.1.3.

#Source1 and Source2 both send the multicast service packets with multicast groups 232.1.1.1, 232.1.1.2, and 232.1.1.3.

#View the multicast member table.

www.qtech.ru		

Device2#show ip igmp groups IGMP Connected Group Membership					
Group Address Interface Uptime Expires Last Reporter V1 Expires V2 Expires					
232.1.1.1 gigabitethernet1 01:28:45 stopped 3.0.0.2 stopped stopped					
232.1.1.2 gigabitethernet1 01:29:01 stopped 3.0.0.3 stopped stopped					
232.1.1.3 gigabitethernet1 01:29:16 stopped 3.0.0.4 stopped stopped					
Device2#show ip igmp groups detail Interface: gigabitethernet1 Group: 232.1.1 Uptime: 01:30:44 Group mode: Include Last reporter: 3.0.02 TIB-A Count: 1 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 192.168.2.1 01:30:44 00:03:39 stopped Yes R					
Interface: gigabitethernet1					
Group: 232.1.1.2					
Uptime: 01:31:00					
Group mode: Include					
Last reporter: 3.0.0.3					
TIB-A Count: 1					
TIB-B Count: 0					
Group source list: (R - Remote, M - SSM Mapping)					
Source Address Uptime v3 Exp M Exp Fwd Flags 192.168.1.1 01:31:00 stopped 00:03:38 Yes M					
Interface: gigabitethernet1					
Group: 232.1.1.3					
Uptime: 01:31:15					

Uptime: 01:31:15 Group mode: Include Last reporter: 3.0.0.4

TIB-A Count: 1 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 192.168.1.1 01:31:15 stopped 00:03:42 Yes M #View the multicast route table of Device2. Device2#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 3 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer (192.168.2.1, 232.1.1.1) Up time: 01:32:51 KAT time: 00:03:24 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list:

gigabitethernet1

Packet count 19868613

(192.168.1.1, 232.1.1.2) Up time: 01:33:07 KAT time: 00:03:24

www.qtech.ru

••••

RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 19873645 (192.168.1.1, 232.1.1.3) Up time: 01:33:22 KAT time: 00:03:24 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: Gigabitethernet1 Packet count 19873645

Receiver1 can only receive the multicast service packets sent by Source2; Receiver2 and Receiver3 can only receive the multicast service packets sent by Source1.

Note:

- The viewing method of Device1 is the same as that of Device2, so the viewing process is omitted.
- IGMP SSM mapping needs to be used with PIM-SSM; the multicast group range in the IGMP SSM mapping rule should belong to the PIM-SSM multicast group range. IGMP SSM mapping mainly runs IGMPv1 or IGMPv2 and cannot be upgraded to the receiver host of IGMPv3 to provide the supporting for the SSM model.

The IGMP SSM mapping is invalid for the IGMPv3 member report packet.

4.3.4. Configure IGMP Multicast Group Filter

Network Requirements

- The whole network runs the PIM-SM protocol.
- Receiver is one receiver of the Device end network.
- Run IGMPv2 between Device and the end network.
- Device interface gigabitethernet1 filters the multicast group; the range of the multicast groups Receiver is permitted to add is 225.1.1.0-225.1.1.255.

Network Topology

Figure 4-4 Networking of configuring IGMP multicast group filter

Configuration Steps

- Step 1: Configure the IP address of the interface. (omitted)
- **Step 2:** Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the interface.

#Configure Device.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device(config)#configure terminal Device(config)#ip multicast-routing Device(config)#interface gigabitethernet0 Device(config-if-gigabitethernet0)#ip pim sparse-mode Device(config-if-gigabitethernet0)#exit

Device(config)#interface gigabitethernet1

Device(config-if-gigabitethernet1)#ip pim sparse-mode

Device(config-if-gigabitethernet1)#exit

#View the IGMP information of Device interface gigabitethernet1.

Device#show ip igmp interface gigabitethernet 1

Interface gigabitethernet1 (Index 50331921)

IGMP Enabled, Active, Querier (3.0.0.1)

Default version 2

IP router alert option in IGMP V2 msgs: EXCLUDE

Internet address is 3.0.0.1

IGMP query interval is 125 seconds

IGMP querier timeout is 255 seconds

IGMP max query response time is 10 seconds Last member query response interval is 1 seconds Last member query count is 2 Group Membership interval is 260 seconds IGMP robustness variable is 2

Step 3: Configure the multicast group filter on Device interface gigabitethernet1.

#Configure Device.

Configure the multicast group filter on Device interface gigabitethernet1; the range of the multicast groups Receiver is permitted to add is 225.1.1.0-225.1.1.255.

Device(config)#ip access-list standard 1 Device(config-std-nacl)#permit 225.1.1.0 0.0.0.255 Device(config-std-nacl)#exit Device(config)#interface gigabitethernet1 Device(config-if-gigabitethernet1)#ip igmp access-group 1 Device(config-if-gigabitethernet1)#exit

Step4: Check the result.

#Receiver sends the IGMPv2 member report packet to add to multicast group 225.1.1.1 and 226.1.1.1.

#Source sends the multicast packets with multicast group 225.1.1.1 and 226.1.1.1.

#View the multicast member table of Device.

Device#show ip igmp groups IGMP Connected Group Membership Total 1 groups Group Address Interface Uptime Expires Last Reporter V1 Expires 225.1.1.1 gigabitethernet1 03:14:59 00:03:05 3.0.0.2 stopped

#View the multicast route table of Device.

Device#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 2 (S,G) entries Total 2 (S,G,rpt) entries Total 0 FCR entry Up timer/Expiry timer

www.qtech.ru

....

(*, 225.1.1) Up time: 00:00:56 RP: 0.0.00 RPF nbr: 0.0.00 RPF idx: None Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1 Joined interface list: Asserted interface list:

(192.168.1.1, 225.1.1.1) Up time: 00:00:15 KAT time: 00:03:15 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED **COULD REGISTER Upstream State: JOINED** Local interface list: Joined interface list: register_vif0 Asserted interface list: Outgoing interface list: register_vif0 gigabitethernet1 Packet count 1

(192.168.1.1, 225.1.1.1, rpt) Up time: 00:00:15

www.qtech.ru

RP: 0.0.0.0 Flags: **RPT JOIN DESIRED RPF SGRPT XG EQUAL** Upstream State: NOT PRUNED Local interface list: Pruned interface list: Outgoing interface list: gigabitethernet1 (192.168.1.1, 226.1.1.1) Up time: 00:00:15 KAT time: 00:03:15 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED **COULD REGISTER Upstream State: JOINED** Local interface list: Joined interface list: register_vif0 Asserted interface list: Outgoing interface list: register_vif0 Packet count 1

(192.168.1.1, 226.1.1.1, rpt) Up time: 00:00:15 RP: 0.0.0.0 Flags: RPF SGRPT XG EQUAL Upstream State: RPT NOT JOINED Local interface list: Pruned interface list: Outgoing interface list:

www.qtech.ru

#Receiver can only receive the multicast service packets with multicast group 225.1.1.1 sent by Source.

Note:

To filter based on multicast source group, use the command ip igmp ssm-access-group to realize. When using the command, it is required that the device runs PIM-SSM and the interface runs IGMPv3.

4.3.5. Configure IGMP Proxying

Network Requirements

- Device1 runs the PIM-SM protocol.
- Receiver is one receiver of the Device2 end network.
- Run IGMPv2 between Device and the end network.
- Device2 is an IGMP proxying device. The IGMP member report packet of the receiver is sent to Device1 through the IGMP proxying interface of Device2, so as to forward the multicast service packet.

Network Topology

Figure 4-5 Networking of configuring IGMP Proxying

Configuration Steps

- **Step 1:** Configure the IP address of the interface (omitted).
- **Step 2:** Enable the unicast routing protocol OSPF, so that all network devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal

Device1(config)#router ospf 100

Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#network 10.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal

Device2(config)#router ospf 100

Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#exit

#View the route table of Device2.

Device2#show ip route

www.qtech.ru

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 1.0.0.0/24 is directly connected, 00:40:53, gigabitethernet0
- C 2.0.0.0/24 is directly connected, 00:04:58, gigabitethernet1
- 0 10.0.0.0/24 [110/2] via 1.0.0.1, 00:02:59, gigabitethernet0

Note:

- The viewing method of Device1 is the same as that of Device2, and the viewing process is omitted.
- **Step 3:** Enable multicast forwarding globally, and enable multicast protocol PIM-SM on each interface.

#Configure Device1.

Enable multicast forwarding globally, and enable multicast protocol PIM-SM on the corresponding interface.

Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim sparse-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim sparse-mode Device1(config-if-gigabitethernet1)#ip pim sparse-mode

#Configure Device2.

Enable multicast forwarding globally, and enable the passive mode of multicast protocol PIM-SM on relevant interfaces.

Device2(config)#ip multicast-routing

Device2(config)#interface gigabitethernet0

Device2(config-if-gigabitethernet0)#ip pim sparse-mode passive

Device2(config-if-gigabitethernet0)#exit

Device2(config)#interface gigabitethernet1

Device2(config-if-gigabitethernet1)#ip pim sparse-mode passive

Device2(config-if-gigabitethernet1)#exit

#View the IGMP information of the interface gigabitethernet1 of Device2.

Device2#show ip igmp interface gigabitethernet 1

Interface gigabitethernet1 (Index 5)

IGMP Active, Querier (2.0.0.1)

....

Default version 2

IP router alert option in IGMP V2 msgs: EXCLUDE

Internet address is 2.0.0.1

IGMP query interval is 125 seconds

IGMP querier timeout is 255 seconds

IGMP max query response time is 10 seconds

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

IGMP robustness variable is 2

#View the PIM-SM neighbor information of Device2.

Device2#show ip pim neighbor

PIM Neighbor Table:

PIM VRF Name: Default

Total 0 Neighbor entry

Note:

- The viewing method of Device1 is the same as that of Device2, and the viewing process is omitted.
- The IGMP function is automatically enabled after the multicast protocol is configured on the interface. After the passive mode of multicast protocol PIM-SM or PIM-DM is enabled on the interface, the interface can normally send and receive IGMP protocol packets without receiving or sending PIM-SM or PIM-DM protocol packets.

Step 4: Configure IGMP Proxying.

#Configure Device2.

On gigabitethernet0 of Device2, configure IGMP Proxying.

Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip igmp proxying Device2(config-if-gigabitethernet0)#exit

Step 5: Check the result.

#Receiver sends IGMPv2 member report packet to join multicast group 225.1.1.1.

#Source sends the multicast service packet with multicast group 225.1.1.1.

#View the multicast member table on device2.

Device2#show ip igmp groups

IGMP Connected Group Membership

Total 1 groups

Group Address Interface Uptime Expires Last Reporter V1 Expires V2 Expires

Руководо	ство по наст	гройке Q	SR-1920, C	SR-2920, QS	R-3920			
IGMP							www.qtech.ru	
	225.1.1.1	gigabi	tethernet1	00:00:02 00:	04:18 2.0.0	.2 stoppe	d	
#View the	e IGMP Prov	ying mul	ticast memb	per table of De	evice2.			
	Device2#	show ip i	gmp proxy	group				
	IGMP Pro	xy Inforn	nation:					
	Upstrear	n Interfa	ce: gigabitet	hernet0				
	Upstrear	n Interfa	ce Compatit	ole Mode: IGMI	^o v2			
	IGMP Pro	oxy Grou	p Membersł	nip:				
	Total 1 Gr	oup Men	nberships					
	225.1.1.1							
#View the	e IGMP Prov	cying stat	ics informat	ion of Device2	2.			
	Device2#	show ip i	gmp proxy	statistic				
	IGMP Pro	xy Repor	t Statistic:					
	IGMPv1 G	roup Me	mber Repor	t Count: 0				
	IGMPv2 (}roup Me	mber Repo	rt Count: 3				
	IGMPv2 L	_eave Gro	oup Report	Count: O				
#View the	e multicast n	nember ta	able on Dev	ice1.				
	Device1	#show ip	igmp group	IS				
	IGMP Co	onnected	Group Mem	bership				
	Total 1 g	roups	-					
	Group A Expires	ddress	Interface	Uptime	Expires	Last Reporter	V1 Expires	V2

225.1.1.1 gigabitethernet1 00:00:02 00:04:18 1.0.0.2 stopped

You can see the multicast group 225.1.1.1 information in the multicast member table of device1, indicating that the IGMP member report packet of Receiver is sent to Device1 through the IGMP proxying interface of Device2.

#Receiver can receive the multicast service packet with multicast group 225.1.1.1 sent by Source.

....

5. PIM-DM

5.1. Overview

PIM-DM (Protocol Independent Multicast-Dense Mode) is applicable when the group members are relatively concentrated and the range is small, or the network bandwidth resource is sufficient.

PIM-DM does not depend on the specified unicast route protocol for the RPF check.

PIM-DM adopts the "Push" to transmit the multicast packets. When the multicast source starts to send the multicast packets, suppose that all subnets in the multicast domain have the multicast receivers, so the multicast packets are pushed to all nodes in the network. PIM-DM forwards and prunes the multicast without the receiver. When the node of the pruned multicast forwarding branch node has the receiver of the multicast source, PIM-DM uses the graft mechanism to actively restore the forwarding of the multicast data.

PIM-DM uses the status refresh mechanism to refresh the downstream status regularly so that the pruned branch does not time out.

5.2. PIM-DM Function Configuration

Table 5-1 PIM-DM function configuration list

Configuration Task					
Configure PIM-DM basic functions	Configure the PIM-DM protocol				
Configure the PIM-DM neighbor	Configure the period of sending the HELLO packets				
	Configure PIM-DM neighbor keepalive time				
	Configure PIM-DM neighbor filter				
Configure the status refresh parameters	Configure PIM-DM status refresh interval				

5.2.1. Configure PIM-DM Basic Functions

Configuration Condition

Before configuring PIM-DM, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, realizing the intra-domain route reachable

www.qtech.ru

Configure PIM-DM Protocol

Table 5-2 Configure the PIM-DM protocol

Step	Command	Description		
Enter global configuration mode	configure terminal	-		
Enable the IP multicast forwarding	ip multicast-routing	Mandatory By default, do not enable the IP multicast forwarding.		
Enter interface configuration mode	interface interface-name	-		
Enable the PIM-DM protocol.	ip pim dense-mode	Either		
	ip pim dense-mode passive	disabled on the interface.		

Note:

• After enabling the PIM-DM function, all PIM-DM configurations can take effect.

5.2.2. Configure PIM-DM Neighbor

Configuration Condition

Before configuring the PIM-DM neighbor, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, realizing intra-domain route reachable
- Enable the PIM-DM protocol

Configure Sending Period of HELLO Packets

The interface enabled with the PIM-DM protocol periodically sends the Hello packets to set up and maintain the PIM-DM neighbor.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Table 5-3 Configure the period of sending HELLO packets

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the period of sending the Hello packets	ip pim dense-mode hello-interval interval- value	Optional By default, the period of sending the Hello packets is 30s.

Configure PIM-DM Neighbor Keepalive Time

When the interface receives the Hello packets of one neighbor, record the holdtime carried in the Hello packet as the keepalive time of the neighbor. If not receiving the Hello packet of the neighbor within the keepalive time, it is regarded that the neighbor becomes invalid.

Table 5-4 Configure PIM-DM neighbor keepalive time

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the keepalive time of the PIM-DM neighbor	ip pim dense-mode hello-holdtime holdtime- value	Optional By default, the keepalive time of the PIM-DM neighbor is 105s.

Configure PIM-DM Neighbor Filter

To save the system resources, you can use the neighbor filter function to set up the neighbor selectively, so as to save the resources of the device.

www.qtech.ru

Table 5-5 Configure the PIM-DM neighbor filter

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the PIM- DM neighbor filter	ip pim dense-mode neighbor-filter { access- list-number access-list-name }	Optional By default, do not enable the PIM-DM neighbor filter function.

5.2.3. Configure Status Refresh Parameters

Configuration Condition

Before configuring the PIM-DM status refresh parameters, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, realizing intra-domain route reachable
- Enable the PIM-DM protocol

Configure PIM-DM Status Refresh Interval

To prevent the pruned branches from timing out, the devices directly connected to the multicast source periodically send the (S, G) status refresh packet. The packet is forwarded along the initial forwarding path of the PIM-DM hop by hop, so as to refresh the pruning timer status of all devices on the pruned branches.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the PIM- DM status refresh interval	ip pim dense-mode state-refresh origination-interval interval-value	Optional By default, the PIM- DM status refresh interval is 60s.

Table 5-6 Configure the PIM-DM status refresh interval

5.2.4. PIM-DM Monitoring and Maintaining

Table 5-7 PIM-DM monitoring and maintaining

Command	Description	
clear ip pim dense-mode mroute [group- address [source-address]] [vrf vrf-name]	Clear the PIM-DM multicast route information.	
<pre>show ip pim dense-mode interface [detail] [vrf vrf-name]</pre>	Display the PIM-DM interface information	
<pre>show ip pim dense-mode neighbor [detail] [vrf vrf-name]</pre>	Display the PIM-DM neighbor information	
<pre>show ip pim dense-mode nexthop [source- ip-address] [vrf vrf-name]</pre>	Display the unicast next-hop information from PIM-DM to source	
show ip pim dense-mode mroute [[group group-ip-address] [source source-ip- address] [source source-ip-address group source-ip-address]] [vrf vrf-name]	Display the route table information of the PIM-DM protocol	

5.3. PIM-DM Typical Configuration Example

5.3.1. Configure PIM-DM Basic Functions

Network Requirements

- The whole network enables the PIM-DM protocol.
- Receiver is one receiver of the Device2 end network.
- Run IGMPv2 between Device2 and the end network.

Network Topology

Figure 5-1 Networking of configuring the PIM-DM basic functions

Configuration Steps

- **Step 1:** Configure the IP address of the interface. (omitted)
- **Step 2:** Enable the unicast route protocol OSPF so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal

PIM-DM

Device1(config)#router ospf 100 Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 192.168.1.0 0.0.0.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#exit

#View the route table of Device2.

Device2#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 1.0.0.0/24 is directly connected, 00:49:46, gigabitethernet0
- C 2.0.0.0/24 is directly connected, 01:06:17, gigabitethernet1
- 0 192.168.1.0/24 [110/2] via 1.0.0.1, 00:01:19, gigabitethernet0

Note:

- The method of viewing the route table of Device1 is the same as that of Device2.
- **Step 3:** Globally enable the multicast forwarding and enable the multicast protocol PIM-DM on the interface.

#Configure Device1.

Globally enable the multicast forwarding and enable the multicast protocol PIM-DM on the interface.

Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim dense-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim dense-mode Device1(config-if-gigabitethernet1)#ip pim dense-mode

#Configure Device2.

Globally enable the multicast forwarding and enable the multicast protocol PIM-DM on the interface.

PIM-DM

Device2(config)#ip multicast-routing Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip pim dense-mode Device2(config-if-gigabitethernet0)#exit Device2(config)#interface gigabitethernet1 Device2(config-if-gigabitethernet1)#ip pim dense-mode Device2(config-if-gigabitethernet1)#ip pim dense-mode

#View the information of the interface enabled with the PIM-DM protocol on Device2 and the PIM-DM neighbor information.

Device2#show ip pim dense-mode interface

Total 2 Interface entries

Total 0 External Interface entry

Total O Sparse-Dense Mode Interface entry

Address	Interface	VIFIndex Ver/			Nbr	VIF
		Mode	e Cou	nt F	lag	
1.0.0.2	gigabitethernet0	0	v2/D	1	UP	
2.0.0.1	gigabitethernet1	1	v2/D	0	UP	

Device2#show ip pim dense-mode neighbor

PIM Dense-mode Neighbor Table:

PIM Dense-mode VRF Name: Default

Total 1 Neighbor entries

Neighbor-Address InterfaceUptime/ExpiresVer1.0.0.1gigabitethernet000:10:42/00:01:36v2

#View the IGMP information of interface gigabitethernet1 of Device2.

Device2#show ip igmp interface gigabitethernet1 Interface gigabitethernet1 (Index 50331921) IGMP Active, Querier (2.0.0.1) Default version 2 IP router alert option in IGMP V2 msgs: EXCLUDE Internet address is 2.0.0.1 IGMP query interval is 125 seconds IGMP querier timeout is 255 seconds IGMP max query response time is 10 seconds Last member query response interval is 1 seconds

PIM-DM

Last member query count is 2 Group Membership interval is 260 seconds IGMP robustness variable is 2

Note:

- The method of viewing the Device1 information is the same as that of Device2.
- After configuring the multicast protocol on the interface, automatically enable the IGMP function and run IGMPv2 by default. You can configure the running IGMP version on the interface by executing the **ip igmp version** command.

Step 4: Check the result.

#Receiver sends the IGMPv2 member report packet to add to multicast group 225.1.1.1.

#Source sends the multicast packets with multicast group 225.1.1.1.

#View the multicast member table of Device2.

Device2#show ip igmp groups

IGMP Connected Group Membership

Total 1 groups

Group Address Interface Uptime Expires Last Reporter V1 Expires

225.1.1.1 gigabitethernet1 00:15:07 00:02:09 2.0.0.2 stopped

#View the PIM-DM multicast route table of Device2.

Device2#show ip pim dense-mode mroute PIM-DM Multicast Routing Table Total 1 mroute entry (192.168.1.1, 225.1.1.1) Expire in: 00:03:24 RPF Neighbor: 1.0.0.1, Nexthop: 1.0.0.1, gigabitethernet0 Upstream IF: gigabitethernet0 Upstream State: Forwarding Assert State: Loser Downstream IF List: Gigabitethernet1, in 'olist': Downstream State: NoInfo Assert State: NoInfo

#Receiver can receive the multicast packets with the multicast group 225.1.1.1 sent by Source.

Note:

• The method of viewing the Device1 information is the same as that of Device2.

6. PIM-SM

6.1. Overview

PIM-SM (Protocol Independent Multicast, Sparse Mode) is applicable when the group members are relatively dispersive and their range is relatively broad or the network bandwidth resource is relatively limited.

PIM-SM does not depend on any particular unicast route protocol. The device announces the multicast information to all PIM-SM routers by actively sending the packets to request to set up multicast distributing tree (MDT) and set RP (Rendezvous Point) and BSR (Bootstrap Router). When the receiver adds to one multicast group, the receiving end DR (Designated Router) sends the PIM adding packet to RP, constructing the sharing tree-RPT with RP as root, while the source DR registers the multicast source to RP, constructing the source tree with the multicast source as root. The multicast service packets are transmitted to the receiver along the source tree and sharing tree; the receiving end DR sends the PIM adding packet to the multicast source. At last, switch from RPT to source-based SPT (Shortest-path Tree), so as to reduce the network delay.

PIM SSM is short for Protocol Independent Multicast ---- Source Specific Multicast. PIM-SSM is the subset of the PIM-SM protocol and should run on the basis of PIM-SM. The PIM-SSM protocol set the IPv4 address 232.0.0.0-232.255.255.255 to be reserved for SSM. PIM-SSM should work with IGMPv3, because IGMPv3 can send the IGMP membership report packet of the specified source and group.

6.2. PIM-SM Function Configuration

Table 6-1 PIM-SM function configuration list

Configuration Task				
Configure the PIM-SM basic functions	Enable the PIM-SM protocol			
Configure the PIM-SM aggregation router	Configure C-RP			
	Configure static RP			
Configure the PIM-SM bootstrap router	Configure C-BSR			
	Configure the BSR edge			
Configure PIM-SM multicast source registration	Configure the RP reachability check			
	Configure the sending rate of the register packets			
	Configure sending rate of the register stop packets			

www.qtech.ru

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Configuration Task				
	Configure the source address of the register packet			
	Configure register packet filter			
Configure PIM-SM neighbor parameters	Configure the period of sending the Hello packets			
	Configure the keepalive time of the neighbor			
	Configure the neighbor filter			
	Configure the DR priority			
Configure PIM-SM SPT switching	Configure the SPT switching condition			
Configure PIM-SSM	Configure PIM-SSM			
Configure the PIM adaptive basic function	Configure the PIM adaptive basic function			

6.2.1. Configure PIM-SM Basic Functions

Configuration Conditions

Before configuring PIM-SM, first complete the following task:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable

www.qtech.ru

....

Enable PIM-SM Protocol

Table 6-2 Enable the PIM-SM protocol

Step	Command	Description	
Enter global configuration mode	configure terminal	-	
Enable the IP multicast forwarding	ip multicast-routing	Mandatory By default, the IP multicast forwarding is not enabled.	
Enter interface configuration mode	interface interface-name	-	
Enable the PIM-SM protocol	ip pim sparse-mode	Either	
	ip pim sparse-mode passive	is disabled on the interface.	

Note:

- After enabling the PIM-SM protocol, automatically enable the IGMP protocol.
- After enabling the PIM-SM function, all PIM-SM configurations can take effect.

6.2.2. Configure PIM-SM Aggregation Router

Configuration Condition

Before configuring RP, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SM protocol

Configure C-RP

RP is generated by the C-RO election. After BSR is elected, all C-RPs (Candidate-Rendezvous Point) regularly unicast the C-RP packet to BSR. BSR integrates the C-RP information and transmits the information to all devices in the PIM-SM domain via the bootstrap packet.

www.qtech.ru

Table 6-3 Configure C-RP

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure C-RP	ip pim rp-candidate <i>interface-name</i> [[<i>priority-value</i> [<i>interval-value</i> [group-list { <i>access-list-number</i> <i>access-list-name</i> }]]] [[group-list { <i>access-list-number</i> <i>access-list- name</i> }]] [vrf <i>vrf-name</i>]	Mandatory By default, there is no C-RP.

Note:

- RP election rules:
- For the group range of the C-RP service, perform the longest matching of the mask.
- If the longest matching of the mask has multiple C-RPs, compare the C-RP priority. The smaller the value, the high the priority. The one with highest priority wins.
- If there are multiple C-RPs with highest priority, perform the HASH calculation for the C-RP address and group. The one with the largest HASH value wins.
- If there are multiple RPs with the largest HASH, the C-RP with the largest IP address wins.

Configure Static RP

For the simple PIM-SM network, it is suggested to use the static RP. If using the static RP, do not need to perform the BSR configuration, eliminating the frequent interacting between RP and BSR, so as to save the network bandwidth.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the static RP	ip pim rp-address <i>ip-address</i> [<i>access-list-</i> <i>name</i> <i>access-list-number</i>] [override] [vrf <i>vrf-name</i>]	Mandatory By default, there is no static RP.

Table 6-4 Configure static RP

Note:

• All devices in the same PIM-SM domain should be configured with the same static RP.

6.2.3. Configure PIM-SM Bootstrap Router

Configuration Conditions

Before configuring BSR, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SM protocol

Configure C-BSR

In one PIM-SM domain, there should be the unique BSR. Multiple C-BSRs (Candidate-Bootstrap Router) elects to generate the unique BSR via the bootstrap packet.

Step	Command	Description	
Enter global configuration mode	configure terminal	-	
Configure C-BSR	ip pim bsr-candidate interface_name [hash-mask-length [priority-value]] [vrf vrf-name]	Mandatory By default, there is no C-BSR.	

Note:

- BSR election rules:
- Compare the priorities. The larger the value, the higher the priority. The one with highest priority wins.
- If the priority is the same, the one with the largest IP address wins.

Configure BSR Border

BSR is responsible for collecting the C-RP information and transmits the information to all devices in the PIM-SM domain via the bootstrap packet. The BSR range is the range of the multicast domain. The bootstrap packet cannot pass the interface configured with the BSR border. The devices out of the multicast domain range cannot take part in the forwarding of the multicast service packet in the multicast domain, so as to realize the dividing of the multicast domain.

Table 6-6 Configure the BSR border

Step	Command	Description	
Enter global configuration mode	configure terminal	-	
Enter interface configuration mode	interface interface-name	-	
Configure the BSR border	ip pim bsr-border	Mandatory By default, there is no multicast border.	

....

6.2.4. Configure PIM-SM Multicast Source Register

Configuration Condition

Before configuring the multicast source register, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SM protocol

Configure RP Reachability Check

Before source DR sends the register packet to RP, first perform the RP reachability check. If finding that the RP route is not reachable, do not register to RP, so as to reduce the cost of the DR.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the RP reachability check	ip pim register-rp-reachability [vrf <i>vrf-name</i>]	Mandatory By default, before performing the PIM register, do not check the RP reachability.

Table 6-7 Configure the RP reachability check

Note:

 To reduce the cost of the source DR, it is suggested to configure the command on the source DRs of all PIM-SMs.

Configure Sending Rate of Register Packets

When the source DR receives the multicast packet, encapsulate the multicast packet to the register packet and send to RP for source register until the registration is complete..

When the source DR does not complete the multicast source register and the multicast flow is large, generate lots of register packets, which increase the load of the RP device. Even RP cannot work normally. Source DR does not need to transmit all register packets of one flow to RP, so configuring the rate of sending the register packets at the source DR not only can reach the purpose of source registration, but also can reduce the RP load.

www.qtech.ru

Table 6-8	Configure	the rate	of sendir	ng the	register	packet
				•		

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the rate of sending the register packet	ip pim register-rate-limit <i>rate-limit-value</i> [vrf <i>vrf-name</i>]	Mandatory By default, do not limit the rate of sending the register packet.

Note:

• To reduce the RP load, it is suggested to configure the rate of sending the source resgiter packets on all source DRs.

Configure Sending Rate of Register Stop Packets

After RP receives the register packet of the source DR, send the register stop packet to the source DR to complete the registration. When the RP receives lots of register packets, it is necessary to reply all register packets (send register stop packet). In fact, there are lots of repeated packets in the register stop packets. You can limit the rate of sending the register stop packet on RP to reduce the cost of RP.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the rate of sending the register stop packet	ip pim register-stop-rate-limit rate-limit- value [vrf vrf-name]	Mandatory By default, do not limit the rate of sending the register stop packet.

Note:

• To improve the robustness of the whole PIM-SM network, it is suggested to limit the rate of the source register stop packet on all RPs.

Configure Source Address of Register Packet

When the source DR performs the source register, the source address of the register packet uses the IP address of the register interface automatically registered by the system. The command can specify the source address of the register packet as the IP address of one interface on the device to meet some special demand of the network.

Table 6-10 Configure	the source	address of	the register	packet
0			0	

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the source address of the register packet	ip pim register-source interface <i>interface-name</i> [vrf <i>vrf-name</i>]	Mandatory By default, use IP address of the register interface automatically registered by the system as the source address of the register packet.

Configure Register Packet Filter

To prevent the source register attack, you can use ACL on RP to perform the multicast source filter for the register packet. Only the multicast source permitted by ACL can register successfully on RP.

Table 6-11	Configure	the register	packet filter
------------	-----------	--------------	---------------

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the register packet filter	<pre>ip pim accept-register list { access-list- number } [vrf vrf-name]</pre>	Mandatory By default, do not filter the register packet.

6.2.5. Configure PIM-SM Neighbor Parameters

Configuration Condition

Before configuring the PIM-SM neighbor parameters, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SM protocol

Configure Sending Period of Hello Packets

The interface enabled with the PIM protocol periodically sends the Hello packets to set up and maintain the PIM neighbor.

|--|

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

Table 6-12 Configure the period of sending the Hello packet

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the period of sending the Hello packet	ip pim hello-interval interval- value	Optional By default, the period of sending the Hello packet is 30s.

Configure Neighbor Keepalive Time

When the interface receives the Hello packets of one neighbor, record the holdtime carried in the Hello packet as the keepalive time of the neighbor. If not receiving the Hello packet of the neighbor within the keepalive time, it is regarded that the neighbor becomes invalid.

Table 6-13 Configure PIM-SM neighbor keepalive time

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure PIM-SM neighbor keepalive time	ip pim hello-holdtime holdtime- value	Optional By default, the keepalive time of the PIM-SM neighbor is 105s.

Configure Neighbor Filter

If there are many PIM neighbors in one subnet, you can use the neighbor filter function to set up the neighbor selectively, so as to save the resources of the device.

Table 6-14 Configure the neighbor filter

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the neighbor filter	ip pim neighbor-filter { access- list-number access-list-name }	Mandatory By default, do not enable the neighbor filter function.

Configure DR Priority

DR plays one important role in the PIM-SM network, so selecting the appropriate DR is important. You can select the appropriate device as DR by configuring the DR priority.

One PIM-SM subnet only permits one DR. According to the function, DR can be divided to source DR and receiving DR.

The main function of the source DR is to perform the source register to RP.

The main function of the receiving DR is to add to RP and set up the switching of RPT and SPT.

Table 6-15 Configure the DR priority

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the DR priority	ip pim dr-priority priority-value	Optional By default, the DR priority is 1.

Note:

- DR election rules:
- Compare the priorities. The larger the value, the higher the priority. The one with highest priority wins.
- If the priority is the same, the one with the largest IP address wins.

6.2.6. Configure PIM-SM SPT Switching

Configuration Condition

Before configuring SPT, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SM protocol

Configure SPT Switching Condition

The receiving end DR does not know the address of the multicast source, so it can only add to RP to form RPT. The source DR performs the source register to RP and form the source tree between source DR and RP. At first, the direction of the multicast flow is from multicast source to RP and then from RP to the receiver. When the receiving end DR receives the first multicast packet, it performs adding to multicast source, forms SPT, and performs the pruning for RPT. This is called SPT switching.

The command is to configure the SPT switching condition at the receiving end DR.

Table 6-16 Configure the SPT switching condition

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the SPT switching condition	ip pim spt-threshold { infinity <i>threshold</i> [group-list {access-list-number access-list-name }] [vrf <i>vrf-name</i>]	Mandatory By default, all multicast groups perform the SPT switching.

Caution:

• Do not configure SPT never-switching on RP. Otherwise, it may result in the failure of the multicast forwarding.

6.2.7. Configure PIM-SSM

PIM-SSM is one subset of PIM-SM. In PIM-SSM, do not need RP, BSR or RPT, and there is no SPT switching, but the receiving end DR directly adds to multicast source and sets up the shortest path tree (SPT) with source as root.

Configuration Condition

Before configuring PIM-SSM, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SM protocol on all interfaces that need multicast route forwarding

Configure PIM-SSM

Table 6-17 Configure PIM-SSM

www.qtech.ru

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure PIM-SSM	<pre>ip pim ssm { default range { access-list-number access-list-name } } [vrf vrf-name]</pre>	Mandatory By default, the SSM function is disabled.

Caution:

- When using PIM-SSM, the receiving end should enable IGMPv3.
- When the receiver cannot be upgraded to IGMPv3, you can use the IGMP SSM Mapping function to cooperate with PIM-SSM.
- Ensure that the SSM multicast group address ranges configured on all devices in the domain are consistent. Otherwise, it may result in the abnormality of PIM-SS.

6.2.8. Configure PIM Adaptive Basic Function

Configuration Condition

Before configuring PIM-SDM, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable

Configure PIM Adaptive Basic Function

Table 6-18 Configure the PIM adaptive basic function

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable the IP multicast forwarding	ip multicast-routing [vrf vrf-name]	Mandatory By default, the IP multicast forwarding is disabled.
Enter interface configuration mode	interface interface-name	-
Configure the PIM adaptive basic	ip pim sparse-dense-mode	Either
function	ip pim sparse-dense-mode passive	By default, the PIM adaptive basic function is disabled.

Note:

 After enabling the PIM adaptive function on the interface, automatically enable the PIM-SM, PIM-DM, and IGMP protocols.

6.2.9. Configure PIM-SM Supporting (*,*,rp)

Configuration Condition

Before configuring PIM-SM supporting (*,*,rp), first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SM protocol

Enable PIM-SM Supporting (*,*,rp)

Table 6-19 Enable PIM-SM protocol supporting (*,*,rp)

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable the PIM-SM supporting (*,*,rp)	ip pim mbr [vrf vrf-name]	Mandatory By default, do not enable the PIM-SM supporting (*,*,rp).

6.2.10. Configure PIM-SM BFD

Configuration Conditions

Before configuring PIM-SM BFD, first complete the following task:

- Configure the network layer address of the interface, making each neighboring node reachable at the network layer;
- Configure any unicast routing protocol to make intra-domain routing reachable.

 $\bullet \bullet \bullet \bullet$

....

Configure PIM-SM BFD

Table 6-20 Configure PIM-SM BFD

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable PIM-SM BFD	ip pim bfd	By default, do not enable the PIM-SM BFD function.

6.2.11. PIM-SM Monitoring and Maintaining

Table 6-21 PIM-SM monitoring and maintaining

Command	Description
clear ip pim bsr rp-set [vrf vrf-name]	Clear the RP set information of PIM-SM
clear ip pim mroute [group-address [source-address]] [vrf vrf-name]	Clear the multicast route information of PIM- SM
clear ip pim neighbor [vrf vrf-name]	Clear the PIM-SM neighbor information
clear ip pim stat [[interface interface-name [all_interface]] [vrf vrf-name]]	Clear the statics information of the PIM-SM protocol packets
show ip pim bsr-router [vrf vrf-name]	Display the PIM-SM bootstrap route information
show ip pim interface [detail] [vrf <i>vrf-</i> <i>name</i>]	Display the PIM-SM interface information
show ip pim local-members interface-name [vrf vrf-name]	Display the PIM-SM local group member information
show ip pim mroute [active proxy ssm [active] group group-address [source	Display the PIM-SM multicast route table information

www.qtech.ru

2		-

Command	Description
source-address] source source-address][vrf vrf-name]	
show ip pim neighbor [detail] [vrf vrf- name]	Display the PIM-SM neighbor information
show ip pim nexthop [<i>ip-address</i>] [vrf <i>vrf-name</i>]	Display the PIM-SM next-hop router information
show ip pim rp mapping [vrf vrf-name]	Display the PIM-SM RP information
show ip pim rp-hash group-address [vrf vrf- name]	Display the RP information of the multicast group mapping
show ip pim statistics [vrf vrf-name]	Display the statistics information of the PIM- SM protocol packets

6.3. PIM-SM Typical Configuration Example

6.3.1. Configure PIM-SM Basic Functions

Network Requirements

- The whole network runs the PIM-SM protocol.
- Receiver1 and Receiver2 are the two receivers of Device3 end network.
- Device1 and Device2 are C-BSR and C-RP.
- Run IGMPv2 between Device3 and the end network.

Network Topology

Figure 6-1 Networking of configuring PIM-SM basic functions

Configuration Steps

Step 1: Configure the IP address of the interface. (omitted)

Step 2: Enable the unicast route protocol OSPF so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 3.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 192.168.1.0 0.0.0.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 3.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#network 4.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#exit

#Configure Device3.

- Device3#configure terminal
- Device3(config)#router ospf 100
- Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0
- Device3(config-ospf)#network 4.0.0.0 0.0.0.255 area 0
- Device3(config-ospf)#exit

#View the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

Device3#show ip route Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M -Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 2.0.0.0/24 is directly connected, 23:48:47, gigabitethernet0
- 0 3.0.0.0/24 [110/2] via 2.0.0.1, 23:31:14, gigabitethernet0 [110/2] via 4.0.0.1, 23:31:04, gigabitethernet1
- C 4.0.0.0/24 is directly connected, 23:36:57, gigabitethernet1
- C 5.0.0.0/24 is directly connected, 23:09:18, gigabitethernet0/2/2
- 0 192.168.1.0/24 [110/2] via 2.0.0.1, 00:30:55, gigabitethernet0

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 3:** Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the interface.

#Configure Device1.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim sparse-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim sparse-mode Device1(config-if-gigabitethernet1)#exit Device1(config)#interface gigabitethernet0/2/2 Device1(config-if-gigabitethernet0/2/2)#ip pim sparse-mode Device1(config-if-gigabitethernet0/2/2)#ip pim sparse-mode

#Configure Device2.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device2(config)#ip multicast-routing

Device2(config)#interface gigabitethernet0

Device2(config-if-gigabitethernet0)#ip pim sparse-mode

Device2(config-if-gigabitethernet0)#exit

Device2(config)#interface gigabitethernet1

Device2(config-if-gigabitethernet1)#ip pim sparse-mode

Device2(config-if-gigabitethernet1)#exit

#Configure Device3.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device3(config)#ip multicast-routing Device3(config)#interface gigabitethernet0 Device3(config-if-gigabitethernet0)#ip pim sparse-mode Device3(config-if-gigabitethernet0)#exit Device3(config)#interface gigabitethernet1 Device3(config-if-gigabitethernet1)#ip pim sparse-mode Device3(config-if-gigabitethernet1)#exit Device3(config)#interface gigabitethernet0/2/2 Device3(config)#interface gigabitethernet0/2/2 Device3(config-if-gigabitethernet0/2/2)#ip pim sparse-mode Device3(config-if-gigabitethernet0/2/2)#ip pim sparse-mode

#View the information of the interface enabled with the PIM-SM protocol on Device3 and the PIM-SM neighbor information.

Device3#show ip pim interface

PIM Interface Table:

PIM VRF Name: Default

Total 4 Interface entries

Total 0 External Interface entry

Total O Sparse-Dense Mode Interface entry

Address CISCO	s Interface Neighbor	VIF	Ver/	VIF	Nbr	DR	DR	BSR
Filter	Index	Mode	Flag Cou	unt P	ri		Borde	r Neighbor
2.0.0.2	register_vif0	1	v2/S UP)				
2.0.0.2 FALSE	gigabitethernetO	0	v2/S	UP	1	2	2.0.0.2	FALSE
4.0.0.2 FALSE	gigabitethernet1	2	v2/S	UP	0	1	4.0.0.2	FALSE
5.0.0.1 FALSE	gigabitethernet0/2/2	2	3 v2/	'S UI	> 0	1	5.0.0.1	FALSE

Device3#show ip pim neighbor PIM Neighbor Table: PIM VRF Name: Default Total 2 Neighbor entries Neighbor Interface Uptime/Expires Ver DR Address 2.0.0.1 gigabitethernet0 01:12:00/00:01:39 v2 1/ 4.0.0.1 gigabitethernet1 01:13:19/00:01:35 v2 1/

Note:

 The viewing methods of Device1 and Device2 are the same as that of Device3, so the viewing process is omitted.

#View the IGMP information of interface gigabitethernet0/2/2 of Device3.

Device3#show ip igmp interface gigabitethernet0/2/2 Interface gigabitethernet0/2/2 (Index 50332250) IGMP Active, Querier (5.0.0.1) Default version 2 IP router alert option in IGMP V2 msgs: EXCLUDE Internet address is 5.0.0.1 IGMP query interval is 125 seconds IGMP querier timeout is 255 seconds IGMP max query response time is 10 seconds Last member query response interval is 1 seconds Last member query count is 2 Group Membership interval is 260 seconds IGMP robustness variable is 2

Caution:

- After configuring the multicast protocol on the interface, automatically enable the IGMP function and run IGMPv2 by default. You can configure the running IGMP version on the interface by **executing the ip igmp version** command.
- **Step 4:** Configure the interface gigabitethernet1 of Device1 as C-BSR and C-RP, and configure the interface gigabitethernet0 of Device2 as C-BSR and C-RP.

#Configure Device1.

Configure interface gigabitethernet1 of Device1 as C-BSR and C-RP; the priority of C-BSR is 200; the multicast group range of the C-RP service is 230.0.0.0/8.

Device1(config)#ip pim bsr-candidate gigabitethernet1 10 200

Device1(config)#ip access-list standard 1

Device1(config-std-nacl)#permit 230.0.0.0 0.255.255.255

Device1(config-std-nacl)#exit

Device1(config)#ip pim rp-candidate gigabitethernet1 group-list 1

#Configure Device2.

Configure interface gigabitethernet0 of Device2 as C-BSR and C-RP; the priority of C-BSR is 0; the multicast group range of the C-RP service of Device2 is 230.0.0.0/4.

Device2(config)#ip pim bsr-candidate gigabitethernet0

Device2(config)#ip pim rp-candidate gigabitethernet0

#View the BSR and RP information of Device3.

www.qtech.ru

Device3#show ip pim bsr-router PIMv2 Bootstrap information PIM VRF Name: Default BSR address: 2.0.0.1 BSR Priority: 200 Hash mask length: 10 Up time: 01:03:30 Expiry time: 00:01:46 Role: Non-candidate BSR State: Accept Preferred

Device3#show ip pim rp mapping PIM Group-to-RP Mappings Table: PIM VRF Name: Default Total 2 RP set entries Total 2 RP entries

Group(s): 224.0.0.0/4 RP count: 1 RP: 3.0.0.2 Info source: 2.0.0.1, via bootstrap, priority 192 Up time: 01:03:29 Expiry time: 00:02:02

Group(s): 230.0.0.0/8 RP count: 1 RP: 2.0.0.1 Info source: 2.0.0.1, via bootstrap, priority 192 Up time: 01:15:50 Expiry time: 00:02:02

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- When configuring multiple C-BSRs in one multicast domain, first elect BSR according to the priority and the C-BSR with the largest priority is elected as BSR. When the priorities of C-BSRs are the same, the C-BSR with the largest ip address is elected as BSR.

 When configuring multiple C-RPs in one multicast domain and the service multicast group ranges are the same, calculate the RP of the multicast group G according to the hash algorithm.

In the multicast domain, you can configure RP via the command ip **pim rp-address**, but it is required that the static RP addresses configured on all devices in the multicast domain keep consistent.

Step 5: Check the result.

Receiver1 and Receiver2 send the IGMPv2 member report packet to add to multicast group 225.1.1.1, 230.1.1.1 respectively.

#Source sends the multicast packets with multicast group 225.1.1.1, 230.1.1.1.

#View the multicast member table of Device3.

Device3#show ip igmp groups

IGMP Connected Group Membership

Total 2 groups

225.1.1.1

Group Address Interface Uptime Expires Last Reporter VI Expires

gigabitethernet0/2/2 00:56:48 00:02:39 5.0.0.2 stopped

230.1.1.1 gigabitethernet0/2/2 00:56:48 00:02:46 5.0.0.3 stopped

#View the RP of multicast group 225.1.1.1,230.1.1.1 on Device3.

Device3#show ip pim rp-hash 225.1.1.1

PIM VRF Name: Default

RP: 3.0.0.2

Info source: 2.0.0.1, via bootstrap

Device3#show ip pim rp-hash 230.1.1.1 PIM VRF Name: Default RP: 2.0.0.1 Info source: 2.0.0.1, via bootstrap

#View the multicast route table of Device3.

Device3#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 2 (*,G) entries Total 2 (S,G) entries Total 2 (S,G,rpt) entries Total 0 FCR entry Up timer/Expiry timer

www.qtech.ru

(*, 225.1.1) Up time: 00:36:21 RP: 3.0.0.2 RPF nbr: 4.0.0.1 RPF idx: gigabitethernet1 Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/2/2 Joined interface list: Asserted interface list:

(192.168.1.1, 225.1.1.1) Up time: 00:36:02 KAT time: 00:03:11 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet0/2/2 Packet count 2517423

(192.168.1.1, 225.1.1.1, rpt) Up time: 00:36:02 RP: 3.0.0.2 Flags: RPT JOIN DESIRED

www.qtech.ru

••••

PRUNE DESIRED RPF SGRPT XG EQUAL Upstream State: PRUNED Local interface list: Pruned interface list: Outgoing interface list: gigabitethernet0/2/2

(*, 230.1.1.1) Up time: 00:36:21 RP: 2.0.0.1 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/2/2 Joined interface list: Asserted interface list:

(192.168.1.1, 230.1.1.1) Up time: 00:36:02 KAT time: 00:03:11 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet0/2/2 Packet count 2517712

(192.168.1.1, 230.1.1.1, rpt) Up time: 00:36:02 RP: 2.0.0.1 Flags: RPT JOIN DESIRED RPF SGRPT XG EQUAL Upstream State: NOT PRUNED Local interface list: Pruned interface list: Outgoing interface list:

#Receiver1 can only receive the multicast service packet with multicast group 225.1.1.1 sent by Source. Receiver2 can only receive the multicast service packet with multicast group 230.1.1.1 sent by Source.

Note:

- The viewing method of Device1 and Device2 is the same as that of Device3, so the viewing process is omitted.
- By default, the device enables the SPT switching.

6.3.2. Configure PIM-SSM

Network Requirements

- The whole network runs the PIM-SSM protocol.
- Receiver is one receiver of Device3 end network.
- Run IGMPv3 between Device3 and the end network.

Network Topology

Figure 6-2 Networking of configuring PIM-SSM

Configuration Steps

- **Step 1:** Configure the IP address of the interface. (omitted)
- **Step 2:** Enable the unicast route protocol OSPF so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 3.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 192.168.1.0 0.0.0.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 3.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#network 4.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#exit

#Configure Device3.

Device3#configure terminal Device3(config)#router ospf 100 Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#network 4.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#exit

#View the route table of Device3.

Device3#show ip route Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M -Management D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 2.0.0.0/24 is directly connected, 23:48:47, gigabitethernet0

0 3.0.0.0/24 [110/2] via 2.0.0.1, 23:31:14, gigabitethernet1 [110/2] via 4.0.0.1, 23:31:04, gigabitethernet1

C 4.0.0.0/24 is directly connected, 23:36:57, gigabitethernet1

C 5.0.0.0/24 is directly connected, 23:09:18, gigabitethernet0/2/2

0 192.168.1.0/24 [110/2] via 2.0.0.1, 00:30:55, gigabitethernet0

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 3:** Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the interface.

#Configure Device1.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim sparse-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim sparse-mode Device1(config-if-gigabitethernet1)#exit Device1(config)#interface gigabitethernet0/2/2 Device1(config-if-gigabitethernet0/2/2)#ip pim sparse-mode Device1(config-if-gigabitethernet0/2/2)#exit

#Configure Device2.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device2(config)#ip multicast-routing Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip pim sparse-mode Device2(config-if-gigabitethernet0)#exit Device2(config)#interface gigabitethernet1 Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim sparse-mode

#Configure Device3.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device3(config)#ip multicast-routing Device3(config)#interface gigabitethernet0 Device3(config-if-gigabitethernet0)#ip pim sparse-mode Device3(config-if-gigabitethernet0)#exit Device3(config)#interface gigabitethernet1

|--|

 $\bullet \bullet \bullet \bullet$

Device3(config-if-gigabitethernet1)#ip pim sparse-mode Device3(config-if-gigabitethernet1)#exit Device3(config)#interface gigabitethernet0/2/2 Device3(config-if-gigabitethernet0/2/2)#ip pim sparse-mode Device3(config-if-gigabitethernet0/2/2)#exit

#View the information of the interface enabled with the PIM-SM protocol on Device3 and the PIM-SM neighbor information.

Device3#show ip pim interface

PIM Interface Table:

PIM VRF Name: Default

Total 4 Interface entries

Total 0 External Interface entry

Total O Sparse-Dense Mode Interface entry

Address CISCO	s Interface Neighbor	VIF	۱ ۱	/er/	VIF	Nbr	DR	DR	BSR
	Index	Mode	Flag	, Coι	int P	ri		Borde	er Neighbor
Filter									
2.0.0.2	register_vif0	1	v2/S	5 UP					
2.0.0.2 FALSE	gigabitethernetO	3	,	v2/S	UP	1	1	2.0.0.2	FALSE
4.0.0.2 FALSE	gigabitethernet1	0	١	/2/S	UP	0	1	4.0.0.2	FALSE
5.0.0.1 FALSE	gigabitethernet0/2/2		2	v2/	'S UI	P 1	1	5.0.0.1	FALSE

Device3#show ip pim neighbor PIM Neighbor Table: PIM VRF Name: Default Total 2 Neighbor entries Neighbor Interface Uptime/Expires Ver DR Address 2.0.0.1 gigabitethernet0 01:12:00/00:01:39 v2 1/ 4.0.0.1 gigabitethernet1 01:13:19/00:01:35 v2 1/

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 4:** Configure PIM-SSM on all devices; the multicast group range of the SSM service is 232.0.0.0/8. gigabitethernet0/2/2 of Device3 runs IGMPv3.

PIM-SM	www.qtech.ru	••••
#Configure Device1.		
Device1(config)#ip pim ssm default		
#Configure Device2.		
Device2(config)#ip pim ssm default		
#Configure Device3.		
Device3(config)#ip pim ssm default		
Device3(config)#interface gigabitethernet0/2/2		
Device3(config-if-gigabitethernet0/2/2)#ip igmp version 3		
Device3(config-if-gigabitethernet0/2/2)#exit		
#View the IGMP information of interface gigabitethernet0/2/2 of Device3.		
Device3#show ip igmp interface gigabitethernet0/2/2		
Interface gigabitethernet0/2/2 (Index 50332250)		
IGMP Enabled, Active, Querier (5.0.0.1)		
Configured for version 3		
IP router alert option in IGMP V2 msgs: EXCLUDE		
Internet address is 5.0.0.1		
IGMP query interval is 125 seconds		
IGMP querier timeout is 255 seconds		
IGMP max query response time is 10 seconds		
Last member query response interval is 1 seconds		
Last member query count is 2		
Group Membership interval is 260 seconds		
IGMP robustness variable is 2		

Step 5: Check the result.

#Receiver sends the IMGPv3 member relation report of the specified source group to add to multicast group 232.1.1.1; the specified multicast source is 192.168.1.1

#Source sends the multicast packets with multicast group 232.1.1.1.

#View the multicast member table of Device3.

Device3#sł	now ip igmp groups					
IGMP Conn	ected Group Membersh	ip				
Total 1 grou	ips					
Group Addı Expires	ress Interface	Uptime	Expires	Last Repor	ter V1 Ex	pires V2
232.1.1.1	gigabitethernet0/2/2	00:11:14	stopped 5	5.0.0.2	stopped	stopped

www.qtech.ru

....

Device3#show ip igmp groups detail Interface: gigabitethernet0/2/2 Group: 232.1.1.1 Uptime: 00:11:20 Group mode: Include Last reporter: 5.0.0.2 TIB-A Count: 1 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 192.168.1.1 00:11:20 00:03:28 stopped Yes R

#View the multicast route table of Device3.

Device3#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entry Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(192.168.1.1, 232.1.1.1) Up time: 12:59:27 KAT time: 00:03:20 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/2/2 Joined interface list: Asserted interface list:

....

Outgoing interface list: gigabitethernet0/2/2 Packet count 109783214

#Receiver can only receive the multicast service packet with multicast group 232.1.1.1 sent by Source.

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- The default multicast group range of PIM-SSM is 232.0.0.0/8. You can modify the multicast group range of the 232.0.0.0/8 service via the command ip pim ssm range.
- For the multicast group G meeting the SSM condition, the multicast route table does not generate the (*,G) entry, but just generate the (S,G) entry.

6.3.3. Configure PIM-SM Multicast Forwarding Control

Network Requirements

- The whole network runs the PIM-SM protocol.
- Receiver is one receiver of Device3 end network.
- Device2 is C-BSR and C-RP.
- On Device2 and Device3, control for the multicast source, making Receiver only receive the multicast service packet sent by Source1.
- Run IGMPv2 between Device3 and the end network.

Network Topology

Figure 6-3 Networking of configuring PIM-SM multicast forwarding control

Configuration Steps

- **Step 1:** Configure the IP address of the interface. (omitted)
- **Step 2:** Enable the unicast route protocol OSPF so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 3.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 10.0.0.0 0.0.255.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 3.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#network 4.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#exit

#Configure Device3.

Device3#configure terminal Device3(config)#router ospf 100 Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#network 4.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#exit

#View the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 2.0.0.0/24 is directly connected, 23:51:07, gigabitethernet0
- 0 3.0.0.0/24 [110/2] via 2.0.0.1, 23:33:34, gigabitethernet0 [110/2] via 4.0.0.1, 23:33:24, gigabitethernet1
- C 4.0.0.0/24 is directly connected, 23:39:17, gigabitethernet1
- C 5.0.0.0/24 is directly connected, 23:11:38, gigabitethernet0/2/2
- 0 10.0.0.0/24 [110/2] via 2.0.0.1, 00:06:32, gigabitethernet0
- 0 10.0.1.0/24 [110/2] via 2.0.0.1, 00:06:32, gigabitethernet0
- 0 10.0.2.0/24 [110/2] via 2.0.0.1, 00:06:32, gigabitethernet0

www.qtech.ru

0 10.0.3.0/24 [110/2] via 2.0.0.1, 00:06:32, gigabitethernet0

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 3:** Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the interface.

#Configure Device1.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim sparse-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim sparse-mode Device1(config-if-gigabitethernet1)#exit Device1(config)#interface gigabitethernet0/2/2 Device1(config-if-gigabitethernet0/2/2)#ip pim sparse-mode Device1(config-if-gigabitethernet0/2/2)#exit Device1(config)#interface gigabitethernet1/0 Device1(config-if-gigabitethernet1/0)#ip pim sparse-mode Device1(config-if-gigabitethernet1/0)#exit Device1(config)#interface gigabitethernet1/1 Device1(config-if-gigabitethernet1/1)#ip pim sparse-mode Device1(config-if-gigabitethernet1/1)#exit Device1(config)#interface gigabitethernet1/2 Device1(config-if-gigabitethernet1/2)#ip pim sparse-mode Device1(config-if-gigabitethernet1/2)#exit

#Configure Device2.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device2(config)#ip multicast-routing Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip pim sparse-mode Device2(config-if-gigabitethernet0)#exit Device2(config)#interface gigabitethernet1 Device2(config-if-gigabitethernet1)#ip pim sparse-mode

Device2(config-if-gigabitethernet1)#exit

#Configure Device3.

Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the related interfaces.

Device3(config)#ip multicast-routing Device3(config)#interface gigabitethernet0 Device3(config-if-gigabitethernet0)#ip pim sparse-mode Device3(config-if-gigabitethernet0)#exit Device3(config)#interface gigabitethernet1 Device3(config-if-gigabitethernet1)#ip pim sparse-mode Device3(config-if-gigabitethernet1)#exit Device3(config)#interface gigabitethernet0/2/2 Device3(config-if-gigabitethernet0/2/2)#ip pim sparse-mode Device3(config-if-gigabitethernet0/2/2)#ip pim sparse-mode

#View the information of the interface enabled with the PIM-SM protocol on Device3 and the PIM-SM neighbor information.

- Device3#show ip pim interface
- PIM Interface Table:
- PIM VRF Name: Default
- **Total 4 Interface entries**
- Total 0 External Interface entry
- Total O Sparse-Dense Mode Interface entry

Address CISCO N	Interface eighbor	VIF	Ver/ VIF Nbr DR	DR	BSR
	Index	Mode	Flag Count Priority		Border
Neighbor	Filter				
4.0.0.2	register_vif0	1 ,	v2/S UP		
2.0.0.2 FALSE	gigabitethernetO	2	v2/S UP 1 2	2.0.0.2	FALSE
4.0.0.2 FALSE	gigabitethernet1	0	v2/S UP 1 1	4.0.0.2	FALSE
5.0.0.1 FALSE	gigabitethernet0/2/2	3	v2/S UP 0 1	5.0.0.1	FALSE

Device3#show ip pim neighbor PIM Neighbor Table:

PIM VRF Name: Default Total 2 Neighbor entries

Neighbor	Interface	Uptime/Expires	Ver	DR
Address		Priorit	ty/Mo	de
2.0.0.1	gigabitethernetO	00:50:29/00:01:19	v2	1/
4.0.0.1	gigabitethernet1	00:57:58/00:01:33	v2	1/

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 4:** Configure gigabitethernet0 of Device2 as the C-BSR and C-RP of the whole network and the multicast group range of the C-RP service is 224.0.0.0/4.

#Configure Device2.

Device2(config)#ip pim bsr-candidate gigabitethernet0

Device2(config)#ip pim rp-candidate gigabitethernet0

#View the BSR and RP information of Device3.

Device3#show ip pim bsr-router PIMv2 Bootstrap information PIM VRF Name: Default BSR address: 3.0.0.2 BSR Priority: 0 Hash mask length: 10 Up time: 00:10:37 Expiry time: 00:01:33 Role: Non-candidate BSR State: Accept Preferred

Device3#show ip pim rp mapping PIM Group-to-RP Mappings Table: PIM VRF Name: Default Total 1 RP set entry Total 1 RP entry

Group(s): 224.0.0.0/4 RP count: 1 RP: 3.0.0.2 Info source: 3.0.0.2, via bootstrap, priority 192

Up time: 03:59:59 Expiry time: 00:01:49

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 5:** On Device2 and Device3, control for the multicast source, making Receiver only receive the multicast service packet sent by Source1

#On Device2, configure the accepted register message access list, filtering the register message of Source4.

Device2(config)#ip access-list standard 1

Device2(config-std-nacl)#deny 10.0.3.0 0.0.0.255

Device2(config-std-nacl)#permit any

Device2(config-std-nacl)#exit

Device2(config)#ip pim accept-register list 1

#On interface gigabitethernet0 and gigabitethernet1 of Device3, configure the ingress acl, filtering the multicast service packets of Source3.

Device3(config)#ip access-list extended 1001

Device3(config-ext-nacl)#deny ip 10.0.2.0 0.0.0.255 224.0.0.0 31.255.255.255

Device3(config-ext-nacl)#permit igmp any any

Device3(config-ext-nacl)#permit pim any any

Device3(config-ext-nacl)#permit ospf any any

Device3(config-ext-nacl)#permit ip any any

Device3(config-ext-nacl)#exit

Device3(config)#interface gigabitethernet0

Device3(config-if-gigabitethernet0)#ip access-group 1001 in

Device3(config-if-gigabitethernet0)#exit

Device3(config)#interface gigabitethernet1

Device3(config-if-gigabitethernet1)#ip access-group 1001 in

Device3(config-if-gigabitethernet1)#exit

#On interface gigabitethernet0/2/2 of Device3, configure the ingress acl, filtering the multicast service packets of Source2.

Device3(config)#ip access-list extended 1002

Device3(config-ext-nacl)#deny ip 10.0.1.0 0.0.0.255 224.0.0.0 31.255.255.255

Device3(config-ext-nacl)#permit igmp any any

Device3(config-ext-nacl)#permit pim any any

Device3(config-ext-nacl)#permit ip any any

Device3(config-ext-nacl)#exit

Device3(config)#interface gigabitethernet0/2/2

www.qtech.ru

Device3(config-if-gigabitethernet0/2/2)#ip access-group 1002 out Device3(config-if-gigabitethernet0/2/2)#exit

Step 6: Check the result.

#Receiver sends the IMGPv2 member relation report to add to multicast group 225.1.1.1.

Source1, Source2, Source3, and Source4 all send the multicast packets of multicast group 225.1.1.1.

#View the multicast member table of Device3.

Device3#show ip igmp groups IGMP Connected Group Membership Total 1 groups Group Address Interface Uptime Expires Last Reporter V1 Expires 225.1.1.1 gigabitethernet0/2/2 00:00:38 00:03:45 5.0.0.2 stopped

#View the multicast route table of Device3.

Device3#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 2 (S,G) entries Total 2 (S,G,rpt) entries Total 0 FCR entry Up timer/Expiry timer

(*, 225.1.1) Up time: 00:07:55 RP: 3.0.0.2 RPF nbr: 4.0.0.1 RPF idx: gigabitethernet1 Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/2/2 Joined interface list: Asserted interface list:

www.qtech.ru

••••

(10.0.0.1, 225.1.1.1)Up time: 00:07:49 KAT time: 00:03:17 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet0/2/2 Packet count 268411 (10.0.0.1, 225.1.1.1, rpt) Up time: 00:07:49 RP: 3.0.0.2 Flags: **RPT JOIN DESIRED** PRUNE DESIRED **RPF SGRPT XG EQUAL Upstream State: PRUNED** Local interface list: Pruned interface list: Outgoing interface list: gigabitethernet0/2/2

(10.0.1.1, 225.1.1.1) Up time: 00:07:49 KAT time: 00:03:17 RPF nbr: 2.0.0.1 RPF idx: gigabitethernet0 SPT bit: TRUE

www.qtech.ru

Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet0/2/2 Packet count 268237 (10.0.1.1, 225.1.1.1, rpt) Up time: 00:07:49 RP: 3.0.0.2 Flags: **RPT JOIN DESIRED** PRUNE DESIRED **RPF SGRPT XG EQUAL**

Upstream State: PRUNED

Local interface list:

Pruned interface list:

Outgoing interface list:

gigabitethernet0/2/2

Note:

 The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.

#View the matching of ACL on Device2.

Device2#show ip access-list 1 ip access-list standard 1 10 deny 10.0.3.0 0.0.0.255 32 matches 20 permit any 2767 matches #View the matching of ACL on Device3.

Device3#show ip access-list 1001

ip access-list extended 1001

10 deny ip 10.0.2.0 0.0.0.255 224.0.0.0 31.255.255.255 671545 matches

20 permit igmp any any 19 matches

30 permit pim any any 119 matches

40 permit ospf any any 252 matches

....

50 permit ip any any 1343339 matches

Device3#show ip access-list 1002 ip access-list extended 1002 10 deny ip 10.0.1.0 0.0.0.255 224.0.0.0 31.255.255.255 672358 matches 20 permit igmp any any 10 matches 30 permit pim any any 40 matches 40 permit ip any any 672532 matches

#Receive end can only receive the multicast service packets sent by Source1.

Caution:

 When performing the multicast source control, you'd better first configure the multicast source control and then on-demand multicast source, because by default, after receiving the multicast service packet, the receiving end DR performs the SPT switching. If first on-demanding multicast source and then performing the multicast forwarding control, the multicast forwarding control does not take function. To prevent the multicast forwarding control from not taking function, you can configure not permitting SPT switching on the receiving end DR.

6.3.4. Configure PIM Adaptive Function

Network Requirements

- On all interfaces of Device1 and Device2, enable the PIM adaptive function.
- Device1 is C-BSR and C-RP; the multicast group range of the C-RP service is 225.0.0.0/8.
- Run IGMPv2 between Device2 and the end network.
- Receiver is one receiver of Device2 end network.

Network Topology

Figure 6-4 Networking of configuring PIM adaptive function

Configuration Steps

- **Step 1:** Configure the IP address of the interface. (omitted)
- **Step 2:** Enable the unicast route protocol OSPF so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#network 192.168.1.0 0.0.0.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#exit

#View the route table of Device2.

Device2#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 1.0.0.0/24 is directly connected, 15:00:16, gigabitethernet0
- C 2.0.0.0/24 is directly connected, 01:09:58, gigabitethernet1

192.168.1.0/24 [110/2] via 1.0.0.1, 00:18:44, gigabitethernet0

Note:

- The viewing method of Device1 is the same as that of Device2, so the viewing process is omitted.
- **Step 3:** Globally enable the multicast forwarding; enable the PIM adaptive function on the interface.

#Configure Device1.

Globally enable the multicast forwarding; enable the PIM adaptive function on the related interfaces.

Device1(config)#ip multicast-routing

Device1(config)#interface gigabitethernet0

Device1(config-if-gigabitethernet0)#ip pim sparse-dense-mode

Device1(config-if-gigabitethernet0)#exit

Device1(config)#interface gigabitethernet1

Device1(config-if-gigabitethernet1)#ip pim sparse-dense-mode

Device1(config-if-gigabitethernet1)#exit

#Configure Device2.

Globally enable the multicast forwarding; enable the PIM adaptive function on the related interfaces.

Device2(config)#ip multicast-routing

Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip pim sparse-dense-mode Device2(config-if-gigabitethernet0)#exit Device2(config)#interface gigabitethernet1 Device2(config-if-gigabitethernet1)#ip pim sparse-dense-mode Device2(config-if-gigabitethernet1)#exit

Note:

• After enabling the PIM adaptive function on the interface, automatically enable the PIM-SM and PIM-DM protocols.

#View the information of the interface enabled with the PIM-SM protocol on Device2 and the PIM-SM neighbor information.

Device2#show ip pim interface PIM Interface Table: PIM VRF Name: Default Total 3 Interface entries Total 0 External Interface entry

Total 3 Sparse-Dense Mode Interface entries

Address Neighbor	Interface	VIF	Ver/	VIF	Nbr	DR	DR	BSR	CISCO
	Index	Mode	Flag	Cou	nt Pr	iority		Border No	eighbor
Filter									
2.0.0.1	register_vif0	1	v2/S	UP					
1.0.0.2	gigabitethernet0	2	v2/S	UP	1	1	1.0.0.2	FALSE	FALSE
2.0.0.1	gigabitethernet1	0	v2/S	UP	0	1	2.0.0.1	FALSE	FALSE

Device2#show ip pim neighbor PIM Neighbor Table: PIM VRF Name: Default Total 1 Neighbor entry

Neighbor	Interface	Uptime/Expires	Ver	DR
Address		Priorit	у/Мо	de
1.0.0.1	gigabitethernet0	00:12:31/00:01:44	v2 M	١/

#We can see that the PIM-SM neighbor is set up between Device2 and Device1 successfully.

#View the information of the interface enabled with the PIM-DM protocol on Device2 and the PIM-DM neighbor information.

Device2#show ip pim dense-mode interface

Total 2 Interface entries Total 0 External Interface entry Total 2 Sparse-Dense Mode Interface entries Address Interface VIFIndex Ver/ Nbr VIF Mode Count Flag 1.0.0.2 gigabitethernet0 2 v2/D 1 UP 2.0.0.1 gigabitethernet1 0 v2/D 0 UP Device2#show ip pim dense-mode neighbor PIM Dense-mode Neighbor Table: PIM Dense-mode VRF Name: Default **Total 1 Neighbor entries** Neighbor-Address Interface Uptime/Expires Ver 1.0.0.1 gigabitethernet0 00:12:39/00:01:35 v2 #We can see that the PIM-DM neighbor is set up between Device2 and Device1 successfully. #View the IGMP information of the interface gigabitethernet1 on Device2. Device2#show ip igmp interface gigabitethernet 1 Interface gigabitethernet1 (Index 5) IGMP Active, Querier (2.0.0.1) Default version 2 IP router alert option in IGMP V2 msgs: EXCLUDE Internet address is 2.0.0.1 IGMP guery interval is 125 seconds IGMP guerier timeout is 255 seconds IGMP max query response time is 10 seconds Last member query response interval is 1 seconds Last member guery count is 2 Group Membership interval is 260 seconds IGMP robustness variable is 2 Configure C-BSR and C-RP.

#Configure Device1.

Step 4:

Configure interface gigabitethernet0 of Device1 as C-BSR and C-RP and the multicast group range of the C-RP service is 225.0.0.0/8.

> Device1(config)#ip pim bsr-candidate gigabitethernet0 Device1(config)#ip access-list standard 1

Device1(config-std-nacl)#permit 225.0.0.0 0.255.255.255 Device1(config-std-nacl)#exit Device1(config)#ip pim rp-candidate gigabitethernet0 group-list 1 #View the BSR and RP information of Device2. Device2#show ip pim bsr-router PIMv2 Bootstrap information

PIMv2 Bootstrap information PIM VRF Name: Default BSR address: 192.168.1.254 BSR Priority: 0 Hash mask length: 10 Up time: 00:00:48 Expiry time: 00:01:30 Role: Non-candidate BSR State: Accept Preferred

Device2#show ip pim rp mapping PIM Group-to-RP Mappings Table: PIM VRF Name: Default Total 1 RP set entry Total 1 RP entry

Group(s): 225.0.0.0/8 RP count: 1 RP: 192.168.1.254 Info source: 192.168.1.254, via bootstrap, priority 192 Up time: 00:00:42 Expiry time: 00:01:48

#We can see that there is the BSR and RP information on Device2 and the multicast group range of the RP service is 225.0.0.0/8.

Step 5: Check the result.

#Receiver sends the IMGPv2 member relation report to add to multicast group 225.1.1.1, 226.1.1.1.

Source sends the multicast packets with multicast group 225.1.1.1 and 226.1.1.1.

#View the multicast member table of Device2.

Device2#show ip igmp groups

IGMP Connected Group Membership

Total 2 groups

PIM	-SM
-----	-----

Grou	p Address	Interface	Uptime	Expires	Last Repo	rter V1 Expires
225.1	.1.1 giga	bitethernet1	02:28:52 00):02:26 2.0	0.0.2	stopped
226.1	.1.1 giga	bitethernet1	02:26:57 00):02:24 2.0	0.0.2	stopped
#View the PIM-S	SM multicast	route table of	Device1.			

Device1#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 1 (S,G) entry Total 1 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(*, 225.1.1.1) Up time: 02:23:32 RP: 192.168.1.254 RPF nbr: 0.0.0.0 RPF idx: None Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: gigabitethernet1 02:23:32/00:03:00 Asserted interface list:

(192.168.1.1, 225.1.1.1) Up time: 00:02:25 KAT time: 00:03:00 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED

PIM	-SM
-----	-----

www.qtech.ru

Upstream State: JOINED Local interface list: Joined interface list: gigabitethernet1 00:02:25/00:03:05 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 4324131

(192.168.1.1, 225.1.1.1, rpt) Up time: 00:02:25

RP: 192.168.1.254

Flags:

RPT JOIN DESIRED

RPF SGRPT XG EQUAL

Upstream State: NOT PRUNED

Local interface list:

Pruned interface list:

Outgoing interface list:

gigabitethernet1

#View the PIM-DM multicast route table of Device1.

Device1#show ip pim dense-mode mroute PIM-DM Multicast Routing Table Total 1 mroute entry (192.168.1.1, 226.1.1.1) Expire in: 00:02:46 Source directly connected on gigabitethernet0 State-Refresh Originator State: Originator Upstream IF: gigabitethernet0 Upstream State: Forwarding Assert State: NoInfo Downstream IF List: gigabitethernet1, in 'olist': Downstream State: NoInfo Assert State: NoInfo

#Receiver can receive the multicast service packets with multicast group 225.1.1.1. 226.1.1.1 sent by Source, and the multicast service packet with multicast group 225.1.1.1 uses PIM-SM to communicate; the multicast service packet with multicast group 226.1.1.1 uses PIM-DM to communicate.

Note:

• The viewing method of Device2 is the same as that of Device1, so the viewing process is omitted.

7. MVPN

7.1. Overview

With the promotion of the BGP/MPLS VPN service, the user puts forward the requirement of developing the multicast service in the VPN (Virtual Private Network) network and MVPN (Multicast Virtual Private Network) comes into being.

Similar to the unicast VPN, MVPN realizes the access and isolation of different MVPN users via the VRF mechanism. The MVPN users belonging to the same multicast domain can perform the multicast communication and the users of different multicast domains are isolated from each other.

The typical application environment: In the SP (Service Provider) network, run the PIM multicast routing protocol and run MVPN on the PE (Provider Edge). In the C (Client) network, also run the PIM multicast routing protocol. Each multicast domain sets up the Default MDT (Default Multicast Distribution Tree) in the SP network. The MVPN users of the same multicast domain are all added to one default MDT. The MVPN user receives the multicast data packets of the other MVPN users in the multicast domain via it.

There is one drawback to use Default MDT. Even PE does not have receiver, it also receives the multicast data packets sent by other PEs to Default MDT and then drop the packets. This causes the waste for the SP network bandwidth. To solve the problem, we can use the mode of setting up the Data MDT (Data Multicast Distribution Tree). The PE connected to the MVPN multicast source creates Data MDT according to the configuration rule to transmit the multicast data packets. Only the PEs with the receivers can be added to the corresponding Data MDT.

PE uses the address of Default MDT or Data MDT to encapsulate the multicast data packets of C network to the multicast data packet of the SP network and forward to the other PEs via the multicast distribution tree of the SP network. When PE has the receiver, de-capsulate the received multicast data packet and forward via the multicast distribution tree of the C network.

7.2. MVPN Function Configuration

Table 7-1 MVPN function configuration list

Configuration Task				
Configure the MVPN basic functions	Configure the default multicast distribution tree.			
	Configure the data multicast distribution tree.			
Configure the RPF proxy	Configure the RPF proxy			
Configure BGP MDT	Configure the BGP MDT address stack			

7.2.1. Configure MVPN Basic Functions

Configuration Conditions

Before configuring MVPN, first complete the following task:

www.qtech.ru

www.qtech.ru

- Configure MPLS L3VPN so that the users of the same VPN can perform the unicast communication normally;
- Configure the PIM-SM (or SSM) globally and in VPN;
- Enable the IP multicast route forwarding globally and in VPN.

Configure Default MDT

After configuring Default MDT, the system automatically generates MTI and adds to Default MDT Group automatically.

Table 7-2	Configure the	default MDT
-----------	---------------	-------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the VRF instance configuration mode	ip vrf vrf-name	-
Enter the VRF IPv4 address family	address-family ipv4	-
Configure the default multicast distribution tree	mdt default group-ip- address	Mandatory By default, do not configure the default MDT.

Caution:

• Default MDTs of the same VPN in one network needs to be configured as one multicast group.

Configure Data MDT

Set the switching threshold on the PE of the multicast source. When the PE finds that the forwarding rate of the multicast service packets reaches the threshold, create one MDT and only the PE of the receiver of the corresponding multicast group can be added to the new tree. After the switching is complete, the multicast service packets are not forwarded in Default MDT, but forwarded along Data MDT. This can prevent all multicast data from being forwarded along Default MDT, because not all PEs have the receivers of the multicast data.

www.qtech.ru

Table 7-3 Configure the data MDT

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the VRF instance configuration mode	ip vrf vrf-name	-
Enter the VRF IPv4 address family	address-family ipv4	-
Configure the MDT	mdt data group-ip-address wildcard-mask [threshold traffic-rate] [list { access- list-number access-list- name }]	Mandatory By default, do not configure the data MDT.

7.2.2. Configure RPF Proxy

Configuration Condition

Before configuring the RPF proxy, first complete the following tasks:

- Configure MPLS L3VPN so that the users of the same VPN can perform the unicast communication normally;
- Configure the PIM-SM (or SSM) globally and in VPN;
- Enable the IP multicast route forwarding globally and in VPN;
- Configure MDT Default in VPN.

Configure RPF Proxy

In the common MVPN environment, we need to specify the source IP and the next-hop address to the source IP in the PIM add packet sent by the PE device. In the Options-B across-domain scheme, do not perform the switching of the internal route between the autonomous domains, which will result in the failure of the RPF check of the P device for the PIM add packet from the PE device. To solve the problem, bring in the RPF proxy. After the PE device is configured with the RPF proxy, the PIM add packet sent by the PE device to the P device will contain the information of the RPF proxy. After the P device receives the PIM add packet containing the proxy message and finds that there is no route to the multicast source, query the next hop to the specified IP (in the autonomous domain, ASBR sets up the interface IP of the BGP neighbor with the peer ASBR) address in the proxy information to perform the RPF check.

Table 7-4 Configure the RPF proxy

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the RPF proxy	ip multicast rpf proxy rd vector vrf vrf-name	Mandatory By default, does not enable the RD vector proxy function of the multicast RPF.

7.2.3. Configure BGP MDT Address Stack

Configuration Condition

Before configuring the BGP MDT address stack, first complete the following tasks:

- Configure MPLS L3VPN so that the users of the same VPN can perform the unicast communication normally;
- Configure the PIM-SM (or SSM) globally and in VPN;
- Enable the IP multicast route forwarding globally and in VPN;
- Configure MDT Default in VPN.

Configure BGP MDT Address Stack

Configure the BGP MDT address stack so that the BGP MDT route information can carry the local MTI address, Default MDT address and Data MDT address to advertise to the peer PE, so as to set up the source tree with the local MTI interface address as the source.

Table 7-5 Configure the BGP MDT address stack

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the BGP protocol and enter the BGP configuration mode	router bgp autonomous- system	-
Configure the BGP neighbor	neighbor { neighbor-address peer-group-name } remote- as as-number	Mandatory By default, do not create any BGP neighbor.
Configure the source address of the neighbor TCP session	neighbor { <i>neighbor-address</i> <i>peer-group-name</i> } update-	Mandatory By default, the source address automatically adopts

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
	source { interface-name ip- address }	the egress interface of the packet as the source address via the route selection.
Enter the BGP MDT address stack	address-family ipv4 mdt	-
Activate the capability of the BGP neighbor receiving and sending the MDT route	neighbor { <i>neighbor-address</i> <i>peer-group-name</i> } activate	Mandatory By default, do not activate the capability of the BGP neighbor receiving and sending the MDT route.

7.2.4. MVPN Monitoring and Maintaining

Table 7-6 MVPN monitoring and maintaining

Command	Description
<pre>show ip bgp ipv4 mdt { all [summary ip- address]] } vrf vrf-name [ip-address] rd route-distinguisher [ip-address] }</pre>	Display the BGP MDT route information
show ip pim mdt	Display the MDT information
show ip pim mdt bgp	Display the received BGP MDT SAFI information
show ip pim mdt receive vrf vrf-name	Display the received Data MDT information in VRF
show ip pim mdt send vrf vrf-name	Display the sent Data MDT information in VRF
show ip pim mroute proxy [vrf vrf-name]	Display the multicast RPF proxy information

7.3. MVPN Typical Configuration Example

7.3.1. MVPN Typical Configuration in Single AS

Network Requirements

• Configure VPN instance 1 and configure the multicast Default MDT and Data MDT.

- Set up the MPLS L3VPN environment in the domain; enable the MPLS and BGP process on the PE; enable MPLS on the P;
- To enable the multicast enabling on all devices, we need to enable multicast enabling globally and in VPN instance 1 on the PE;
- Connect PE to the CE interface and add to VPN instance 1; enable the multicast protocol in the global interfaces and the interfaces of VPN instance 1;
- Configure the RP and BSR globally and in VPN instance 1;
- Send the multicast service packets at the Source and receive the multicast service packets at the Receiver, completing the multicast forwarding.

Network Topology

Figure 7-1 Networking of configuring MVPN in a single AS

Device	Interface	IP address	Device	Interface	IP address
CE1	Gi0	10.1.1.1/24	Р	Loopback0	172.0.0.3/32
	Gi1	10.1.2.1/24	PE2	Gi0	192.168.2.2/24
PE1	Gi0	10.1.2.2/24		Gi1	10.2.1.1/24
	Gi1	192.168.1.1/24		Loopback0	172.0.0.2/32
	Loopback0	172.0.0.1/32	CE2	Gi0	10.2.1.2/24
Р	Gi0	192.168.1.2/24		Gi1	10.2.2.1/24
	Gi1	192.168.2.1/24			

www.qtech.ru

Configuration Steps

Step 1: Configure the IP addresses of all device interfaces. (omitted)

Step 2: Configure the VPN instance on the PE.

#Configure PE1.

PE1#configure terminal PE1(config)#ip vrf 1 PE1(config-vrf)#rd 100:1 PE1(config-vrf)#route-target export 100:1 PE1(config-vrf)#route-target import 100:1 PE1(config-vrf)#exit

#Configure PE2.

PE2#configure terminal PE2(config)#ip vrf 1 PE2(config-vrf)#rd 100:1 PE2(config-vrf)#route-target export 100:1 PE2(config-vrf)#route-target import 100:1 PE2(config-vrf)#exit

Step 3: Configure the VPN instance and IP address of the interface.

Take PE1 as an example:

PE1(config)#interface gigabitethernet0 PE1(config-if-gigabitethernet0)#ip vrf forwarding 1 PE1(config-if-gigabitethernet0)#ip address 10.1.2.2 255.255.255.0 PE1(config-if-gigabitethernet0)#exit

Note:

- The configuration methods of VPN instance 1 interfaces of PE2 are similar;
- When configuring the interfaces of VPN instance 1 on the PE, first configure the interface to belong to VPF and then configure the IP address.
- **Step 4:** Configure the backbone network IGP protocol to realize the unicast intercommunication of the backbone network.

#Configure OSPF on PE1.

PE1(config)#router ospf 200 PE1(config-ospf)#network 172.0.0.1 0.0.0.0 area 0 PE1(config-ospf)#network 192.168.1.0 0.0.0.255 area 0 PE1(config-ospf)#exit

#Configure OSPF on PE2.

PE2(config)#router ospf 200 PE2(config-ospf)#network 172.0.0.2 0.0.0.0 area 0 PE2(config-ospf)#network 192.168.2.0 0.0.0.255 area 0 PE2(config-ospf)#exit

#Configure OSPF on the P.

P#configure terminal P(config)#router ospf 100 P(config-ospf)#network 172.0.0.3 0.0.0.0 area 0 P(config-ospf)#network 192.168.1.0 0.0.0.255 area 0 P(config-ospf)#network 192.168.2.0 0.0.0.255 area 0 P(config-ospf)#exit

#View the global route table of the device.

Take PE1 as an example:

PE1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 127.0.0.0/8 is directly connected, 04:48:06, lo0
- C 192.168.1.0/24 is directly connected, 05:22:54, gigabitethernet1
- 0 192.168.2.0/24 [110/2] via 192.168.1.2, 02:23:57, gigabitethernet1
- C 172.0.0.1/32 is directly connected, 05:17:37, loopback0
- 0 172.0.0.2/32 [110/3] via 192.168.1.2, 05:23:57, gigabitethernet1
- 0 172.0.0.3/32 [110/2] via 192.168.1.2, 05:27:47, gigabitethernet1

We can see that there are the loopback interface routes of PE2 and P in the route table of PE1.

Note:

• The checking method on PE2 and P is the same as that on PE1.

Step 5: Enable MPLS IP and MPLS LDP.

#Enable the global MPLS IP and MPLS LDP on PE1; enable MPLS IP and MPLS LDP on the interface.

PE1(config)#mpls ip PE1(config)#mpls ldp PE1(config-ldp)#router-id 172.0.0.1 PE1(config-ldp)#transport-address 172.0.0.1 PE1(config-ldp)#exit

PE1(config)#interface gigabitethernet1 PE1(config-if-gigabitethernet1)#mpls ip PE1(config-if-gigabitethernet1)#mpls ldp PE1(config-if-gigabitethernet1)#exit

#Enable the global MPLS IP and MPLS LDP on PE2; enable MPLS IP and MPLS LDP on the interface.

PE2(config)#mpls ip PE2(config)#mpls ldp PE2(config-ldp)#router-id 172.0.0.2 PE2(config-ldp)#transport-address 172.0.0.2 PE2(config-ldp)#exit PE2(config)#interface gigabitethernet0 PE2(config-if-gigabitethernet0)#mpls ip PE2(config-if-gigabitethernet0)#mpls ldp PE2(config-if-gigabitethernet0)#exit

#Enable the global MPLS IP and MPLS LDP on P; enable MPLS IP and MPLS LDP on the interface.

P(config)#mpls ip

P(config)#mpls ldp

P(config-ldp)#router-id 172.0.0.3

P(config-ldp)#transport-address 172.0.0.3

P(config-ldp)#exit

P(config)#interface gigabitethernet0

P(config-if-gigabitethernet0)#mpls ip

P(config-if-gigabitethernet0)#mpls ldp

P(config-if-gigabitethernet0)#exit

P(config)#interface gigabitethernet1

P(config-if-gigabitethernet1)#mpls ip

P(config-if-gigabitethernet1)#mpls ldp

P(config-if-gigabitethernet1)#exit

#View the LDP session information on the device.

Take PE1 as an example:

PE1#show mpls ldp session

Peer IP Address Peer Type My Role State DeadTime 172.0.0.3 Multicast Active OPERATIONAL 00:02:34 Statistics for ldp sessions: Multicast sessions: 1

Targeted sessions: 0

We can see that PE1 and P set up the LDP session successfully.

Note:

- The checking method on PE2 and P is the same as that on PE1.
- **Step 6:** Configure the IGP protocol in the VPN instance.

#Configure OSPF in the VPN instance on PE1.

PE1(config)#router ospf 100 vrf 1 PE1(config-ospf)#network 10.1.2.0 0.0.0.255 area 0

PE1(config-ospf)#exit

#Configure OSPF in the VPN instance on PE2.

PE2(config)#router ospf 100 vrf 1

PE2(config-ospf)#network 10.2.1.0 0.0.0.255 area 0

PE2(config-ospf)#exit

#Configure OSPF on CE1 and advertise the private network route.

CE1#configure terminal

CE1(config)#router ospf 100

CE1(config-ospf)#network 10.1.1.0 0.0.0.255 area 0

CE1(config-ospf)#network 10.1.2.0 0.0.0.255 area 0

CE1(config-ospf)#exit

#Configure OSPF on CE2 and advertise the private network route.

- CE2#configure terminal CE2(config)#router ospf 100 CE2(config-ospf)#network 10.2.1.0 0.0.0.255 area 0 CE2(config-ospf)#network 10.2.2.0 0.0.0.255 area 0 CE2(config-ospf)#exit
- **Step 7:** Configure MP-IBGP, use the loopback interface as the peer address and perform the route re-distribution with the IGP protocol in the VPN instance.

#Configure MP-IBGP on PE1 and enable the VPNV4 address stack; perform the route redistribution with the IGP protocol in the VPN instance.

> PE1(config)#router bgp 100 PE1(config-bgp)#neighbor 172.0.0.2 remote-as 100 PE1(config-bgp)#neighbor 172.0.0.2 update-source loopback0 PE1(config-bgp)#address-family vpnv4 PE1(config-bgp-af)#neighbor 172.0.0.2 activate PE1(config-bgp-af)#neighbor 172.0.0.2 send-community both

PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 vrf 1 PE1(config-bgp-af)#redistribute ospf 100 PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#exit PE1(config)#router ospf 100 vrf 1 PE1(config-ospf)#redistribute bgp 100 PE1(config-ospf)#exit

#Configure MP-IBGP on PE2 and enable the VPNV4 address stack; perform the route redistribution with the IGP protocol in the VPN instance.

PE2(config)#router bgp 100PE2(config-bgp)#neighbor 172.0.0.1 remote-as 100PE2(config-bgp)#neighbor 172.0.0.1 update-source loopback0PE2(config-bgp)#address-family vpnv4PE2(config-bgp-af)#neighbor 172.0.0.1 activatePE2(config-bgp-af)#neighbor 172.0.0.1 send-community bothPE2(config-bgp-af)#neighbor 172.0.0.1 send-community bothPE2(config-bgp-af)#exit-address-familyPE2(config-bgp)#address-family ipv4 vrf 1PE2(config-bgp-af)#exit-address-familyPE2(config-bgp-af)#exit-address-familyPE2(config-bgp-af)#exit-address-familyPE2(config-bgp)#address-family ipv4 vrf 1PE2(config-bgp-af)#exit-address-familyPE2(config-bgp)af)#exitPE2(config-bgp)#exitPE2(config-bgp)#exitPE2(config-bgp)#exitPE2(config-bgp)#exitPE2(config-ospf)#redistribute bgp 100PE2(config-ospf)#exit#View the BGP neighbor information on the PE.

Take PE1 as an example.

PE1#show ip bgp vpnv4 all summary BGP router identifier 172.0.0.1, local AS number 100 BGP table version is 6 1 BGP AS-PATH entries 0 BGP community entries

NeighborVAS MsgRcvd MsgSentTblVerInQ OutQ Up/DownState/PfxRcd172.0.0.2410040415000:32:012

Total number of neighbors 1

www.qtech.ru

The content of the State/PfxRcd list is displayed as numbers (the number of the route prefixes received from the neighbor), indicating that PE1 and PE2 set up the BGP neighbor successfully.

#View the BGP VPNV4 route table and VPN route table on the PE.

Take PE1 as an example.

PE1#show ip bgp vpnv4 vrf 1

BGP table version is 22, local router ID is 172.0.0.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

Route Distinguisher: 100:1 (Default for VRF 1)

[0]*> 10.1.1.0/24	10.1.2.1	2	327	68 ?
[0]*> 10.1.2.0/24	0.0.0.0	1	32	768 ?
[B]*>i10.2.1.0/24	172.0.0.2	1	100	0?
[B]*>i10.2.2.0/24	172.0.0.2	2	100	0?

PE1#show ip route vrf 1

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- 0 10.1.1.0/24 [110/2] via 10.1.2.1, 46:02:56, gigabitethernet0
- C 10.1.2.0/24 is directly connected, 148:00:45, gigabitethernet0
- B 10.2.1.0/24 [200/1] via 172.0.0.2, 22:50:24, gigabitethernet1
- B 10.2.2.0/24 [200/2] via 172.0.0.2, 22:50:24, gigabitethernet1

We can see that the BGP VPNV4 route table and VPN route table of PE1 both have the routes to CE2.

Note:

• The checking method on PE2 is the same as that on PE1.

#Check the route intercommunication.

CE1#ping 10.2.2.1

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 10.2.2.1 , timeout is 2 seconds:

!!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

We can see that CE1 can ping the route of CE2 successfully.

Step 8: Configure the backbone network and VPN instance multicast; configure BSR and RP.

#Enable the global multicast enabling on PE1 and multicast enabling in the VPN instance; enable the multicast protocol globally and on the VPN instance interface.

PE1(config)#ip multicast-routing PE1(config)#ip multicast-routing vrf 1 PE1(config)#interface loopback0 PE1(config-if-loopback0)#ip pim sparse-mode PE1(config-if-loopback0)#exit PE1(config)#interface gigabitethernet0 PE1(config-if-gigabitethernet0)#ip pim sparse-mode PE1(config-if-gigabitethernet0)#exit PE1(config)#interface gigabitethernet1 PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#ip pim sparse-mode

#Enable the global multicast enabling on PE2 and multicast enabling in the VPN instance; enable the multicast protocol globally and on the VPN instance interface.

PE2(config)#ip multicast-routing

PE2(config)#ip multicast-routing vrf 1

PE2(config)#interface loopback0

PE2(config-if-loopback0)#ip pim sparse-mode

PE2(config-if-loopback0)#exit

PE2(config)#interface gigabitethernet0

PE2(config-if-gigabitethernet0)#ip pim sparse-mode

PE2(config-if-gigabitethernet0)#exit

PE2(config)#interface gigabitethernet1

PE2(config-if-gigabitethernet1)#ip pim sparse-mode

PE2(config-if-gigabitethernet1)#exit

#Enable the global multicast enabling on the P; enable the multicast protocol on the global interfaces and configure the global RP and BSR.

P(config)#ip multicast-routing

P(config)#interface loopback0

P(config-if-loopback0)#ip pim sparse-mode

P(config-if-loopback0)#exit

P(config)#interface gigabitethernet0

P(config-if-gigabitethernet0)#ip pim sparse-mode

P(config-if-gigabitethernet0)#exit

P(config)#interface gigabitethernet1

P(config-if-gigabitethernet1)#ip pim sparse-mode

P(config-if-gigabitethernet1)#exit

P(config)#ip pim bsr-candidate loopback0

P(config)#ip pim rp-candidate loopback0

#Enable the multicast enabling on CE1 and enable the multicast protocol on the interface.

CE1(config)#ip multicast-routing

CE1(config)#interface gigabitethernet0

CE1(config-if-gigabitethernet0)#ip pim sparse-mode

CE1(config-if-gigabitethernet0)#exit

CE1(config)#interface gigabitethernet1

CE1(config-if-gigabitethernet1)#ip pim sparse-mode

CE1(config-if-gigabitethernet1)#exit

#Enable the multicast enabling on CE2; enable the multicast protocol on the interface; configure the RP and BSR of the VPN instance.

CE2(config)#ip multicast-routing CE2(config)#interface gigabitethernet0 CE2(config-if-gigabitethernet0)#ip pim sparse-mode

CE2(config-if-gigabitethernet0)#exit

CE2(config)#interface gigabitethernet1

CE2(config-if-gigabitethernet1)#ip pim sparse-mode

CE2(config-if-gigabitethernet1)#exit

CE2(config)#ip pim bsr-candidate gigabitethernet0

CE2(config)#ip pim rp-candidate gigabitethernet0

Step 9: Configure Default MDT and Data MDT; after the configuration is complete, send the multicast packets of multicast group 225.0.0.1 and 225.0.0.2 on the Source and make Receiver to add to the multicast group 225.0.0.1 and 225.0.0.2.

#Configure Default MDT and Data MDT on PE1.

PE1(config)#ip vrf 1

PE1(config)#address-family ipv4

PE1(config-vrf-ipv4)#mdt default 239.1.1.1

PE1(config-vrf-ipv4)#mdt data 238.1.1.0 0.0.0.255

PE1(config-vrf-ipv4)#exit

#Configure Default MDT and Data MDT on PE2.

PE2(config)#ip vrf 1 PE2(config)#address-family ipv4 PE2(config-vrf-ipv4)#mdt default 239.1.1.1 PE2(config-vrf-ipv4)#mdt data 238.1.1.0 0.0.0.255 PE2(config-vrf-ipv4)#exit

Step 10: Check the result.

#View the multicast interface and MTI interface information of the VPN instance on the PE.

Take PE1 as an example.

PE1#show ip pim interface vrf 1 PIM Interface Table: PIM VRF Name: 1 Total 2 Interface entries Total 1 External Interface entry Total 0 Sparse-Dense Mode Interface entry

Address Neighbor	Interface	VIF	Ver/	VIF	Nbr	DR	DR	BSR	CISCO
Filter	Index	K Mo	ode Fla	g Cou	unt Pi	riorit	у	Border N	eighbor
10.1.2.2 FALSE	gigabitethern	et0	0	v2/S	UP	1	1	10.1.2.2	FALSE
172.0.0.1	tunnel1023	2	v2/S	UP	1	1	172.0.0.	2 FALSE	FALSE

We can see that there is the MTI interface information in the multicast interface of the VPN instance of PE1 and the MTI interface automatically gets the IP address. The address is the same as the IP address of the Loopback interface specified when configuring the BGP peer.

#View the neighbor information in the VPN instance on PE1.

Take PE1 as an example.

PE1#show ip pim neighbor vrf 1 PIM Neighbor Table: PIM VRF Name: 1 Total 2 Neighbor entries

Neighbor	Interface	Uptime/Expires	Ver	DR
Address		Priority	/Mo	de
10.1.2.1	gigabitethernetO	6d05h58m/00:01:3	36 v2	1/
172.0.0.2	tunnel1023	00:01:28/00:01:17 v2	21	/ DR

We can see that the MTI interface neighbor of PE1 is set up; we can see the MTI interface information of PE2 in the neighbor list.

Note:

 tunnel 1023 is the MTI interface of MVPN. The MTI interface is one interface of connecting VPN to the backbone multicast domain. It can be regarded as one channel connecting the VPN and the global. Each VPN creates one tunnel interface. When BGP enables the VPN address stack and Update-Source, Default MDT is configured in the VPN and there is multicast interface, the interface is generated automatically.

#View the Default MDT information on the PE.

Take PE1 as an example.

PE1#show ip pim mdt				
Total 1 MDT Groups				
MDT Group	o Interface	Source	VRF	
239.1.1.1	tunnel1023	loopback0	1	

We can see that the MTI interface is added to Default MDT multicast group.

Note:

• The checking method on PE2 is the same as that on PE1.

#At the Source, send the multicast flow of multicast group 225.0.0.1 and 225.0.0.2; at the Receiver, receive multicast group 225.0.0.1 and 225.0.0.2; when there is multicast traffic, view the Group in the backbone network on PE2.

PE2#show	ı ip igm	np gro	ups	
IGMP Stati	c Grou	p Mer	nbership	
Total 6 sta	tic gro	ups		
Group Add	ress	Sour	ce Address	Interface
239.1.1.1	0.0.0	.0	loopbackO)
239.1.1.1	172.0	.0.1	loopbackO)
238.1.1.0	0.0.0).0	loopback	0
238.1.1.0	172.0).0.1	loopback	0
238.1.1.1	0.0.0	.0	loopbackO)
238.1.1.1	172.0	.0.1	loopback()

We can see that the loopback port is automatically added to Default MDT multicast group. When there is multicast traffic, we can see that the loopback port of PE2 is automatically added to Data MDT multicast group and the backbone network is switched from Default MDT to Data-MDT.

#View the Data MDT switching information on the PE.

PE1#show ip pim mdt sei	nd vrf 1		
MDT-data send list for VI	RF: 1		
Total 2 MDT-data Groups			
(source, group)	MDT-data	group	ref_count
(10.1.1.2, 225.0.0.2)	238.1.1.1	1	

www.qtech.ru

(10.1.1.2, 225.0.0.1) 238.1.1.0 1

PE2#show ip pim mdt receive vrf 1 Joined MDT-data [group : source] for VRF: 1 Total 2 MDT-data Groups [238.1.1.0 : 172.0.0.1] [238.1.1.1 : 172.0.0.1]

We can see that PE1 sends the Data MDT switching information and PE2 also receives the Data MDT switching information of PE1 successfully.

7.3.2. Across-AS MVPN Typical Configuration

Network Requirements

- Configure VPN instance 1 on the PE and configure the multicast Default MDT and Data MDT.
- Set up the OptionB across-domain MPLS L3VPN environment; enable the MPLS and BGP process on the PE and ASBR;
- To enable the multicast enabling on all devices, we need to enable multicast enabling globally and in VPN instance 1 on the PE;
- Connect PE to the CE interface and add to VPN instance 1; enable the multicast protocol in the global interfaces and the interfaces of VPN instance 1;
- Enable SSM on the devices except for the CE devices, associate all multicast group addresses, and configure the RP and BSR of VPN instance 1 on the CE;
- Send the multicast flow at the Source and receive the multicast flow at the Receiver, completing the multicast forwarding.

Network Topology

Figure 7-2 Networking of configuring MVPN across-AS

MVPN	
------	--

Device	Interface	IP address	Device	Interface	IP address
CE1	Gi0	10.1.2.1/24	ASBR1	Loopback0	172.0.0.2/32
	Gi1	10.1.1.2/24	ASBR2	Gi0	192.168.3.2/24
PE1	Gi0	10.1.1.1/24		Gi1	100.1.1.1/24
	Gi1	192.168.1.1/24		Loopback0	172.0.0.3/32
	Loopback0	172.0.0.1/32	PE2	Gi0	100.1.1.2/24
Ρ	Gi0	192.168.1.2/24		Gi1	11.1.1.1/24
	Gi1	192.168.2.1/24		Loopback0	172.0.0.4/32
	Loopback0	172.0.0.5/32	CE2	Gi0	11.1.1.2/24
ASBR1	Gi0	192.168.2.2/24		Gi1	11.1.2.1/24
	Gi1	192.168.3.1/24			

Configuration Steps

Step 1: Configure the IP addresses of all device interfaces. (omitted)

Step 2: Create the VPN instance on the PE.

#Configure PE1.

PE1#configure terminal

PE1(config)#ip vrf 1

PE1(config-vrf)#rd 100:1

PE1(config-vrf)#route-target export 100:1

PE1(config-vrf)#route-target import 100:1

PE1(config-vrf)#exit

#Configure PE2.

PE1#configure terminal

PE1(config)#ip vrf 1

PE1(config-vrf)#rd 100:1

PE1(config-vrf)#route-target export 100:1

PE1(config-vrf)#route-target import 100:1 PE1(config-vrf)#exit

Step 3: Configure the belonging VPN instance and IP address of the interface.

Note:

• When configuring the interface of VPN instance 1 on the PE, first configure the interface to belong to VPF and then configure the IP address.

Take PE1 as an example.

PE1(config)#interface gigabitethernet0 PE1(config-if-gigabitethernet0)#ip vrf forwarding 1 PE1(config-if-gigabitethernet0)#ip address 10.1.1.1 255.255.255.0 PE1(config-if-gigabitethernet0)#exit

Note:

- The checking method on PE2 is the same as that on PE1.
- **Step 4:** Configure the backbone network and OSPF in the VPN instance.

#Configure the OSPF on PE1 globally and in the VPN instance.

PE1(config)#router ospf 100

PE1(config-ospf)#network 192.168.1.0 0.0.0.255 area 0

PE1(config-ospf)#network 172.0.0.1 0.0.0.0 area 0

PE1(config-ospf)#exit

PE1(config)#router ospf 200 vrf 1

PE1(config-ospf)#network 10.1.1.0 0.0.0.255 area 0

PE1(config-ospf)#exit

#Configure the OSPF globally on the P.

P#configure terminal

P(config)#router ospf 100

P(config-ospf)#network 192.168.1.0 0.0.0.255 area 0

P(config-ospf)#network 172.0.0.5 0.0.0.0 area 0

P(config-ospf)#network 192.168.2.0 0.0.0.255 area 0

P(config-ospf)#exit

#Configure the OSPF globally on the ASBR1.

ASBR1#configure terminal

ASBR1(config)#router ospf 100

ASBR1(config-ospf)#network 192.168.2.0 0.0.0.255 area 0

ASBR1(config-ospf)#network 172.0.0.2 0.0.0.255 area 0

ASBR1(config-ospf)#exit

MVPN		

#Configure the OSPF globally on the ASBR2.

ASBR2#configure terminal ASBR2(config)#router ospf 100 ASBR2(config-ospf)#network 100.1.1.0 0.0.0.255 area 0 ASBR2(config-ospf)#network 172.0.0.3 0.0.0.255 area 0

ASBR2(config-ospf)#exit

#Configure the OSPF globally on PE2 and in the VPN instance.

PE2(config)#router ospf 100

PE2(config-ospf)#network 100.1.1.0 0.0.0.255 area 0

PE2(config-ospf)#network 172.0.0.4 0.0.0.0 area 0

PE2(config-ospf)#exit

PE2(config)#router ospf 200 vrf 1

PE2(config-ospf)#network 11.1.1.0 0.0.0.255 area 0

PE2(config-ospf)#exit

#Configure the OSPF globally on the CE1.

CE1#configure terminal

CE1(config)#router ospf 100

CE1(config-ospf)#network 10.1.1.0 0.0.0.255 area 0

CE1(config-ospf)#network 10.1.2.0 0.0.0.255 area 0

CE1(config-ospf)#exit

Configure the OSPF globally on the CE2.

CE2#configure terminal

CE2(config)#router ospf 100

CE2(config-ospf)#network 11.1.1.0 0.0.0.255 area 0

CE2(config-ospf)#network 11.1.2.0 0.0.0.255 area 0

CE2(config-ospf)#exit

#View the global route table on the device.

Take PE2 as an example.

PE2#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 100.1.1.0/24 is directly connected, 06:38:51, gigabitethernet1

C 127.0.0.0/8 is directly connected, 513:34:42, lo0

- 0 172.0.0.3/32 [110/2] via 100.1.1.1, 04:31:09, gigabitethernet1
- C 172.0.0.4/32 is directly connected, 83:48:24, loopback0

We can see that there is the information of the route to the ASBR2 loopback port in the global route table of PE2.

Note:

• The checking method on PE1 and ASBR is the same as that on PE2.

Step 5: Enable MPLS IP and MPLS LDP.

#Enable the global MPLS IP and MPLS LDP on the PE1; enable MPLS IP and MPLS LDP on the interface.

PE1(config)#mpls ip PE1(config)#mpls ldp PE1(config-ldp)#router-id 172.0.0.1 PE1(config-ldp)#transport-address 172.0.0.1 PE1(config-ldp)#exit PE1(config)#interface gigabitethernet1 PE1(config-if-gigabitethernet1)#mpls ip PE1(config-if-gigabitethernet1)#mpls ldp PE1(config-if-gigabitethernet1)#exit

#Enable the global MPLS IP and MPLS LDP on the P; enable MPLS IP and MPLS LDP on the interface.

- P(config)#mpls ip P(config)#mpls ldp P(config-ldp)#router-id 172.0.0.5 P(config-ldp)#transport-address 172.0.0.5 P(config-ldp)#exit P(config)#interface gigabitethernet0 P(config-if-gigabitethernet0)#mpls ip P(config-if-gigabitethernet0)#mpls ldp P(config-if-gigabitethernet0)#exit P(config)#interface gigabitethernet1 P(config)#interface gigabitethernet1 P(config-if-gigabitethernet1)#mpls ip P(config-if-gigabitethernet1)#mpls ldp
- P(config-if-gigabitethernet1)#exit

#Enable the global MPLS IP and MPLS LDP on the ASBR1; enable MPLS IP and MPLS LDP on the interface.

ASBR1(config)#mpls ip ASBR1(config)#mpls ldp

ASBR1(config-ldp)#router-id 172.0.0.2 ASBR1(config-ldp)#transport-address 172.0.0.2 ASBR1(config-ldp)#exit ASBR1(config)#interface gigabitethernet0 ASBR1(config-if-gigabitethernet0)#mpls ip ASBR1(config-if-gigabitethernet0)#mpls ldp ASBR1(config-if-gigabitethernet0)#exit ASBR1(config)#interface gigabitethernet1 ASBR1(config-if-gigabitethernet1)#mpls ip ASBR1(config-if-gigabitethernet1)#mpls ip

#Enable the global MPLS IP and MPLS LDP on the ASBR2; enable MPLS IP and MPLS LDP on the interface.

ASBR2(config)#mpls ip ASBR2(config)#mpls ldp ASBR2(config-ldp)#router-id 172.0.0.3 ASBR2(config-ldp)#transport-address 172.0.0.3 ASBR2(config-ldp)#exit ASBR2(config)#interface gigabitethernet0 ASBR2(config-if-gigabitethernet0)#mpls ip ASBR2(config-if-gigabitethernet0)#exit ASBR2(config)#interface gigabitethernet1 ASBR2(config)#interface gigabitethernet1 ASBR2(config-if-gigabitethernet1)#mpls ip ASBR2(config-if-gigabitethernet1)#mpls ldp

ASBR2(config-if-gigabitethernet1)#exit

#Enable the global MPLS IP and MPLS LDP on the PE2; enable MPLS IP and MPLS LDP on the interface.

PE2(config)#mpls ip PE2(config)#mpls ldp PE2(config-ldp)#router-id 172.0.0.4 PE2(config-ldp)#transport-address 172.0.0.4 PE2(config-ldp)#exit PE2(config)#interface gigabitethernet0 PE2(config-if-gigabitethernet0)#mpls ip PE2(config-if-gigabitethernet0)#mpls ldp PE2(config-if-gigabitethernet0)#exit

#View the LDP session information on the device.

Take P as an example.

P#show mpls ldp session

Peer IP Address Peer Type My Role State DeadTime 172.0.0.1 Multicast Active OPERATIONAL 00:02:58 172.0.0.2 Multicast Active OPERATIONAL 00:02:48 Statistics for Idp sessions: Multicast sessions: 2 Targeted sessions: 0

We can see that P sets up the LDP session with PE1 and ASBR1 successfully.

Note:

- The checking method on ASBR and PE is the same as that on the P device.
- **Step 6:** Configure MP-IBGP between PE and ASBR, use the loopback interface as the peer address, configure MP-EBGP between ASBRs, and perform the route re-distribution with the IGP protocol in the VPN instance.

#Configure MP-IBGP on PE1, enable the VPNV4 address stack and MDT address stack, and perform the route re-distribution with the IGP protocol in the VPN instance.

PE1(config)#router bgp 200 PE1(config-bgp)#neighbor 172.0.0.2 remote-as 200 PE1(config-bgp)#neighbor 172.0.0.2 update-source loopback0 PE1(config-bgp)#address-family vpnv4 PE1(config-bgp-af)#neighbor 172.0.0.2 activate PE1(config-bgp-af)#neighbor 172.0.0.2 send-community extended PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 mdt PE1(config-bgp-af)#neighbor 172.0.0.2 activate PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 vrf 1 PE1(config-bgp-af)#redistribute ospf 200 PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#exit PE1(config)#router ospf 200 vrf 1 PE1(config-ospf)#redistribute bgp 200 PE1(config-ospf)#exit

#Configure MP-IBGP with PE1 on ASBR1, configure MP-EBGP between ASBR1 and ASBR2, and enable VPNV4 address stack and MDT address stack.

ASBR1(config)#router bgp 200 ASBR1(config-bgp)#neighbor 172.0.0.1 remote-as 200 ASBR1(config-bgp)#neighbor 172.0.0.1 update-source loopback0 ASBR1(config-bgp)#neighbor 192.168.3.2 remote-as 100

ASBR1(config-bgp)#address-family vpnv4 ASBR1(config-bgp-af)#neighbor 172.0.0.1 activate ASBR1(config-bgp-af)#neighbor 172.0.0.1 next-hop-self ASBR1(config-bgp-af)#neighbor 172.0.0.1 send-community extended ASBR1(config-bgp-af)#neighbor 192.168.3.2 activate ASBR1(config-bgp-af)#neighbor 192.168.3.2 send-community extended ASBR1(config-bgp-af)#neighbor 192.168.3.2 send-community extended ASBR1(config-bgp-af)#neighbor 192.168.3.2 send-community extended ASBR1(config-bgp-af)#neighbor 192.168.3.2 send-community extended ASBR1(config-bgp-af)#neighbor 172.0.0.1 activate ASBR1(config-bgp-af)#neighbor 172.0.0.1 next-hop-self ASBR1(config-bgp-af)#neighbor 192.168.3.2 activate ASBR1(config-bgp-af)#neighbor 192.168.3.2 activate

#Configure MP-IBGP with PE2 on ASBR2, configure MP-EBGP between ASBR2 and ASBR1, and enable VPNV4 address stack and MDT address stack.

ASBR2(config)#router bgp 100 ASBR2(config-bgp)#neighbor 172.0.0.4 remote-as 100 ASBR2(config-bgp)#neighbor 172.0.0.4 update-source loopback0 ASBR2(config-bgp)#neighbor 192.168.3.1 remote-as 200 ASBR2(config-bgp)#address-family vpnv4 ASBR2(config-bgp-af)#neighbor 172.0.0.4 activate ASBR2(config-bgp-af)#neighbor 172.0.0.4 next-hop-self ASBR2(config-bgp-af)#neighbor 172.0.0.4 send-community extended ASBR2(config-bgp-af)#neighbor 192.168.3.1 activate ASBR2(config-bgp-af)#neighbor 192.168.3.1 send-community extended ASBR2(config-bgp-af)#exit-address-family ASBR2(config-bgp)#address-family ipv4 mdt ASBR2(config-bgp-af)#neighbor 172.0.0.4 activate ASBR2(config-bgp-af)#neighbor 172.0.0.4 next-hop-self ASBR2(config-bgp-af)#neighbor 192.168.3.1 activate ASBR2(config-bgp-af)#exit-address-family ASBR2(config-bgp)#exit

#Configure MP-IBGP on PE2, enable the VPNV4 address stack and MDT address stack, and perform the route re-distribution with the IGP protocol in the VPN instance.

PE2(config)#router bgp 100 PE2(config-bgp)#neighbor 172.0.0.3 remote-as 100 PE2(config-bgp)#neighbor 172.0.0.3 update-source loopback0 PE2(config-bgp)#address-family vpnv4

www.qtech.ru

....

PE2(config-bgp-af)#neighbor 172.0.0.3 activatePE2(config-bgp-af)#neighbor 172.0.0.3 send-community extendedPE2(config-bgp-af)#exit-address-familyPE2(config-bgp)#address-family ipv4 mdtPE2(config-bgp-af)#neighbor 172.0.0.3 activatePE2(config-bgp-af)#exit-address-familyPE2(config-bgp-af)#exit-address-familyPE2(config-bgp)#address-family ipv4 vrf 1PE2(config-bgp-af)#redistribute ospf 200PE2(config-bgp-af)#exit-address-familyPE2(config-bgp-af)#exit-address-familyPE2(config-bgp-af)#exit-address-familyPE2(config-bgp)#address-familyPE2(config-bgp)#exitPE2(config-bgp)#exitPE2(config-bgp)#exitPE2(config-ospf)#redistribute bgp 100PE2(config-ospf)#exit#View the BGP neighbor information on the device.

Take ASBR1 as an example.

ASBR1#show ip bgp vpnv4 all summary BGP router identifier 172.0.0.2, local AS number 200 BGP table version is 1 1 BGP AS-PATH entries 0 BGP community entries

 Neighbor
 V
 AS MsgRcvd MsgSent
 TblVer
 InQ OutQ Up/Down
 State/PfxRcd

 172.0.0.1
 4
 200
 2
 2
 1
 0
 00:00:14
 2

 192.168.3.2
 4
 100
 7
 8
 1
 0
 00:05:28
 2

Total number of neighbors 2

#The content of the State/PfxRcd list is displayed as numbers (the number of the route prefixes received from the neighbor), indicating that ASBR1 sets up the BGP neighbor with PE1 and ASBR2 successfully.

#View the BGP VPNV4 route table on the BGP device.

Take ASBR1 as an example.

ASBR1#show ip bgp vpnv4 all BGP table version is 7, local router ID is 172.0.0.2 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 100:1

MVPN

[B]*>i10.1.1.0/24	172.0.0.1	1 100	0?
[B]*>i10.1.2.0/24	172.0.0.1	2 100	0 ?
[B]*> 11.1.1.0/24	192.168.3.2	0	0 100 ?
[B]*> 11.1.2.0/24	192.168.3.2	0	0 100 ?

We can see that there is the route to the local CE1 and the peer CE2 in the BGP VPNV4 of ASBR1.

Note:

- The checking method on PE and ASBR2 is the same as that on ASBR1.
- **Step 7:** Configure the backbone network PIM domain to adopt the SSM mode; the VPN instance configures the multicast routing protocol PIM-SM; configure BSR and RP.

#Enable the multicasting enabling globally and of the VPN instance on PE1, the RPF proxy function in VPN and the global SSM; configure the multicast protocol on the interface.

PE1(config)#ip multicast-routing PE1(config)#ip multicast-routing vrf 1 PE1(config)#ip multicast rpf proxy rd vector vrf 1 PE1(config)#interface loopback 0 PE1(config-if-loopback0)#ip pim sparse-mode PE1(config-if-loopback0)#exit PE1(config)#interface gigabitethernet0 PE1(config-if-gigabitethernet0)#ip pim sparse-mode PE1(config-if-gigabitethernet0)#exit PE1(config-if-gigabitethernet0)#exit PE1(config)#interface gigabitethernet1 PE1(config)#interface gigabitethernet1 PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#ip pim sparse-mode

#Enable the global multicast enabling and SSM function on the P; configure the multicast protocol on the interface.

P(config)#ip multicast-routing

P(config)#interface loopback 0

P(config-if-loopback0)#ip pim sparse-mode

P(config-if-loopback0)#exit

P(config)#interface gigabitethernet0

P(config-if-gigabitethernet0)#ip pim sparse-mode

P(config-if-gigabitethernet0)#exit

P(config)#interface gigabitethernet1

P(config-if-gigabitethernet1)#ip pim sparse-mode

P(config-if-gigabitethernet1)#exit

P(config)#ip pim ssm default

#Enable the global multicast enabling and SSM function on ASBR1; configure the multicast protocol on the interface.

ASBR1(config)#ip multicast-routing

ASBR1(config)#interface loopback 0

ASBR1(config-if-loopback0)#ip pim sparse-mode

ASBR1(config-if-loopback0)#exit

ASBR1(config)#interface gigabitethernet0

ASBR1(config-if-gigabitethernet0)#ip pim sparse-mode

ASBR1(config-if-gigabitethernet0)#exit

ASBR1(config)#interface gigabitethernet1

ASBR1(config-if-gigabitethernet1)#ip pim sparse-mode

ASBR1(config-if-gigabitethernet1)#exit

ASBR1(config)#ip pim ssm default

#Enable the global multicast enabling and SSM function on ASBR2; configure the multicast protocol on the interface.

ASBR2(config)#ip multicast-routing ASBR2(config)#interface loopback 0 ASBR2(config-if-loopback0)#ip pim sparse-mode ASBR2(config-if-loopback0)#exit ASBR2(config)#interface gigabitethernet0 ASBR2(config-if-gigabitethernet0)#ip pim sparse-mode ASBR2(config-if-gigabitethernet0)#exit ASBR2(config)#interface gigabitethernet1 ASBR2(config-if-gigabitethernet1)#ip pim sparse-mode ASBR2(config-if-gigabitethernet1)#ip pim sparse-mode ASBR2(config-if-gigabitethernet1)#ip pim sparse-mode ASBR2(config-if-gigabitethernet1)#ip pim sparse-mode ASBR2(config-if-gigabitethernet1)#ip pim sparse-mode

#Enable the multicasting enabling globally and of the VPN instance on PE2, the RPF proxy function in VPN and the global SSM; configure the multicast protocol on the interface.

PE2(config)#ip multicast-routing PE2(config)#ip multicast-routing vrf 1

PE2(config)#ip multicast rpf proxy rd vector vrf 1

PE2(config)#interface loopback 0

PE2(config-if-loopback0)#ip pim sparse-mode

PE2(config-if-loopback0)#exit

PE2(config)#interface gigabitethernet0

PE2(config-if-gigabitethernet0)#ip pim sparse-mode

PE2(config-if-gigabitethernet0)#exit

PE2(config)#interface gigabitethernet1

www.qtech.ru

PE2(config-if-gigabitethernet1)#ip pim sparse-mode PE2(config-if-gigabitethernet1)#exit

PE2(config)#ip pim ssm default

#Enable the global multicast enabling on CE1; configure the RP and BSR in the VPN instance; configure the multicast protocol on the interface.

CE1(config)#ip multicast-routing

CE1(config)#interface gigabitethernet0

CE1(config-if-gigabitethernet0)#ip pim sparse-mode

CE1(config-if-gigabitethernet0)#exit

CE1(config)#interface gigabitethernet1

CE1(config-if-gigabitethernet1)#ip pim sparse-mode

CE1(config-if-gigabitethernet1)#exit

CE1(config)#ip pim bsr-candidate gigabitethernet1

CE1(config)#ip pim rp-candidate gigabitethernet1

#Enable the global multicast enabling on CE2; configure the multicast protocol on the interface.

CE2(config)#ip multicast-routing

CE2(config)#interface gigabitethernet0

CE2(config-if-gigabitethernet0)#ip pim sparse-mode

CE2(config-if-gigabitethernet0)#exit

CE2(config)#interface gigabitethernet1

CE2(config-if-gigabitethernet1)#ip pim sparse-mode

CE2(config-if-gigabitethernet1)#exit

Note:

 Here, use the default range of SSM 232.0.0.0/8; the SSM range can use ip pim ssm range to change. The SSM range should contain Default MDT and Data MDT.

#View the global multicast interface information of the device in the backbone network.

Take PE1 as an example.

- PE1#show ip pim interface
- PIM Interface Table:

PIM VRF Name: Default

Total 2 Interface entries

Total 0 External Interface entry

Total O Sparse-Dense Mode Interface entry

Address Neighbor	Interface	VIF	Ver/	VIF	Nbr	DR	DR	BSR	CISCO
Filter	Index	Mode	Flag	ι Cou	ınt Pr	iority		Border No	eighbor

								www.c	qtech.ru	
192.168.1.1 FALSE	gigabitetherne	t1	2	v2/S	UP	1	1	192.168.1.2	FALSE	
172.0.0.1	loopback0	0		v2/S UP	0	1	172.0.	0.1 FALSE	FALSE	

We can see that there is the loopback port and Gi1 in the global multicast interface information of PE1.

#View the global multicast neighbor information of the device in the backbone network.

Take PE1 as an example.

PE1#show ip pim neighbor PIM Neighbor Table: PIM VRF Name: Default Total 1 Neighbor entry

Neighbor	Interface	Uptime/Expires	Ver	DR
Address		Priorit	ty/Mod	е
192.168.1.2	gigabitethern	et1 2d00h06m/00:01	:36 v2	1 / DR

We can see that there is the interface address information of P in the global multicast neighbor information of PE1.

Note:

• The checking method on PE2 and ASBR is the same as that of PE1.

#View the RP and BSR information in the multicast VPN on the device.

Take PE1 and CE2 as an example.

PE1#show ip pim rp mapping vrf 1 PIM Group-to-RP Mappings Table: PIM VRF Name: 1 Total 1 RP set entry Total 1 RP entry

Group(s): 224.0.0.0/4 RP count: 1 RP: 10.1.1.2 Info source: 10.1.1.2, via bootstrap, priority 192 Up time: 00:07:51 Expiry time: 00:00:39

PE1#show ip pim bsr-router vrf 1 PIMv2 Bootstrap information PIM VRF Name: 1 BSR address: 10.1.1.2

www.qtech.ru

BSR Priority: 0 Hash mask length: 10 Up time: 00:08:47 Expiry time: 00:00:14 Role: Non-candidate BSR State: Accept Preferred

CE2#show ip pim rp mapping PIM Group-to-RP Mappings Table: PIM VRF Name: Default Total 1 RP set entry Total 1 RP entry

Group(s): 224.0.0.0/4 RP count: 1 RP: 10.1.1.2 Info source: 10.1.1.2, via bootstrap, priority 192 Up time: 00:09:29 Expiry time: 00:02:01

CE2#show ip pim bsr-router PIMv2 Bootstrap information PIM VRF Name: Default BSR address: 10.1.1.2 BSR Priority: 0 Hash mask length: 10 Up time: 00:10:18 Expiry time: 00:01:43 Role: Non-candidate BSR State: Accept Preferred

We can see that there is the BSR and RP information in the VPN of PE1 and the global of CE2.

Note:

• The checking method on PE2 and CE1 is the same as that on PE1 and CE2.

Step 8: Configure Default MDT and Data MDT.

#Configure Default MDT and Data MDT on PE1.

PE1(config)#ip vrf 1

PE1(config)#address-family ipv4 PE1(config-vrf-ipv4)#mdt default 232.0.0.1 PE1(config-vrf-ipv4)#mdt data 232.1.1.0 0.0.0.255 PE1(config-vrf-ipv4)#exit #Configure Default MDT and Data MDT on PE2. PE2(config)#ip vrf 1 PE2(config)#address-family ipv4 PE2(config-vrf-ipv4)#mdt default 232.0.0.1 PE2(config-vrf-ipv4)#mdt data 232.1.1.0 0.0.0.255 PE2(config-vrf-ipv4)#exit

Step 9: Check the result.

#View the BGP MDT route table on the device enabled with the BGP MDT address stack. Take PE1 as an example.

> PE1#show ip bgp ipv4 mdt all BGP table version is 2, local router ID is 172.0.0.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete Network Metric LocPrf Weight Path Next Hop Route Distinguisher: 100:1 [?]*> 172.0.0.1/32 0.0.0.0 0? [B]*>i172.0.0.4/32 172.0.0.2 100 0 100 ? 0

We can see that there is the information of the route to the MTI interface of PE2 in the BGP MDT route table of PE1.

#View the MTI interface information on the PE.

Take PE1 as an example.

PE1#show ip pim interface vrf 1

PIM Interface Table:

PIM VRF Name: 1

Total 2 Interface entries

Total 1 External Interface entry

Total O Sparse-Dense Mode Interface entry

Address Interface VIF Ver/ VIF Nbr DR DR BSR CISCO Neighbor

MVPN									www.qtech.ru	
	- 11	Index	Mod	le Fla	g Co	unt	Prio	rity	Border Neighbor	
	Filter									
	10.1.1.1	gigabitethernet0	0	v2/S	UP	1	1	10.1.1.2	FALSE FALSE	
	172.0.0.1	tunnel1023	2	v2/S	UP	1	1	172.0.0.4	FALSE FALSE	

We can see that the multicast interface of the VPN instance of PE1 has tunnel1023 and the MTI interface automatically gets the IP address. The address is the same as the IP address of the loopback interface specified when configuring the BGP peer.

#View the multicast neighbor information in the VPN instance on the PE.

Take PE1 as an example.

PE1#show ip pim neighbor vrf 1 PIM Neighbor Table: PIM VRF Name: 1 Total 2 Neighbor entries

Neighbor	Interface	Uptime/Expires	Ver DR
Address		Priorit	y/Mode
10.1.1.2	gigabitethernet0	6d05h58m/00:01:3	6 v2 1/DR
172.0.0.4	tunnel1023	00:01:28/00:01:17 v	2 1/DR

We can see that the MTI neighbor of PE1 is set up and there is the information of the MTI interface of PE2 in the neighbor list.

Note:

 tunnel 1023 is the MTI interface of MVPN. The MTI interface is one interface of connecting VPN to the backbone multicast domain. It can be regarded as one channel connecting the VPN and the global. Each VPN creates one tunnel interface. When BGP enables the VPN address stack and Update-Source, Default MDT is configured in the VPN and there is multicast interface, the interface is generated automatically.

#View the Default MDT information on the PE.

Take PE1 as an example.

PE1#show ip	pim mdt		
Total 1 MDT G	Groups		
MDT Group	Interface	Source	VRF
232.0.0.1	tunnel1023	loopback0	1

We can see that the MTI interface of PE1 is added to the Default MDT multicast group.

#View the global multicast route table on the device.

Take PE1 as an example.

PE1#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry

www.qtech.ru

....

Total 0 (*,G) entry Total 4 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer (172.0.0.1, 232.1.1.0) Up time: 00:15:37 KAT time: 00:02:52 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: gigabitethernet1 00:15:37/00:02:53 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 743987 (172.0.0.1, 232.1.1.1) Up time: 00:15:37 KAT time: 00:02:52 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: gigabitethernet1 00:15:37/00:02:53 Asserted interface list:

www.qtech.ru

....

Outgoing interface list: gigabitethernet1 Packet count 743847 (172.0.0.1, 232.0.0.1) Up time: 00:41:16 KAT time: 00:02:52 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: gigabitethernet1 00:39:20/00:03:07 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 39840

(172.0.0.4, 232.0.0.1) Up time: 00:39:07 KAT time: 00:02:52 RPF nbr: 192.168.1.2 Vector: 172.0.0.2 RPF idx: gigabitethernet1 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: loopback0 Joined interface list: Asserted interface list: Outgoing interface list: loopback0 Packet count 144

www.qtech.ru

....

The used by the backbone network is PIM-SSM, so we can see that there is no the (*, G) entry in the multicast route table of the PE1 backbone network and the RPF proxy takes effect. On PE1, we can see that the RPF neighbor 172.0.0.2 of the source address 172.0.0.4 is replaced to 192.168.1.2, so as to complete the setup of the across-domain Default MDT.

Note:

• The checking method of PE2 is the same as that of PE1

#At the Source, send the multicast flow of multicast group 225.0.0.1 and 225.0.0.2; at the Receiver, receive the multicast group 225.0.0.1 and 225.0.0.2; when there is multicast traffic, view the Group in the backbone network on PE2.

PE2#show	ip igmp) groups
IGMP Stati	c Group	Membership
Total 6 sta	tic grou	ps
Group Add	ress S	Source Address Interface
232.1.1.0	0.0.0.0) loopbackO
232.1.1.0	172.0.	0.1 loopbackO
232.1.1.1	0.0.0.0	loopback0
232.1.1.1	172.0.0	0.1 loopback0
232.0.0.1	0.0.0.	0 loopback0
232.0.0.1	172.0.	0.1 loopback0

We can see that the loopback port of PE2 is automatically added to Default MDT multicast group. When there is multicast traffic, the loopback port of PE2 is automatically added to Data MDT multicast group and the backbone network is switched from Default Mdt to Data-MDT.

#View the Data-MDT switching information on the PE.

PE1#show ip pim mdt ser	nd vrf 1		
MDT-data send list for VF	RF: 1		
Total 2 MDT-data Groups			
(source, group)	MDT-data	group	ref_count
(10.1.2.2, 225.0.0.2)	232.1.1.1	1	
(10.1.2.2, 225.0.0.1)	232.1.1.0	1	

PE2#show ip pim mdt receive vrf 1 Joined MDT-data [group : source] for VRF: 1 Total 2 MDT-data Groups [232.1.1.0 : 172.0.0.1] [232.1.1.1 : 172.0.0.1]

We can see that PE1 sends the switching information of Data MDT and PE2 also receives the Data MDT switching information of PE1 successfully.

8. NG MVPN

8.1. Overview

NG MVPN (Next Generation MVPN) is a new generation framework for IP multicast data traffic across BGP/MPLS VPN network. It provides BGP-based signaling transfer mode and PIM SM/PIM SSM/P2MP TE/mLDP and other data bearing modes, so that multicast and unicast services can be unified in the same VPN architecture.

BGP/MPLS IP VPN is widely used in the existing network because of its high reliability and security. IP multicast is also welcomed by service providers because of its efficient point-tomultipoint transmission mode. The development of IPTV, video conferencing, distance education and other services has put forward higher requirements for the reliability, security and efficiency of the network, so service providers have also generated more and more demands for running IP multicast services on BGP/MPLS IP VPN network. Multicast Virtual Private Network (MVPN) solution is produced under this background. With the MVPN technology, multicast services can be provisioned on existing BGP/MPLS IP VPN, and private multicast data traffic can be transmitted to the remote site of VPN through the public network. At present, the implementation of MVPN is based on RFC 6037 (draft-rosen-vpn-mcast-06), so it is also called Rosen MVPN. Rosen MVPN uses PIM protocol to establish a multicast distribution tree in both public and private networks to transmit private multicast protocol packets and multicast data traffic. Its shortcomings lie in: because private multicast protocol packets and data traffic need to be transmitted through the multicast distribution tree, the public network must enable multicast function. Otherwise, multicast distribution tree can not be established, which makes network deployment complex.

The public network uses GRE encapsulation to realize the transmission of the multicast data traffic, and cannot use some advantages of MPLS in the existing BGP/MPLS IP VPN network, such as reliability, TE bandwidth reservation and QoS guarantee.

NG MVPN has made some improvements relative to MVPN in Rosen mode. NG MVPN is characterized by:

The public network uses BGP to transmit private multicast protocol message and private multicast route, and does not need to configure other multicast protocols, simplifying the complexity of network deployment and reducing the difficulty of network maintenance.

The public network uses the mature tag forwarding technology and tunnel protection technology of MPLS to make multicast service quality higher and reliability better.

8.2. NG MVPN Function Configuration

Table 8-1 NG MVPN function configuration list

Configura	ation	tasks		
Configure functions	NG	MVPN	basic	Configure MVPN ID
				Configure VRF attributes
				Configure a I-PMSI tunnel
				Configure S-PMSI tunnel switching

www.qtech.ru

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Configuration tasks	
Configure BGP MVPN	Configure BGP MVPN address family
Configure MVPN ORF	Configure the BGP MVPN address family to filter at the outgoing direction

8.2.1. Configure NG MVPN Basic Functions

Configuration Conditions

Before configuring NG MVPN, first complete the following tasks:

- Configure MPLS L3VPN so that the same VPN user can perform the unicast communication normally
- Configure PIM-SM (SSM) in VPN
- Enable the IP multicast route forwarding in VPN

Configure MVPN ID

MVPN ID is used to identify one MVPN member. In one MVPN, MVPN ID is unique globally. Sender PE (Sender Provider Edge) and Receiver PE (Receiver Provider Edge) both need to be configure with the MVPN ID.

Table 8-2 Configure MVPN ID

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure MVPN ID	mvpn-id ip-address	Mandatory By default, do not configure the MVPN ID.

Caution:

The configured MVPN ID should be the global reachable IPv4 address on the local device.

Configure VRF Attributes

When the local PE receives MVPN routing information sent by the remote PE device, the local PE device needs to determine which local VRF to load the MVPN route. In order to control the distribution of MVPN routes, each VRF needs one or more MVPN RT attributes. MVPN RT attributes have two kinds: Export RT and Import RT. When PE initiates MVPN routing, it carries the Export RT attribute. When PE decides which VRF the MVPN route will be imported into, it uses the Export RT attribute carried by the route to match the Import RT of the local VRF.

www.qtech.ru

Table 8-3 Configure the VRF attributes

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the VRF instance configuration mode	ip vrf vrf-name	-
Enter the VRF IPv4 configuration mode	address-family ipv4	-
Enable the VRF MVPN function and enter the MVPN configuration mode	mvpn	Mandatory By default, does not enable the MVPN function of the VRF instance.
Configure the MVPN RT of VRF	route-target [both export import] { ASN:nn IP-address:nn }	Optional By default, do not configure the MVPN RT attribute of the VRF.

Note:

• When the VRF instance is not configured with MVPN RT, use the configured VPN RT as MVPN RT.

Configure the PMSI Tunnel

PMSI (Provider Multicast Service Interface) is the logical channel for the public network to carry the multicast data flow of the private network, and the public network tunnel is the concrete realization form of PMSI. For the specified multicast data traffic, private multicast data traffic is distributed to other PEs through PMSI on Sender PE. Receiver PE receives multicast data traffic belonging to the same MVPN according to PMSI. PMSI can be divided into I-PMSI (Inclusive PMSI) and S-PMSI (Selective-PMSI).

At present, support the I-PMSI mLDP P2MP tunnel and I-PMSI RSVP-TE P2MP tunnel, which are initiated by Sender PE to set up, and just needs to be configured on Sender PE.

www.qtech.ru

Table 8-4 Configure the PMSI tunnel

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the VRF instance configuration mode	ip vrf vrf-name	-
Enter the VRF IPv4 configuration mode	address-family ipv4	-
Enable the VRF MVPN function and enter the MVPN configuration mode	mvpn	Mandatory By default, do not enable the MVPN function of the VRF instance.
Configure the PMSI tunnel	i-pmsi { mldp p2mp rsvp-te p2mp template template- name }	Mandatory By default, do not configure the PMSI tunnel.

Configure S-PMSI Tunnel Switching

In the NG MVPN network, when multicast data traffic is transmitted to multicast users through the I-PMSI tunnel, all PEs belonging to the same MVPN will receive multicast data traffic whether they have downstream recipients or not. When some PE sites have receivers and some PE sites have no receivers, there will be redundant data traffic in the network, waste bandwidth and increase the processing burden of PE.

S-PMSI tunnel switching can solve the above problems. After the multicast data traffic is switched from the I-PMSI tunnel to the S-PMSI tunnel, only the PE that needs multicast data traffic can receive it. Finally, the S-PMSI tunnel has no redundant data traffic, which saves bandwidth resources and reduces the processing burden of the PE device.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Table 8-5 Configure S-PMSI tunnel switching

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the VRF instance configuration mode	ip vrf vrf-name	-
Enter the VRF IPv4 configuration mode	address-family ipv4	-
Enable the VRF MVPN function and enter the MVPN configuration mode	mvpn	Mandatory By default, do not enable the MVPN function of the VRF instance.
Configure the S-PMSI switching address pool range and the switching conditions	s-pmsi group group-address mask-len [source ip-address mask-len] [threshold threshold-value] {mldp p2mp rsvp-te p2mp template template-name } [limit number]	Mandatory By default, do not configure the S-PMSI switching address pool range and the switching conditions.
Configure the delay time of switching I-PMSI to SPMSI	s-pmsi i2s-delay interval	Optional By default, the delay time of switching I-PMSI to S-PMSI is 5s.
Configure the delay time of switching S-PMSI to I-PMSI	s-pmsi s2i-delay interval	Optional By default, the delay time of switching S-PMSI to I-PMSI is 5s.
Configure the delay time of deleting the S-PMSI tunnel	s-pmsi tunnel-delete-delay interval	Optional By default, the delay time of deleting the S-PMSI tunnel is 5s.

Note:

• The tunnel types of I-PMSI and S-PMSI are not required to be the same, but it is recommended to use the same tunnel type.

....

- When switching from the I-PMSI tunnel to the S-PMSI tunnel, the flow corresponding to the source group must be greater than or equal to the set value within a certain time.
- A single VPN can be configured with up to 16 S-PMSI switching address pool ranges.
- The limit value limits the number of the I-PMSI tunnels switched to S-PMSI tunnels within the address pool. When the multicast data stream entries meeting the switching conditions are greater than the limit value, only the specified number of tunnels will be switched. If the limit value is increased at this time, the previously unselected tunnels will be switched; If the limit value is reduced, the switched tunnel will not be switched back.
- The actual delay time of switching I-PMSI to S-PMSI is the configured delay + flow sampling time (100 seconds).
- The actual delay time for switching from S-PMSI to I-PMSI is the configured delay + flow sampling time (100 seconds).
- After switching from S-PMSI to I-PMSI timed out, if the traffic is still less than the switching threshold from I-PMSI to S-PMSI, start the tunnel-delete-delay timer.

8.2.2. Configure BGP MVPN Address Family

Configure BGP MVPN Address Family

In NG MVPN network, PE is divided into Sender PE and Receiver PE. Sender PE and Receiver PE use MP-IBGP (multi-protocol extended BGP) MVPN address family to transmit the auto discovery route of the MVPN member and private multicast route. Usually, because multicast data traffic is transmitted between multicast source and multicast receiver, Sender PE should establish BGP MVPN neighborhood relationship with all Receiver PEs.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the BGP configuration mode	router bgp autonomous- system	-
Configure a BGP neighbor	neighbor { neighbor-address peer-group-name } remote-as as-number	Mandatory By default, do not create any BGP neighbor.
Enter the BGP MVPN configuration mode	address-family ipv4 mvpn	-
Activate the MVPN address family of the PE neighbor	neighbor { <i>neighbor-address</i> <i>peer-group-name</i> } activate	Mandatory By default, the BGP neighbors can only receive and send the IPv4 unicast route.

 Table 8-6 Configure BGP MVPN address family

Note:

 For the other optional neighbor configurations in the BGP MVPN address family, refer to BGP MVNP chapter of the command manual.

8.2.3. Configure MVPN ORF

Configuration Conditions

Before configuring the MVPN ORF function, first complete the following tasks:

- Enable the BGP protocol.
- Configure the neighbor of the BGP MVPN address family and establish the session successfully.

Configure MVPN ORF

In the NG MVPN environment of BGP, RR (Route Reflector) sends all MVPN routes (including AD routes and C-multicast routes) to peer-to-peer PE or RR. After the peer-to-peer PE or RR receives MVPN routes, it filters out unwanted AD routes according to the local configured MVPN IMPORT RT, and filters out unwanted C-multicast route according to the local generated C-multicast IMPORT RT. In large-scale NG MVPN network, a large number of unnecessary MVPN route information is advertised and filtered in the network, resulting in a large waste of resources. Especially, the performance of some edge PE devices is low. When receiving a large number of MVPN routes (mainly C-multicast routes generated when adding to the multicast group), the performance cannot be satisfied, which affects the normal NG MVPN service.

The basic principle of the MVPN ORF function is: The BGP router participating in MVPN route distribution advertises its own IMPORT RT by using MP-BGP, uses the standard BGP-4 best route selection algorithm to get the route distribution map of IMPORT RT, and takes the IMPORT information as ORF to perform the egress filtering for the MVPN route. In this way, the restriction advertising is made at the source of the MVPN route for the unnecessary MVPN route. In the practical network planning, RR usually plays the role, and the RR router generally has high performance.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the BGP configuration mode	router bgp autonomous-system	-
Enter the VPN-Target address family	address-family ipv4 vpn- target	-
Activate the VPN-Target address family of the neighbor	neighbor {	Mandatory By default, the BGP neighbors can only receive and send the IPv4 unicast route.

Table 8-7 Configure the MVPN ORF function

tech ru
 lecin.ru

Step	Command	Description
Enable the route reflection function in the VPN-Target address family mode	neighbor { neighbor-address peer-group-name } route- reflector-client	Optional By default, do not enable the route refection function.
In the VPN-Target address family mode, enable the RT egress filter function of the MVPN route	neighbor { neighbor-address peer-group-name } constraint- rt-filter-for-mvpn enable	Mandatory By default, do not perform the egress RT filter for the MVPN route.

Caution:

• Activating a neighbor in the VPN-Target address family will activate the egress filtering function of the VPNv4 and VPNv6 routes of the neighbor.

8.2.4. NG MVPN Monitoring and Maintaining

Table 8-8 NG MVPN monitoring and maintaining

Command	Description
clear ip bgp { * neighbor-address as- number peer-group peer-group-name external } [vrf vrf-name ipv4 unicast ipv4 multicast vpnv4 unicast mvpn]	Reset the BGP neighbor
<pre>clear ip bgp { * neighbor-address as- number peer-group peer-group-name external } [ipv4 unicast ipv4 multicast vpnv4 unicast mvpn vrf vrf-name] { [soft] [in out] }</pre>	Soft-reset the BGP neighbor
<pre>show ip bgp ipv4 vpn-target [vpn-rt]</pre>	Display the route information in the VPN- Target address family
show ip bgp ipv4 vpn-target rt-filter [neighbor ip-address]	Display the RT filter list of the neighbor; when not specifying the neighbor, display the RT filter list of all neighbors
show ip bgp mvpn {all vrf vrf-name rd rd} {all-type type [1 [A-D] 3 [S-PMSI-A-D] 4 [LEAF-A-D] 5 [SA-A-D] 6 [c-multicast- route] 7 [c-multicast-route]]}	Display the route information in the BGP MVPN address family

MANAGE CU	loch ru
W W W.U	Lech.iu

Command	Description	
<pre>show ip bgp mvpn { all vrf vrf-name rd route-distinguisher } { neighbors ip-address } { advertised-routes received-routes routes } { all-type type 1 type 3 type 4 type 5 type 6 type 7}</pre>	Display the route information of the specified neighbor in the BGP MVPN address family	
<pre>show ip bgp mvpn {all vrf vrf-name rd route-distinguisher neighbors ip-address } {all-type type 1 type 3 type 4 type 5 type 6 type 7} { statistics }</pre>	Display the route statistics information in the BGP MVPN address family	
show ip bgp mvpn summary	Display the summary information of all routes of MVPN	
show ip mvpn [vrf vrf-name]	Display the MVPN abstract information	
show ip mvpn s-pmsi [vrf vrf-name [group group-address [source ip-address]]]	Display the S-PMSI information	
show ip mvpn s-pmsi configuration [vrf vrf- name]	Display the S-PMSI configuration information	
show ip mvpn s-pmsi mrt [vrf vrf-name [group group-address [source ip-address]]]	 Display the mrt information of S-PMSI 	
<pre>show ip pim interface [interface-name] [detail] [vrf vrf-name]</pre>	Display the PIM-SM interface information	
show ip pim mroute [active proxy ssm [active] group group-ip-address [source source-ip-address] source source-ip- address] [vrf vrf-name]	Display the PIM-SM multicast route table information	
show ip pim neighbor [detail] [vrf vrf- name]	Display the PIM-SM neighbor information	
<pre>show ip pim nexthop [ip-address] [vrf vrf- name]</pre>	Display the PIM-SM next-hop router information	
show ip pim statistics [vrf vrf-name]	Display the PIM-SM protocol packet statistics information	

8.3. NG MVPN Typical Configuration Example

8.3.1. Configure NG MVPN with the Adding Mode of Private Multicast as (S, G) and Public Tunnel as mLDP P2MP

Network Requirements

- There are two MVPNs in the network: VPN1 and VPN2. The two VPNs cannot access each other.
- CE1 and CE3 belong to VPN1, and CE2 and CE4 belong to VPN2.
- CE and PE use OSPF to advertise the private unicast route.
- In the autonomous domain, adopt OSPF as IGP to realize the intercommunication between Pes. Configure MP-IBGP to exchange the unicast VPN route information between PEs.
- VPN1 and VPN2 use mLDP P2MP as the public tunnel.
- VPN1 and VPN2 use PIM-SM as the multicast routing protocol.
- CE3 and CE4 directly connect the interfaces of the multicast receiver and run IGMPv3.
- Source sends the multicast flow, and the Receiver receives the multicast flow.

Network Topology

Figure 8-1 Configure NG MVPN with the adding mode of (S, G) and P-Tunnel type as mLDP P2MP in the domain

....

Device	Interface	IP address	Device	Interface	IP address
CE1	Gi0	14.1.1.2/16	PE2	Gi1	36.1.1.1/16
	Gi1	40.1.1.1/16		Gi0/2/2	37.1.1.1/16
PE1	Gi0	12.1.1.1/16		Loopback0	3.3.3/32
	Gi1	14.1.1.1/16	CE3	Gi0	36.1.1.2/16
	Gi0/2/2	15.1.1.1/16		Gi1	60.1.1.1/16
	Loopback0	1.1.1.1/32	CE4	Gi0	37.1.1.2/16
CE2	Gi0	15.1.1.2/16		Gi1	70.1.1.1/16
	Gi1	50.1.1.1/32	Source1		40.1.1.2/16
Ρ	Gi0	12.1.1.2/16	Source2		50.1.1.2/16
	Gi1	23.1.1.1/16	Receiver1		60.1.1.2/16
	Loopback0	2.2.2.2/32	Receiver2		70.1.1.2/16
PE2	Gi0	23.1.1.2/16			

Configuration Steps

Step 1: Configure the IP addresses of the interfaces. (omitted)

Step 2: Configure the global OSPF and advertise the global route.

#On PE1, configure the global OSPF.

PE1#configure terminal PE1(config)#router ospf 100 PE1(config-ospf)#network 1.1.1.1 0.0.0.0 area 0 PE1(config-ospf)#network 12.1.0.0 0.0.255.255 area 0 PE1(config-ospf)#exit

#On the P, configure the global OSPF.

P#configure terminal

P(config)#router ospf 100

P(config-ospf)#network 2.2.2.2 0.0.0.0 area 0 P(config-ospf)#network 12.1.0.0 0.0.255.255 area 0 P(config-ospf)#network 23.1.0.0 0.0.255.255 area 0 P(config-ospf)#exit

#On PE2, configure the global OSPF.

PE2#configure terminal PE2(config)#router ospf 100 PE2(config-ospf)#network 3.3.3.3 0.0.0.0 area 0 PE2(config-ospf)#network 23.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit

#After configuration, view the global route table on the device.

Take PE1 as an example:

PE1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 12.1.0.0/16 is directly connected, 00:23:28, gigabitethernet0
- 0 23.1.0.0/16 [110/2] via 12.1.1.2, 00:01:12, gigabitethernet0
- C 1.1.1.1/32 is directly connected, 00:32:21, loopback0
- 0 2.2.2.2/32 [110/2] via 12.1.1.2, 00:01:12, gigabitethernet0
- 0 3.3.3.3/32 [110/3] via 12.1.1.2, 00:01:05, gigabitethernet0

You can see that there is the loopback port route information of P and PE2 in the global route table of PE1.

Note:

• For the checking method of P and PE2, refer to PE1.

Step 3: Enable MVPN, MPLS IP and MPLS LDP (containing MLDP P2MP).

#On PE1, enable the global MVPN, MPLS IP, and MPLS LDP (containing MLDP P2MP), and meanwhile, enable the MPLS IP and MPLS LDP on the interface.

PE1(config)#mvpn-id 1.1.1.1

PE1(config)#mpls ip

PE1(config)#mpls ldp PE1(config-ldp)#router-id 1.1.1.1 PE1(config-ldp)#transport-address 1.1.1.1 PE1(config-ldp)#mldp p2mp PE1(config-ldp)#exit PE1(config)#interface gigabitethernet0 PE1(config-if-gigabitethernet0)#mpls ip PE1(config-if-gigabitethernet0)#mpls ldp PE1(config-if-gigabitethernet0)#exit

#On P, enable the global MVPN, MPLS IP, and MPLS LDP (containing MLDP P2MP), and meanwhile, enable the MPLS IP and MPLS LDP on the interface.

P(config)#mpls ip

P(config)#mpls ldp

P(config-ldp)#router-id 2.2.2.2

P(config-ldp)#transport-address 2.2.2.2

P(config-ldp)#mldp p2mp

P(config-ldp)#exit

P(config)#interface gigabitethernet0

P(config-if-gigabitethernet0)#mpls ip

P(config-if-gigabitethernet0)#mpls ldp

P(config-if-gigabitethernet0)#exit

P(config)#interface gigabitethernet1

P(config-if-gigabitethernet1)#mpls ip

P(config-if-gigabitethernet1)#mpls ldp

P(config-if-gigabitethernet1)#exit

#On PE2, enable the global MVPN, MPLS IP, and MPLS LDP (containing MLDP P2MP), and meanwhile, enable the MPLS IP and MPLS LDP on the interface.

PE2(config)#mvpn-id 3.3.3.3

PE2(config)#mpls ip

PE2(config)#mpls ldp

PE2(config-ldp)#router-id 3.3.3.3

PE2(config-ldp)#transport-address 3.3.3.3

PE2(config-ldp)#mldp p2mp

PE2(config-ldp)#exit

PE2(config)#interface gigabitethernet0

PE2(config-if-gigabitethernet0)#mpls ip

PE2(config-if-gigabitethernet0)#mpls ldp

PE2(config-if-gigabitethernet0)#exit

....

Note:

 router-id and transport-address can be configured manually and also can be generated automatically. Usually, they are configured to be the same. If not configuring router-id and transport-address manually, the device will select automatically. From the up interfaces, first select the Loopback interface with the maximum IP address; if the device is not configured with the Loopback interface address, select the common interface with the maximum IP address.

#After configuration, view the MVPN information on the device.

Take PE1 as an example:

PE1#show ip mvpn

mvpn-id: 1.1.1.1

You can see that the MVPN ID of PE1 is 1.1.1.1.

#On the device, view the LDP and MLDP session information.

Take PE1 as an example:

PE1#show mpls ldp session Peer IP Address Peer Type My Role State DeadTime 2.2.2.2 Multicast Active OPERATIONAL 00:02:20 Statistics for ldp sessions: Multicast sessions: 1 Targeted sessions: 0

PE1#show mpls ldp p2mp session

Session[2.2.2.2]:

P2MP Capability: enable

MBB Capability: disable

Nexthop selected: 12.1.1.2

Nexthop interface selected: gigabitethernet0

You can see that PE1 and P successfully set up the LDP session, and the session has the P2MP capability.

Note:

- For the checking method of P and PE2, refer to PE1.
- **Step 4:** Configure the VPN instance, enable the MVPN and multicast forwarding of VRF, and advertise the CE route to PE via OSPF.

#On PE1, configure the VPN instance, enable MVPN and multicast forwarding, and configure the PIM-SM and OSPF in VPN1 and VPN2.

PE1(config)#ip vrf 1

PE1(config-vrf)#rd 100:1

PE1(config-vrf)#route-target export 100:1

www.qtech.ru

PE1(config-vrf)#route-target import 100:1 PE1(config-vrf)#address-family ipv4 PE1(config-vrf-ipv4)#mvpn PE1(config-vrf-ipv4-mvpn)#i-pmsi mldp p2mp PE1(config-vrf-ipv4-mvpn)#exit PE1(config-vrf-ipv4)#exit PE1(config-vrf)#exit PE1(config)#ip vrf 2 PE1(config-vrf)#rd 200:1 PE1(config-vrf)#route-target export 200:1 PE1(config-vrf)#route-target import 200:1 PE1(config-vrf)#address-family ipv4 PE1(config-vrf-ipv4)#mvpn PE1(config-vrf-ipv4-mvpn)#i-pmsi mldp p2mp PE1(config-vrf-ipv4-mvpn)#exit PE1(config-vrf-ipv4)#exit PE1(config-vrf)#exit PE1(config)#ip multicast-routing vrf 1 PE1(config)#ip multicast-routing vrf 2 PE1(config)#interface gigabitethernet1 PE1(config-if-gigabitethernet1)#ip vrf forwarding 1 PE1(config-if-gigabitethernet1)#ip address 14.1.1.1 255.255.0.0 PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#exit PE1(config)#interface gigabitethernet0/2/2 PE1(config-if-gigabitethernet0/2/2)#ip vrf forwarding 2 PE1(config-if-gigabitethernet0/2/2)#ip address 15.1.1.1 255.255.0.0 PE1(config-if-gigabitethernet0/2/2)#ip pim sparse-mode PE1(config-if-gigabitethernet0/2/2)#exit PE1(config)#router ospf 200 vrf 1 PE1(config-ospf)#network 14.1.0.0 0.0.255.255 area 0 PE1(config-ospf)#exit PE1(config)#router ospf 300 vrf 2 PE1(config-ospf)#network 15.1.0.0 0.0.255.255 area 0 PE1(config-ospf)#exit #On CE1, enable the multicast forwarding, and configure PIM-SM and OSPF.

CE1(config)#ip multicast-routing

....

CE1(config)#interface gigabitethernet0

CE1(config-if-gigabitethernet0)#ip pim sparse-mode

CE1(config-if-gigabitethernet0)#exit

CE1(config)#interface gigabitethernet1

CE1(config-if-gigabitethernet1)#ip pim sparse-mode

CE1(config-if-gigabitethernet1)#exit

CE1(config)#router ospf 100

CE1(config-ospf)#network 14.1.0.0 0.0.255.255 area 0

CE1(config-ospf)#network 40.1.0.0 0.0.255.255 area 0

CE1(config-ospf)#exit

#On CE2, enable the multicast forwarding, and configure PIM-SM and OSPF.

CE2(config)#ip multicast-routing

CE2(config)#interface gigabitethernet0

CE2(config-if-gigabitethernet0)#ip pim sparse-mode

CE2(config-if-gigabitethernet0)#exit

CE2(config)#interface gigabitethernet1

CE2(config-if-gigabitethernet1)#ip pim sparse-mode

CE2(config-if-gigabitethernet1)#exit

CE2(config)#router ospf 100

CE2(config-ospf)#network 15.1.0.0 0.0.255.255 area 0

CE2(config-ospf)#network 50.1.0.0 0.0.255.255 area 0

CE2(config-ospf)#exit

#On PE2, configure the VPN instance, enable MVPN and multicast forwarding, and configure the PIM-SM and OSPF in VPN1 and VPN2.

PE2(config)#ip vrf 1 PE2(config-vrf)#rd 100:1 PE2(config-vrf)#route-target export 100:1 PE2(config-vrf)#route-target import 100:1 PE2(config-vrf)#address-family ipv4 PE2(config-vrf-ipv4)#mvpn PE2(config-vrf-ipv4-mvpn)#i-pmsi mldp p2mp PE2(config-vrf-ipv4-mvpn)#exit PE2(config-vrf-ipv4)#exit PE2(config-vrf-ipv4)#exit PE2(config-vrf)#exit PE2(config-vrf)#rd 200:1 PE2(config-vrf)#route-target export 200:1

www.qtech.ru

PE2(config-vrf)#route-target import 200:1 PE2(config-vrf)#address-family ipv4 PE2(config-vrf-ipv4)#mvpn PE2(config-vrf-ipv4-mvpn)#i-pmsi mldp p2mp PE2(config-vrf-ipv4-mvpn)#exit PE2(config-vrf-ipv4)#exit PE2(config-vrf)#exit PE2(config)#ip multicast-routing vrf1 PE2(config)#ip multicast-routing vrf 2 PE2(config)#interface gigabitethernet1 PE2(config-if-gigabitethernet1)#ip vrf forwarding 1 PE2(config-if-gigabitethernet1)#ip address 36.1.1.1 255.255.0.0 PE2(config-if-gigabitethernet1)#ip pim sparse-mode PE2(config-if-gigabitethernet1)#exit PE2(config)#interface gigabitethernet0/2/2 PE2(config-if-gigabitethernet0/2/2)#ip vrf forwarding 2 PE2(config-if-gigabitethernet0/2/2)#ip address 37.1.1.1 255.255.0.0 PE2(config-if-gigabitethernet0/2/2)#ip pim sparse-mode PE2(config-if-gigabitethernet0/2/2)#exit PE2(config)#router ospf 200 vrf 1 PE2(config-ospf)#network 36.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit PE2(config)#router ospf 300 vrf 2 PE2(config-ospf)#network 37.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit

#On CE3, enable multicast forwarding, configure PIM-SM and OSPF, and configure IGMPv3 on the interface connecting the multicast receiver.

CE3(config)#ip multicast-routing CE3(config)#interface gigabitethernet0 CE3(config-if-gigabitethernet0)#ip pim sparse-mode CE3(config-if-gigabitethernet0)#exit CE3(config)#interface gigabitethernet1 CE3(config-if-gigabitethernet1)#ip pim sparse-mode CE3(config-if-gigabitethernet1)#ip igmp version 3 CE3(config-if-gigabitethernet1)#exit CE3(config)#router ospf 100 CE3(config-ospf)#network 36.1.0.0 0.0.255.255 area 0

CE3(config-ospf)#network 60.1.0.0 0.0.255.255 area 0 CE3(config-ospf)#exit

#On CE4, enable multicast forwarding, configure PIM-SM and OSPF, and configure IGMPv3 on the interface connecting the multicast receiver.

CE4(config)#ip multicast-routing CE4(config)#interface gigabitethernet0 CE4(config-if-gigabitethernet0)#ip pim sparse-mode CE4(config-if-gigabitethernet0)#exit CE4(config)#interface gigabitethernet1 CE4(config-if-gigabitethernet1)#ip pim sparse-mode CE4(config-if-gigabitethernet1)#ip igmp version 3 CE4(config-if-gigabitethernet1)#exit CE4(config)#router ospf 100 CE4(config-ospf)#network 37.1.0.0 0.0.255.255 area 0 CE4(config-ospf)#network 70.1.0.0 0.0.255.255 area 0 CE4(config-ospf)#network 70.1.0.0 0.0.255.255 area 0

#On PE, view the VPN route table and PIM-SM interface information.

Take PE1 as an example:

PE1#show ip route vrf 1

```
Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management
```

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 14.1.0.0/16 is directly connected, 00:11:45, gigabitethernet1

0 40.1.0.0/16 [110/2] via 14.1.1.2, 00:11:11, gigabitethernet1

PE1#show ip route vrf 2

```
Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management
```

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 15.1.0.0/16 is directly connected, 00:23:25, gigabitethernet0/2/2

0 50.1.0.0/16 [110/2] via 15.1.1.2, 00:22:53, gigabitethernet0/2/2

www.qtech.ru

....

PE1#show ip pim interface vrf 1 PIM Interface Table: PIM VRF Name: 1 Total 2 Interface entries Total 1 External Interface entry Total 0 Sparse-Dense Mode Interface entry

Address	lnterface		VIF	Ver/	VIF	N	br Df	R DR	BSR
01200	Neighbor	Index	Mode	Flag	Со	unt	Pri		Border
Neighbo	r Filter			_					
14.1.1.1	gigabitethernet1	0	v2/S	UP	1	1	14.1.1.2	FALSE	FALSE
0.0.0.0 FALSE	tunnel1023		2	v2/S	UP	0	1	0.0.0.0	FALSE

PE1#show ip pim interface vrf 2

PIM Interface Table:

PIM VRF Name: 2

Total 2 Interface entries

Total 1 External Interface entry

Total 0 Sparse-Dense Mode Interface entry

Address CISCO	Interface Neighbor	VIF	Ver/	VIF	Nbr	DR	DR	BSR
Neighbo	Index r Filter	Mode	Flag	Οοι	unt P	ri		Border
15.1.1.1 FALSE	gigabitethernet0/2/2	0	v2/S	UP	1	1	15.1.1.2	FALSE
0.0.0.0 FALSE	tunnel1022	2	v2/S	UP	0	1	0.0.0.0	FALSE

You can see that there are the routes to CE1 and CE2 in the VPN1 and VPN2 route tables of PE1, and the PIM-SM interface table contains the enabled PIM-SM interface and auto generated MVPN tunnel interface.

Note:

- For the checking methods of PE2, CE3, and CE4, refer to PE1.
- The PE at the multicast source should configure the tunnel type, and the PE at the multicast receiver does not need to configure the tunnel type.
- tunnel 1023 and tunnel1022 are the MVPN interface. When MVPN is enabled globally and on the VRF, each VPN will automatically generate one tunnel interface.

www.qtech.ru

Step 5: Configure MP-IBGP, and use the loopback interface as the peer address; perform the route re-distribution with the IGP protocol in the VPN instance.

#On PE1, configure MP-IBGP, enable VPNv4, IPv4 MVPN address family; perform the route redistribution with the IGP protocol in the VPN instance.

> PE1(config)#router bgp 100 PE1(config-bgp)#neighbor 3.3.3.3 remote-as 100 PE1(config-bgp)#neighbor 3.3.3.3 update-source loopback0 PE1(config-bgp)#address-family vpnv4 PE1(config-bgp-af)#neighbor 3.3.3.3 activate PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 mvpn PE1(config-bgp-af)#neighbor 3.3.3.3 activate PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 vrf 1 PE1(config-bgp-af)#redistribute ospf 200 PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 vrf 2 PE1(config-bgp-af)#redistribute ospf 300 PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#exit PE1(config)#router ospf 200 vrf 1 PE1(config-ospf)#redistribute bgp 100 PE1(config-ospf)#exit

PE1(config)#router ospf 300 vrf 2

PE1(config-ospf)#redistribute bgp 100

PE1(config-ospf)#exit

#On PE2, configure MP-IBGP, enable VPNv4, IPv4 MVPN address family; perform the route redistribution with the IGP protocol in the VPN instance.

> PE2(config)#router bgp 100 PE2(config-bgp)#neighbor 1.1.1.1 remote-as 100 PE2(config-bgp)#neighbor 1.1.1.1 update-source loopback0 PE2(config-bgp)#address-family vpnv4 PE2(config-bgp-af)#neighbor 1.1.1.1 activate PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#address-family ipv4 mvpn PE2(config-bgp-af)#neighbor 1.1.1.1 activate PE2(config-bgp-af)#neighbor 1.1.1.1 activate

www.qtech.ru

••••

PE2(config-bgp)#address-family ipv4 vrf 1 PE2(config-bgp-af)#redistribute ospf 200 PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#address-family ipv4 vrf 2 PE2(config-bgp-af)#redistribute ospf 300 PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#exit PE2(config-bgp)#exit PE2(config-ospf)#redistribute bgp 100 PE2(config-ospf)#redistribute bgp 100

Note:

• In practical applications, if there are two or more PE devices on the same site side, it is recommended that route should not be redistributed directly between different routing protocols. If you have to configure, you need to configure the routing policy to prevent generating the route loops.

Step 6: Check the result.

#After configuration, view the BGP neighbor information on the PE.

Take PE1 as an example:

PE1#show ip bgp vpnv4 all summary BGP router identifier 1.1.1.1, local AS number 100 BGP table version is 6 1 BGP AS-PATH entries 0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 3.3.3.3 4 100 40 41 6 0 000:32:01 4

Total number of neighbors 1 PE1#show ip bgp mvpn summary BGP router identifier 1.1.1.1, local AS number 100 BGP table version is 6 1 BGP AS-PATH entries 0 BGP community entries

NeighborVAS MsgRcvd MsgSentTblVerInQ OutQ Up/DownState/PfxRcd3.3.3.341005275396000:03:322

Total number of neighbors 1

According to the numbers displayed in the State/PfxRcd column (the number of the route prefixes received from the neighbor), you can see that PE1 and PE2 successfully set up the BGP neighbor.

#On the PE, view the BGP VPNv4 route table, BGP MVPN route table, and the VPN route table.

Take PE1 as an example:

PE1#show ip bgp vpnv4 vrf 1							
BGP table version	is 6, local router	ID is	1.1.1.1				
Status codes: s su	ppressed, d damp	oed, h	histor	ry, * valid, ≻ best, i - internal,			
S Stale							
Origin codes: i - IG	P, e - EGP, ? - ind	comp	lete				
Network	Next Hop	Meti	ric Loc	Prf Weight Path			
Route Distinguishe	r: 100:1 (Default f	or VR	F 1)				
[0]*> 14.1.0.0/16	0.0.0.0	1	32	.768 ?			
[0]*> 40.1.0.0/16	14.1.1.2	2	3276	68 ?			
[B]*>i36.1.0.0/16	3.3.3.3	1	100	0 ?			
[B]*>i60.1.0.0/16	3.3.3.3	2	100	0 ?			
PE1#show ip bgp v	pnv4 vrf 2						
BGP table version	is 6, local router	ID is	1.1.1.1				
Status codes: s su	ppressed, d damp	oed, h	histor	ry, * valid, > best, i - internal,			
S Stale							
Origin codes: i - IG	P, e - EGP, ? - ind	comp	lete				
Network	Next Hop	Met	ric Loc	Prf Weight Path			
Route Distinguishe	r: 200:1 (Default f	for VF	RF 2)				
[0]*> 15.1.0.0/16	0.0.0.0	1	327	68 ?			
[0]*> 50.1.0.0/16	15.1.1.2	2	327	68 ?			
[B]*>i37.1.0.0/16	3.3.3.3	1	100	0 ?			
[B]*>i70.1.0.0/16	3.3.3.3	2	100	0 ?			
PE1#show ip bgp mvpn vrf 1 all-type							
BGP local router ID is 1.1.1.1							
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,							
S Stale							
Origin codes: i - IGP, e - EGP, ? - incomplete							

/PN								www.qtech.ru
	MVPN Information f	or Route Disti	nguishe	r:100:1	(Defa	ault fo	r VRF 1)	
	Intra-AS I-PMSI A-	D Routes:						
	Network(Origina	ting IP Addr)	Next F	Ιор	Ν	letric	LocPrf V	Veight Path
	[B]*> 1.1.1.1	0.0.0.0		0	3	2768 i		
	[B]*>i3.3.3.3	3.3.3.3		0	100) ()	i	
	PE1#show ip bgp m	/pn vrf 2 all-ty	уре					
	BGP local router ID	is 1.1.1.1						
	Status codes: s sup S Stale	oressed, d dar	nped, h	histor	·y, * va	alid, >	best, i - int	ernal,
	Origin codes: i - IGP	, e - EGP, ? - i	ncomple	ete				
	MVPN Information f	or Route Disti	nguishe	r:200:	1 (Def	ault fo	or VRF 2)	
	Intra-AS I-PMSI A-	D Routes:						
	Network(Origina	ting IP Addr)	Next F	Чор	Ν	letric	LocPrf V	Veight Path
	[B]*> 1.1.1.1	0.0.0.0		0	3	2768 i		
	[B]*>i3.3.3.3	3.3.3.3		0	100) ()	i	
	PE1#show ip route v	vrf 1						
	Codes: C - connec Management	ted, S - stati	c, R -	RIP,	0 - 0)SPF,	0E-0SPF	External, M
	D - Redirect, E	- IRMP, EX - II	RMP ext	ernal,	o - S	NSP,	B - BGP, i-I	SIS
	Gateway of last res	ort is not set						
	B 36.1.0.0/16 [200/1]	via 3.3.3.3, 00):01:06, g	gigabit	tether	net0		
	C 14.1.0.0/16 is dire	ctly connected	l, 00:23:2	25, gig	jabite	thern	et1	
	0 40.1.0.0/16 [110/2]	via 14.1.1.2, 00	:22:51, g	igabit	ether	net1		
	B 60.1.0.0/16 [200/2] via 3.3.3.3, 0	0:01:06,	gigabi	tethe	rnet0		
	PE1#show ip route v	vrf 2						
	Codes: C - connec Management	ted, S - stati	c, R -	RIP,	0 - 0)SPF,	0E-0SPF	External, M
	D - Redirect, E	- IRMP, EX - II	RMP ext	ernal,	o - S	NSP,	B - BGP, i-I	SIS
	Gateway of last res	ort is not set						

B 37.1.0.0/16 [200/1] via 3.3.3.3, 00:01:15, gigabitethernet0

C 15.1.0.0/16 is directly connected, 00:23:25, gigabitethernet0/2/2

- 0 50.1.0.0/16 [110/2] via 15.1.1.2, 00:22:53, gigabitethernet0/2/2
- B 70.1.0.0/16 [200/2] via 3.3.3.3, 00:01:15, gigabitethernet0

You can see that there are the routes to the peer CE3 and CE4 in the BGP VPNv4 route table, VPN1 and VPN2 route tables of PE1. There is type-1 MVPN route information advertised by the peer PE2 in the BGP MVPN route table of PE1.

#On the PE, view the PIM-SM neighbor information.

Take PE1 as an example:

PE1#show ip pim neighbor vrf 1 PIM Neighbor Table: PIM VRF Name: 1 Total 2 Neighbor entry

Neighbor	Interface	Uptime/Expires	Ve	er DR
Address		Prior	ity/N	lode
3.3.3.3	tunnel1023	00:19:51/never	/2	N / DR
14.1.1.2	gigabitethernet1	00:45:46/00:01:42	/2	1 / DR

PE1#show ip pim neighbor vrf 2 PIM Neighbor Table: PIM VRF Name: 2 Total 2 Neighbor entry

Neighbor	Interface	Uptime/Expires	Ver DR
Address		Prior	ity/Mode
3.3.3.3	tunnel1022	00:20:08/never	v2 N/DR
15.1.1.2	gigabitethernet0/2/2	00:37:21/00:01:3	7 v2 1/DR

You can see that PE1 sets up the PIM-SM neighbor with CE1, CE2, and sets up the PIM-SM neighbor with the MVPN tunnel interface of the peer PE.

Note:

• For the checking method of PE2, refer to PE1.

#Receiver1 is added to IGMPv3 group 225.0.0.1, and is specified to receive the multicast flow sent by the multicast source Source1 and Source2.

Receiver2 is added to IGMPv3 group 226.0.0.1, and is specified to receive the multicast flow sent by the multicast source Source1 and Source2.

On CE3 and CE4, view the IGMP group and PIM-SM route table.

CE3#show ip igmp groups detail

Interface: gigabitethernet1

225.0.0.1

00:00:10

Group mode: Include Last reporter: 60.1.1.2

NG MVPN

Group:

Uptime:

www.qtech.ru

....

TIB-A Count: 2 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 00:00:10 00:04:14 stopped Yes R 40.1.1.2 50.1.1.2 00:00:10 00:04:14 stopped Yes R CE4#show ip igmp groups detail Interface: gigabitethernet1 Group: 226.0.0.1 00:00:10 Uptime: Group mode: Include Last reporter: 70.1.1.2 TIB-A Count: 2 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 40.1.1.2 00:00:10 00:04:14 stopped Yes R 50.1.1.2 00:00:10 00:04:14 stopped Yes R

CE3#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 2 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 225.0.0.1) Up time: 00:03:20

www.qtech.ru

KAT time: 00:00:10 RPF nbr: 36.1.11 RPF idx: gigabitethernet0 SPT bit: FALSE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0 (50.1.1.2, 225.0.0.1) Up time: 00:03:20

Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: FALSE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

CE4#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry

www.qtech.ru

....

Total 2 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 226.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: FALSE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

(50.1.1.2, 226.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 37.1.1.1 RPF idx: gigabitethernet0 SPT bit: FALSE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list:

gigabitethernet1

Packet count 0

You can see that the group is added on CE3 and CE4 successfully, and the (S,G) route is generated. CE3 and CE2 are not in one VPN, and there is no unicast route to Source2, so only send the (S,G) route to Source1. CE4 is similar.

#On the PE, view the BGP MVPN type-7 route table.

PE1#show ip bgp mvpn rd 100:1 type 7 BGP local router ID is 1.1.1.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete MVPN Information for Route Distinguisher:100:1 (Default for VRF 1) Source Tree Join Routes: Network(AS Number:C-S:C-G) Next Hop Metric LocPrf Weight Path 0 i [B]*>i100:40.1.1.2:225.0.0.1 3.3.3.3 0 100 PE1#show ip bgp mvpn rd 200:1 type 7 BGP local router ID is 1.1.1.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete MVPN Information for Route Distinguisher: 200:1 (Default for VRF 2) Source Tree Join Routes: Network(AS Number:C-S:C-G) Next Hop Metric LocPrf Weight Path [B]*>i100:50.1.1.2:226.0.0.1 0 100 0 i 3.3.3.3 PE2#show ip bgp mvpn rd 100:1 type 7 BGP local router ID is 3.3.3.3 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete MVPN Information for Route Distinguisher:100:1 Source Tree Join Routes: Network(AS Number:C-S:C-G) Metric LocPrf Weight Path Next Hop [B]*> 100:40.1.1.2:225.0.0.1 0.0.0.0 0 32768 i

PE2#show ip bgp mvpn rd 200:1 type 7 BGP local router ID is 3.3.3.3

NG MVPN			www.qtech.ru	
Status codes: s su	ppressed, d damped, h	history, * valid, >	• best, i - internal,	
S Stale		•		
Origin codes: i - IG	P, e - EGP, ? - incomple	ete		
MVPN Information	for Route Distinguishe	r:200:1		
Source Tree Join I	Routes:			
Network(AS Nu	umber:C-S:C-G) Nex	t Hop Met	tric LocPrf Weight Path	ו
[B]*> 100:50.1.1.2:22	6.0.0.1 0.0.0.0	0 3	32768 i	
#On the PE, view the PIM-SM	route table of the VPN.			
PE1#show ip pim n	nroute vrf 1			
IP Multicast Routin	ig Table:			
PIM VRF Name: 1				
Total 0 (*,*,RP) ent	ry			
Total 0 (*,G) entry				
Total 1 (S,G) entries	S			
Total 0 (S,G,rpt) en	try			
Total 0 FCR entry				
Up timer/Expiry tin	ner			
(40.1.1.2, 225.0.0.1)				
Up time: 00:02:50				
KAT time: 00:00:40				
RPF nbr: 14.1.1.2				
RPF idx: gigabiteth	ernet1			
SPT bit: FALSE				
Flags:				
JOIN DESIRED				
Upstream State: JO	DINED			
Local interface lis	st:			
Joined interface l	ist:			
tunnel1023 00:0	2:50/stopped			
Asserted interfac	e list:			
Outgoing interfac	e list:			

- tunnel1023
- Packet count 0

PE1#show ip pim mroute vrf 2

www.qtech.ru

IP Multicast Routing Table: PIM VRF Name: 2 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(50.1.1.2, 226.0.0.1) Up time: 00:02:55 KAT time: 00:00:35 RPF nbr: 15.1.1.2 RPF idx: gigabitethernet0/2/2 SPT bit: FALSE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: tunnel1022 00:02:55/stopped Asserted interface list: Outgoing interface list: tunnel1022 Packet count 0

PE2#show ip pim mroute vrf 1 IP Multicast Routing Table: PIM VRF Name: 1 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

www.qtech.ru

....

(40.1.1.2, 225.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 1.1.1.1 RPF idx: tunnel1023 SPT bit: FALSE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: gigabitethernet1 00:03:20/00:02:10 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

PE2#show ip pim mroute vrf 2 IP Multicast Routing Table: PIM VRF Name: 2 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(50.1.1.2, 226.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 1.1.1.1 RPF idx: tunnel1022 SPT bit: FALSE Flags: JOIN DESIRED

Upstream State: JOINED Local interface list: Joined interface list: gigabitethernet0/2/2 00:03:20/00:02:10 Asserted interface list: Outgoing interface list: gigabitethernet0/2/2 Packet count 0

You can see that both PE1 and PE2 have the corresponding multicast route, and the egress interface information is correct. Source1 and Source2 send the corresponding multicast flow. Receiver1 can only receive the multicast flow sent by Source1, and Receiver2 can only receive the multicast flow sent by Source1.

Note:

• For the checking method of CE1 and CE2, refer to PE1.

8.3.2. Configure NG MVPN with the Adding Mode of Private Multicast as (S, G) and Public Tunnel as RSVP-TE P2MP

Network Requirements

- There are two MVPNs in the network: VPN1 and VPN2. The two VPNs cannot access each other.
- CE1 and CE3 belong to VPN1, and CE2 and CE4 belong to VPN2.
- CE and PE use OSPF to advertise the private unicast route.
- In the autonomous domain, adopt OSPF as IGP to realize the intercommunication between PEs. Configure MP-IBGP to exchange the unicast VPN route information between PEs.
- VPN1 and VPN2 use RSVP-TE P2MP as the public tunnel.
- VPN1 and VPN2 use PIM-SM as the multicast routing protocol.
- CE3 and CE4 directly connect the interfaces of the multicast receiver and run IGMPv3.
- Source sends the multicast flow, and the Receiver receives the multicast flow.

Figure 8-2 Configure NG MVPN with the adding mode of (S, G) and P-Tunnel type as RSVP- TE P2MP in the domain

Device	Interface	IP address	Device	Interface	IP address
CE1	Gi0	14.1.1.2/16	PE2	Gi1	36.1.1.1/16
	Gi1	40.1.1.1/16		Gi0/2/2	37.1.1.1/16
PE1	Gi0	12.1.1.1/16		Loopback0	3.3.3/32
	Gi1	14.1.1.1/16	CE3	Gi0	36.1.1.2/16
	Gi0/2/2	15.1.1.1/16		Gi1	60.1.1.1/16
	Loopback0	1.1.1.1/32	CE4	Gi0	37.1.1.2/16
CE2	Gi0	15.1.1.2/16		Gi1	70.1.1.1/16
	Gi1	50.1.1.1/32	Source1		40.1.1.2/16

ww.atech.ru

N

Device	Interface	IP address	Device	Interface	IP address
Ρ	Gi0	12.1.1.2/16	Source2		50.1.1.2/16
	Gi1	23.1.1.1/16	Receiver1		60.1.1.2/16
	Loopback0	2.2.2.2/32	Receiver2		70.1.1.2/16
PE2	Gi0	23.1.1.2/16			

Configuration Steps

- **Step 1:** Configure the IP addresses of the interfaces. (omitted)
- **Step 2:** Configure the OSPF protocol, all interfaces cover to area 0, and enable the MPLS TE capability in area 0 of Device1, Device2, and Device3.

#On PE1, configure the global OSPF, and enable the MPLS TE capability in area 0.

PE1#configure terminal

PE1(config)#router ospf 100

PE1(config-ospf)#mpls traffic-eng area 0

PE1(config-ospf)#mpls traffic-eng router-id 1.1.1.1

PE1(config-ospf)#router-id 1.1.1.1

PE1(config-ospf)#network 1.1.1.1 0.0.0.0 area 0

PE1(config-ospf)#network 12.1.0.0 0.0.255.255 area 0

PE1(config-ospf)#exit

#On P, configure the global OSPF, and enable the MPLS TE capability in area 0.

P#configure terminal

P(config)#router ospf 100

P(config-ospf)#mpls traffic-eng area 0

P(config-ospf)#mpls traffic-eng router-id 2.2.2.2

P(config-ospf)#router-id 2.2.2.2

P(config-ospf)#network 2.2.2.2 0.0.0.0 area 0

P(config-ospf)#network 12.1.0.0 0.0.255.255 area 0

P(config-ospf)#network 23.1.0.0 0.0.255.255 area 0

P(config-ospf)#exit

#On PE2, configure the global OSPF, and enable the MPLS TE capability in area 0.

PE2#configure terminal

PE2(config)#router ospf 100

PE2(config-ospf)#mpls traffic-eng area 0 PE2(config-ospf)#mpls traffic-eng router-id 3.3.3.3 PE2(config-ospf)#router-id 3.3.3.3 PE2(config-ospf)#network 3.3.3.3 0.0.0.0 area 0 PE2(config-ospf)#network 23.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit

#After configuration, query the global route table on the device.

Take PE1 as an example:

PE1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

LC 1.1.1.1/32 is directly connected, 16:19:56, loopback0

- 0 2.2.2.2/32 [110/2] via 12.1.1.2, 00:06:14, gigabitethernet0
- 0 3.3.3.3/32 [110/3] via 12.1.1.2, 00:05:54, gigabitethernet0
- C 12.1.0.0/16 is directly connected, 00:07:51, gigabitethernet0
- L 12.1.1.1/32 is directly connected, 00:07:51, gigabitethernet0
- 0 23.1.0.0/16 [110/2] via 12.1.1.2, 00:06:14, gigabitethernet0

You can see that there is the loopback port route information of P and PE2 in the global route table of PE1.

Note:

• For the checking method of P and PE2, refer to PE1.

Step 3: Enable MVPN, MPLS IP, MPLS LDP, and MPLS TE.

#On PE1, enable the global MVPN, MPLS IP, MPLS LDP, and MPLS TE, and meanwhile, enable the MPLS IP, MPLS LDP, and MPLS TE on the interface. Configure the maximum reversible bandwidth of the link as 100000 kbps on interface gigabitethernet0.

PE1(config)#mvpn-id 1.1.1.1 PE1(config)#mpls ip PE1(config)#mpls ldp PE1(config-ldp)#router-id 1.1.1.1 PE1(config-ldp)#transport-address 1.1.1.1

••••

PE1(config-ldp)#exit

PE1(config)#mpls traffic-eng tunnels

PE1(config-rsvp-te)#p2mp

PE1(config-rsvp-te)#router-id 1.1.1.1

PE1(config-rsvp-te)#exit

PE1(config)#interface gigabitethernet0

PE1(config-if-gigabitethernet0)#mpls ip

PE1(config-if-gigabitethernet0)#mpls ldp

PE1(config-if-gigabitethernet0)#mpls traffic-eng tunnels

PE1(config-if-gigabitethernet0)#ip rsvp bandwidth 100000

PE1(config-if-gigabitethernet0)#exit

#On P, enable the global MVPN, MPLS IP, MPLS LDP, and MPLS TE, and meanwhile, enable the MPLS IP, MPLS LDP, and MPLS TE on the interface. Configure the maximum reversible bandwidth of the link as 100000 kbps on interface gigabitethernet0 and gigabitethernet1.

P(config)#mpls ip P(config)#mpls ldp P(config-ldp)#router-id 2.2.2.2 P(config-ldp)#transport-address 2.2.2.2 P(config-ldp)#exit P(config)#mpls traffic-eng tunnels P(config-rsvp-te)#p2mp P(config-rsvp-te)#router-id 2.2.2.2 P(config-rsvp-te)#exit P(config)#interface gigabitethernet0 P(config-if-gigabitethernet0)#mpls ip P(config-if-gigabitethernet0)#mpls ldp P(config-if-gigabitethernet0)#mpls traffic-eng tunnels P(config-if-gigabitethernet0)#ip rsvp bandwidth 100000 P(config-if-gigabitethernet0)#exit P(config)#interface gigabitethernet1 P(config-if-gigabitethernet1)#mpls ip P(config-if-gigabitethernet1)#mpls ldp P(config-if-gigabitethernet1)#mpls traffic-eng tunnels P(config-if-gigabitethernet1)#ip rsvp bandwidth 100000

P(config-if-gigabitethernet1)#exit

#On PE2, enable the global MVPN, MPLS IP, MPLS LDP, and MPLS TE, and meanwhile, enable the MPLS IP, MPLS LDP, and MPLS TE on the interface. Configure the maximum reversible bandwidth of the link as 100000 kbps on interface gigabitethernet0.

PE2(config)#mvpn-id 3.3.3.3 PE2(config)#mpls ip PE2(config)#mpls ldp PE2(config-ldp)#router-id 3.3.3.3 PE2(config-ldp)#transport-address 3.3.3.3 PE2(config-ldp)#exit PE2(config)#mpls traffic-eng tunnels PE2(config-rsvp-te)#p2mp PE2(config-rsvp-te)#router-id 3.3.3.3 PE2(config-rsvp-te)#exit PE2(config)#interface gigabitethernet0 PE2(config-if-gigabitethernet0)#mpls ip PE2(config-if-gigabitethernet0)#mpls ldp PE2(config-if-gigabitethernet0)#mpls traffic-eng tunnels PE2(config-if-gigabitethernet0)#ip rsvp bandwidth 100000 PE2(config-if-gigabitethernet0)#exit

Note:

 router-id and transport-address can be configured manually and also can be generated automatically. Usually, they are configured to be the same. If not configuring router-id and transport-address manually, the device will select automatically. From the up interfaces, first select the Loopback interface with the maximum IP address; if the device is not configured with the Loopback interface address, select the common interface with the maximum IP address.

#After configuration, view the MVPN information on the device.

Take PE1 as an example:

PE1#show ip mvpn

mvpn-id: 1.1.1.1

You can see that the MVPN ID of PE1 is 1.1.1.1.

#On the device, view the LDP session information.

Take PE1 as an example:

PE1#show mpls ldp session

Peer IP Address Peer Type My Role State DeadTime

2.2.2.2 Multicast Active OPERATIONAL 00:02:26

Statistics for ldp sessions:

Multicast sessions: 1

Targeted sessions: 0

You can see that PE1 and P successfully set up the LDP session

Note:

- For the checking method of P and PE2, refer to PE1.
- Step 4: Configure the VPN instance, enable the MVPN and multicast forwarding of VRF, configure the MPLS TE P2MP profile, and advertise the CE route to PE via OSPF.

#On PE1, configure the VPN instance, enable MVPN and multicast forwarding, configure the MPLS TE P2MP profile, and configure the PIM-SM and OSPF in VPN1 and VPN2.

PE1(config)#ip vrf 1 PE1(config-vrf)#rd 100:1 PE1(config-vrf)#route-target export 100:1 PE1(config-vrf)#route-target import 100:1 PE1(config-vrf)#address-family ipv4 PE1(config-vrf-ipv4)#mvpn PE1(config-vrf-ipv4-mvpn)#i-pmsi rsvp-te p2mp template 1 PE1(config-vrf-ipv4-mvpn)#exit PE1(config-vrf-ipv4)#exit PE1(config-vrf)#exit PE1(config)#ip vrf 2 PE1(config-vrf)#rd 200:1 PE1(config-vrf)#route-target export 200:1 PE1(config-vrf)#route-target import 200:1 PE1(config-vrf)#address-family ipv4 PE1(config-vrf-ipv4)#mvpn PE1(config-vrf-ipv4-mvpn)#i-pmsi rsvp-te p2mp template 2 PE1(config-vrf-ipv4-mvpn)#exit PE1(config-vrf-ipv4)#exit PE1(config-vrf)#exit PE1(config)#ip multicast-routing vrf 1 PE1(config)#ip multicast-routing vrf 2 PE1(config)#mpls traffic-eng p2mp-template 1 PE1(config-te-p2mp-template)#tunnel mpls traffic-eng bandwidth 1000 PE1(config-te-p2mp-template)#exit PE1(config)#mpls traffic-eng p2mp-template 2 PE1(config-te-p2mp-template)#tunnel mpls traffic-eng bandwidth 1000 PE1(config-te-p2mp-template)#exit

PE1(config)#interface gigabitethernet1

PE1(config-if-gigabitethernet1)#ip vrf forwarding 1 PE1(config-if-gigabitethernet1)#ip address 14.1.1.1 255.255.0.0 PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#exit PE1(config)#interface gigabitethernet0/2/2 PE1(config-if-gigabitethernet0/2/2)#ip vrf forwarding 2 PE1(config-if-gigabitethernet0/2/2)#ip address 15.1.1.1 255.255.0.0 PE1(config-if-gigabitethernet0/2/2)#ip pim sparse-mode PE1(config-if-gigabitethernet0/2/2)#exit PE1(config-if-gigabitethernet0/2/2)#exit PE1(config-ospf)#network 14.1.0.0 0.0.255.255 area 0 PE1(config-ospf)#exit PE1(config-ospf)#network 15.1.0.0 0.0.255.255 area 0 PE1(config-ospf)#exit

#On CE1, enable multicast forwarding, and configure PIM-SM and OSPF.

- CE1(config)#ip multicast-routing
- CE1(config)#interface gigabitethernet0
- CE1(config-if-gigabitethernet0)#ip pim sparse-mode
- CE1(config-if-gigabitethernet0)#exit
- CE1(config)#interface gigabitethernet1
- CE1(config-if-gigabitethernet1)#ip pim sparse-mode
- CE1(config-if-gigabitethernet1)#exit
- CE1(config)#router ospf 100
- CE1(config-ospf)#network 14.1.0.0 0.0.255.255 area 0
- CE1(config-ospf)#network 40.1.0.0 0.0.255.255 area 0
- CE1(config-ospf)#exit
- #On CE2, enable multicast forwarding, and configure PIM-SM and OSPF.
 - CE2(config)#ip multicast-routing
 - CE2(config)#interface gigabitethernet0
 - CE2(config-if-gigabitethernet0)#ip pim sparse-mode
 - CE2(config-if-gigabitethernet0)#exit
 - CE2(config)#interface gigabitethernet1
 - CE2(config-if-gigabitethernet1)#ip pim sparse-mode
 - CE2(config-if-gigabitethernet1)#exit
 - CE2(config)#router ospf 100
 - CE2(config-ospf)#network 15.1.0.0 0.0.255.255 area 0

www.qtech.ru

CE2(config-ospf)#network 50.1.0.0 0.0.255.255 area 0 CE2(config-ospf)#exit

#On PE2, configure the VPN instance, enable MVPN and multicast forwarding, and configure the PIM-SM and OSPF in VPN1 and VPN2.

PE2(config)#ip vrf 1 PE2(config-vrf)#rd 100:1 PE2(config-vrf)#route-target export 100:1 PE2(config-vrf)#route-target import 100:1 PE2(config-vrf)#address-family ipv4 PE2(config-vrf-ipv4)#mvpn PE2(config-vrf-ipv4-mvpn)#exit PE2(config-vrf-ipv4)#exit PE2(config-vrf)#exit PE2(config)#ip vrf 2 PE2(config-vrf)#rd 200:1 PE2(config-vrf)#route-target export 200:1 PE2(config-vrf)#route-target import 200:1 PE2(config-vrf)#address-family ipv4 PE2(config-vrf-ipv4)#mvpn PE2(config-vrf-ipv4-mvpn)#exit PE2(config-vrf-ipv4)#exit PE2(config-vrf)#exit PE2(config)#ip multicast-routing vrf1 PE2(config)#ip multicast-routing vrf 2 PE2(config)#interface gigabitethernet1 PE2(config-if-gigabitethernet1)#ip vrf forwarding 1 PE2(config-if-gigabitethernet1)#ip address 36.1.1.1 255.255.0.0 PE2(config-if-gigabitethernet1)#ip pim sparse-mode PE2(config-if-gigabitethernet1)#exit PE2(config)#interface gigabitethernet0/2/2 PE2(config-if-gigabitethernet0/2/2)#ip vrf forwarding 2 PE2(config-if-gigabitethernet0/2/2)#ip address 37.1.1.1 255.255.0.0 PE2(config-if-gigabitethernet0/2/2)#ip pim sparse-mode PE2(config-if-gigabitethernet0/2/2)#exit PE2(config)#router ospf 200 vrf 1 PE2(config-ospf)#network 36.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit

PE2(config)#router ospf 300 vrf 2 PE2(config-ospf)#network 37.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit

#On CE3, enable multicast forwarding, configure the PIM-SM and OSPF, and configure IGMPv3 on the interface of connecting the multicast receiver.

CE3(config)#ip multicast-routing CE3(config)#interface gigabitethernet0 CE3(config-if-gigabitethernet0)#ip pim sparse-mode CE3(config-if-gigabitethernet0)#exit CE3(config)#interface gigabitethernet1 CE3(config-if-gigabitethernet1)#ip pim sparse-mode CE3(config-if-gigabitethernet1)#ip igmp version 3 CE3(config-if-gigabitethernet1)#ip igmp version 3 CE3(config)#router ospf 100 CE3(config-ospf)#network 36.1.0.0 0.0.255.255 area 0 CE3(config-ospf)#network 60.1.0.0 0.0.255.255 area 0 CE3(config-ospf)#network 60.1.0.0 0.0.255.255 area 0

#On CE4, enable multicast forwarding, configure the PIM-SM and OSPF, and configure IGMPv3 on the interface of connecting the multicast receiver.

- CE4(config)#ip multicast-routing
- CE4(config)#interface gigabitethernet0
- CE4(config-if-gigabitethernet0)#ip pim sparse-mode
- CE4(config-if-gigabitethernet0)#exit
- CE4(config)#interface gigabitethernet1
- CE4(config-if-gigabitethernet1)#ip pim sparse-mode
- CE4(config-if-gigabitethernet1)#ip igmp version 3
- CE4(config-if-gigabitethernet1)#exit
- CE4(config)#router ospf 100
- CE4(config-ospf)#network 37.1.0.0 0.0.255.255 area 0
- CE4(config-ospf)#network 70.1.0.0 0.0.255.255 area 0
- CE4(config-ospf)#exit
- **Step 5:** Configure MP-IBGP, and use the loopback interface as the peer address; perform the route re-distribution with the IGP protocol in the VPN instance.

#On PE1, configure MP-IBGP, enable VPNv4, IPv4 MVPN address family; perform the route redistribution with the IGP protocol in the VPN instance.

> PE1(config)#router bgp 100 PE1(config-bgp)#neighbor 3.3.3.3 remote-as 100 PE1(config-bgp)#neighbor 3.3.3.3 update-source loopback0

www.qtech.ru

PE1(config-bgp)#address-family vpnv4 PE1(config-bgp-af)#neighbor 3.3.3.3 activate PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 mvpn PE1(config-bgp-af)#neighbor 3.3.3.3 activate PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 vrf 1 PE1(config-bgp-af)#redistribute ospf 200 PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 vrf 2 PE1(config-bgp-af)#redistribute ospf 300 PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#exit PE1(config)#router ospf 200 vrf 1 PE1(config-ospf)#redistribute bgp 100 PE1(config-ospf)#exit PE1(config)#router ospf 300 vrf 2 PE1(config-ospf)#redistribute bgp 100

PE1(config-ospf)#exit

#On PE2, configure MP-IBGP, enable VPNv4, IPv4 MVPN address family; perform the route redistribution with the IGP protocol in the VPN instance.

> PE2(config)#router bgp 100 PE2(config-bgp)#neighbor 1.1.1.1 remote-as 100 PE2(config-bgp)#neighbor 1.1.1.1 update-source loopback0 PE2(config-bgp)#address-family vpnv4 PE2(config-bgp-af)#neighbor 1.1.1.1 activate PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#address-family ipv4 mvpn PE2(config-bgp-af)#neighbor 1.1.1.1 activate PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#address-family ipv4 vrf1 PE2(config-bgp-af)#redistribute ospf 200 PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#address-family ipv4 vrf 2 PE2(config-bgp-af)#redistribute ospf 300 PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#exit

....

PE2(config)#router ospf 200 vrf 1 PE2(config-ospf)#redistribute bgp 100 PE2(config-ospf)#exit PE2(config)#router ospf 300 vrf 2 PE2(config-ospf)#redistribute bgp 100 PE2(config-ospf)#exit

Note:

- In practical applications, if there are two or more PE devices on the same site side, it is
 recommended that route should not be redistributed directly between different routing
 protocols. If you have to configure, you need to configure the routing policy to prevent
 generating the route loops.
- Step 5: Check the result.

#After configuration, query the BGP neighbor information on PE.

Take PE1 as an example:

PE1#show ip bgp vpnv4 all summary BGP router identifier 1.1.1.1, local AS number 100 BGP table version is 2 1 BGP AS-PATH entries 1 BGP community entries

Neighbor		V	AS	Msg	Rcvd	Msg	Sent	TblVer	InQ	OutQ Up/Down	State/PfxRcd
3.3.3.3	4	100)	18	11	2	0	0 00:01:	30	4	

Total number of neighbors 1

PE1#show ip bgp mvpn summary BGP router identifier 1.1.1.1, local AS number 100 BGP table version is 4 1 BGP AS-PATH entries 1 BGP community entries

NeighborVAS MsgRcvd MsgSentTblVerInQ OutQ Up/DownState/PfxRcd3.3.3.3410018114000:01:304

Total number of neighbors 1

According to the numbers displayed in the State/PfxRcd column (the number of the route prefixes received from the neighbor), you can see that PE1 and PE2 successfully set up the BGP neighbor.

гуководет	во по настройке с	2011-1920, 2011	-2920,		5920			
NG MVPN							www.qtech.ru	••••
#On the PI	E, view the BGP VI	PNv4 route table	, BGP I	MVPN	route ta	ble, a	and the VPN route table.	
Take PE1	as an example:							
	PE1#show ip bgp	vpnv4 vrf 1						
	BGP table versior	n is 6, local route	er ID is	1.1.1.1				
	Status codes: s s	uppressed, d dai	mped, h	n histo	ry, * vali	d, > b	est, i - internal,	
	S Stale							
	Origin codes: i - I	GP, e - EGP, ? - i	incomp	lete				
	Network	Next Hop	Met	ric Loo	Prf Wei	ght P	ath	
	Route Distinguish	er: 100:1 (Defaul	t for VF	RF 1)				
	[0]*> 14.1.0.0/16	0.0.0	1	32	2768 ?			
	[0]*> 40.1.0.0/16	14.1.1.2	2	327	68 ?			
	[B]*>i36.1.0.0/16	3.3.3.3	1	100	0?			
	[B]*>i60.1.0.0/16	3.3.3.3	2	100	0 ?			
	PE1#show ip bgp	vpnv4 vrf 2						
	BGP table versior	n is 6, local route	er ID is	1.1.1.1				
	Status codes: s s	uppressed, d dai	mped, h	n histo	ry, * vali	d, > b	est, i - internal,	
	S Stale							
	Origin codes: i - I	GP, e - EGP, ? - i	incomp	lete				
	Network	Next Hop	Met	ric Loo	Prf Wei	ght P	ath	
	Route Distinguish	er: 200:1 (Defau	lt for VI	RF 2)				
	[0]*> 15.1.0.0/16	0.0.0.0	1	327	768 ?			
	[0]*> 50.1.0.0/16	15.1.1.2	2	327	768 ?			
	[B]*>i37.1.0.0/16	3.3.3.3	1	100	0?			
	[B]*>i70.1.0.0/16	3.3.3.3	2	100	0 ?			
	PE1#show ip bgp	mvpn vrf 1 all-ty	/pe					
	BGP local router	ID is 1.1.1.1						
	Status codes: s s	uppressed, d dai	mped, h	n histo	ry, * vali	d, > b	est, i - internal,	
	S Stale							
	Origin codes: i - I	GP, e - EGP, ? - i	incomp	lete				
	MVPN Information	n for Route Disti A-D Routes [.]	nguish	er:100:	1 (Defau	lt for	VRF 1)	
	Network(Orig	inating IP Addr)	Next	Hon	M۵	tric	l ocPrf Weight Path	
	[B]*> 1.1.1.1		TUN	0	327	68 i		
	[B]*>i3.3.3.3	3.3.3.3		0	100	0 i		

NG MVPN	www.qtech.ru
	PE1#show ip bgp mvpn vrf 2 all-type
	BGP local router ID is 1.1.1.1
	Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
	S Stale
	Origin codes: i - IGP, e - EGP, ? - incomplete
	MVPN Information for Route Distinguisher:200:1 (Default for VRF 2)
	Intra-AS I-PMSI A-D Routes:
	Network(Originating IP Addr) Next Hop Metric LocPrf Weight Path
	[B]*> 1.1.1.1 0.0.0.0 0 32768 i
	[B]*>i3.3.3.3 3.3.3.3 0 100 0 i
	PE1#show ip route vrf 1
	Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management
	D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS
	Gateway of last resort is not set
	B 36.1.0.0/16 [200/1] via 3.3.3.3, 00:01:06, gigabitethernet0
	C 14.1.0.0/16 is directly connected, 00:23:25, gigabitethernet1
	L 14.1.1.1/32 is directly connected, 00:23:25, gigabitethernet1
	0 40.1.0.0/16 [110/2] via 14.1.1.2, 00:22:51, gigabitethernet1
	B 60.1.0.0/16 [200/2] via 3.3.3, 00:01:06, gigabitethernet0
	PE1#show ip route vrf 2
	Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management
	D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS
	Gateway of last resort is not set
	B 37.1.0.0/16 [200/1] via 3.3.3.3, 00:01:15, gigabitethernet0
	C 15.1.0.0/16 is directly connected, 00:23:25, gigabitethernet0/2/2
	L 15.1.1.1/32 is directly connected, 00:23:25, gigabitethernet0/2/2
	0 50100/1/ [110/2] via 15112 00/22/52 sizabitatharmat0/2/2

- 0 50.1.0.0/16 [110/2] via 15.1.1.2, 00:22:53, gigabitethernet0/2/2
- B 70.1.0.0/16 [200/2] via 3.3.3.3, 00:01:15, gigabitethernet0

www.qtech.ru

....

You can see that there are the routes to the peer CE3 and CE4 in the BGP VPNv4 route table, VPN1 and VPN2 route tables of PE1. There is type-1 MVPN route information advertised by the peer PE2 in the BGP MVPN route table of PE1.

#On the PE, query the PIM-SM neighbor information.

Take PE1 as an example:

PE1#show ip pim neighbor vrf 1

PIM Neighbor Table:

PIM VRF Name: 1

Total 2 Neighbor entry

Neighbor	Interface	Uptime/Expires	; \	/er	DR
Address		Pric	ority,	/Mo	de
3.3.3.3	tunnel1023	00:19:51/never	v2	N,	/ DR
14.1.1.2	gigabitethernet1	00:45:46/00:01:42	v2	1/	DR

PE1#show ip pim neighbor vrf 2 PIM Neighbor Table: PIM VRF Name: 2 Total 2 Neighbor entry

Neighbor	Interface	Uptime/Expires	Ver DR
Address		Prior	ity/Mode
3.3.3.3	tunnel1022	00:20:08/never	v2 N/DR
15.1.1.2	gigabitethernet0/2/2	00:37:21/00:01:3	7 v2 1/DR

You can see that PE1 sets up the PIM-SM neighbor with CE1, CE2, and sets up the PIM-SM neighbor with the MVPN tunnel interface of the peer PE via the MVPN tunnel interface.

Note:

• For the checking method of PE2, refer to PE1.

#On PE, query the P2MP-TE S2L tunnel information.

Take PE1 as an example:

```
PE1#show mpls traffic-eng p2mp summary
P2MP_1.1.1_t2
Role: root S2L count: 1
vrf: 1
S2L tunnel table:
Name S2L-Role LSP-ID Status Out-LB Out-IF In-
LB In-IF
```


Ingress

5

NG MVPN

S2L-3.3.3.3

N/A

		www.qtech.ru	
16	gigabitethernet0	N/A	

P2MP_1.1.1.1_t3 Role: root S2L count: 1 vrf: 2 S2L tunnel table: Name S2L-Role LSP-ID Status Out-LB Out-IF In-LB In-IF S2L-3.3.3.3 UP 17 N/A Ingress 6 gigabitethernet0 N/A

UP

You can see that the status of the P2MP-TE S2L tunnel from PE1 to PE2 is up.

Note:

• For the checking method of P and PE2, refer to PE1.

#Receiver1 is added to IGMPv3 group 225.0.0.1, and is specified to receive the multicast flow sent by the multicast source Source1 and Source2.

Receiver2 is added to IGMPv3 group 226.0.0.1, and is specified to receive the multicast flow sent by the multicast source Source1 and Source2.

On CE3 and CE4, query the IGMP group and PIM-SM route table.

CE3#show ip igmp groups detail Interface: gigabitethernet1 Group: 225.0.0.1 Uptime: 00:00:10 Group mode: Include Last reporter: 60.1.1.2 TIB-A Count: 2 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 40.1.1.2 00:00:10 00:04:14 stopped Yes R 50.1.1.2 00:00:10 00:04:14 stopped Yes R CE4#show ip igmp groups detail Interface: gigabitethernet1 Group: 226.0.0.1 Uptime: 00:00:10 Group mode: Include Last reporter: 70.1.1.2

www.qtech.ru

....

TIB-A Count: 2 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 40.1.1.2 00:00:10 00:04:14 stopped Yes R 50.1.1.2 00:00:10 00:04:14 stopped Yes R

CE3#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 2 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 225.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 36.1.1.1 RPF idx: gigabitethernet0 SPT bit: FALSE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

(50.1.1.2, 225.0.0.1) Up time: 00:03:20

www.qtech.ru

....

KAT time: 00:00:10 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: FALSE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

CE4#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 2 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 226.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 0.0.0.0 RPF idx: None SPT bit: FALSE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1

www.qtech.ru

••••

Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

(50.1.1.2, 226.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 37.1.1.1 RPF idx: gigabitethernet0 SPT bit: FALSE Flags:

JOIN DESIRED

Upstream State: JOINED

Local interface list:

gigabitethernet1

Joined interface list:

Asserted interface list:

Outgoing interface list:

gigabitethernet1

Packet count 0

You can see that the group is added on CE3 and CE4 successfully, and the (S,G) route is generated. CE3 and CE2 are not in one VPN, and there is no unicast route to Source2, so only send the (S,G) route to Source1. CE4 is similar.

#On the PE, view the BGP MVPN type-7 route table.

PE1#show ip bgp mvpn rd 100:1 type 7

BGP local router ID is 1.1.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

MVPN Information for Route Distinguisher:100:1 (Default for VRF 1)

Source Tree Join Routes:

Network(AS Number:C-	S:C-G)	Next Hop	Met	ric	LocPrf Weight Path
[B]*>i100:40.1.1.2:225.0.0.1	3.3.3.3	0	100	0 i	

PE1#show ip bgp mvpn rd 200:1 type 7 BGP local router ID is 1.1.1.1

NG MVPN	www.qtech.ru
	Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale
	Origin codes: i - IGP. e - EGP. ? - incomplete
	MVPN Information for Route Distinguisher:200:1 (Default for VRF 2)
	Source Tree Join Routes:
	Network(AS Number:C-S:C-G) Next Hop Metric LocPrf Weight Path
	[B]*>i100:50.1.1.2:226.0.0.1 3.3.3.3 0 100 0 i
	PE2#show ip bgp mvpn rd 100:1 type 7
	BGP local router ID is 3.3.3.3
	Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale
	Origin codes: i - IGP, e - EGP, ? - incomplete
	MVPN Information for Route Distinguisher:100:1
	Source Tree Join Routes:
	Network(AS Number:C-S:C-G) Next Hop Metric LocPrf Weight Path
	[B]*> 100:40.1.1.2:225.0.0.1 0.0.0.0 0 32768 i
	PE2#show ip bgp mvpn rd 200:1 type 7
	BGP local router ID is 3.3.3.3
	Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale
	Origin codes: i - IGP, e - EGP, ? - incomplete
	MVPN Information for Route Distinguisher:200:1
	Source Tree Join Routes:
	Network(AS Number:C-S:C-G) Next Hop Metric LocPrf Weight Path
	[B]*> 100:50.1.1.2:226.0.0.1 0.0.0.0 0 32768 i
#On PE, q	uery the PIM-SM route table of VPN.
	PE1#show ip pim mroute vrf 1
	IP Multicast Routing Table:
	PIM VRF Name: 1
	Total 0 (*,*,RP) entry
	Total 0 (*,G) entry
	Total 1 (S,G) entries
	Total 0 (S,G,rpt) entry
	Total 0 FCR entry
	Up timer/Expiry timer

www.qtech.ru

....

(40.1.1.2, 225.0.0.1)Up time: 00:02:50 KAT time: 00:00:40 RPF nbr: 14.1.1.2 RPF idx: gigabitethernet1 SPT bit: FALSE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: tunnel1023 00:02:50/stopped Asserted interface list: Outgoing interface list: tunnel1023 Packet count 0

PE1#show ip pim mroute vrf 2 IP Multicast Routing Table: PIM VRF Name: 2 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(50.1.1.2, 226.0.0.1) Up time: 00:02:55 KAT time: 00:00:35 RPF nbr: 15.1.1.2 RPF idx: gigabitethernet0/2/2 SPT bit: FALSE Flags:

www.qtech.ru

....

JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: tunnel1022 00:02:55/stopped Asserted interface list: Outgoing interface list: tunnel1022 Packet count 0

PE2#show ip pim mroute vrf 1 IP Multicast Routing Table: PIM VRF Name: 1 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 225.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 1.1.1.1 RPF idx: tunnel1023 SPT bit: FALSE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: gigabitethernet1 00:03:20/00:02:10 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

www.qtech.ru

....

PE2#show ip pim mroute vrf 2 IP Multicast Routing Table: PIM VRF Name: 2 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

```
(50.1.1.2, 226.0.0.1)
Up time: 00:03:20
KAT time: 00:00:10
RPF nbr: 1.1.1.1
RPF idx: tunnel1022
SPT bit: FALSE
Flags:
 JOIN DESIRED
Upstream State: JOINED
 Local interface list:
 Joined interface list:
  gigabitethernet0/2/2 00:03:20/00:02:10
 Asserted interface list:
 Outgoing interface list:
  gigabitethernet0/2/2
 Packet count 0
```

You can see that both PE1 and PE2 have the corresponding multicast route, and the egress interface information is correct. Source1 and Source2 send the corresponding multicast flow. Receiver1 can only receive the multicast flow sent by Source1, and Receiver2 can only receive the multicast flow sent by Source1.

Note:

• For the checking method of CE1 and CE2, refer to PE1.

8.3.3. Configure S-PMSI Tunnel Switching

Network Requirements

- There is one MVPN:VPN1 in the network; CE1, CE2 and CE3 belong to VPN1.
- OSPF is used for private unicast routing announcement between CE and PE.

- OSPF is used as IGP in the autonomous domain to realize the interworking between PEs, and MP-IBGP is configured between PEs to exchange unicast VPN routing information.
- VPN1 uses mLDP P2MP as public network I-PMSI and S-PMSI tunnels.
- VPN1 uses PIM-SM as the multicast routing protocol.
- The interfaces of CE2 and CE3 directly connected to the multicast receiver run igmpv3. Receiver1 joins the corresponding multicast group, and receiver2 does not join the corresponding multicast group.
- Source sends the multicast flow. Before the multicast data flow is switched from the I-PMSI tunnel to the S-PMSI tunnel, both Receiver 1 and PE3 can receive the multicast flow; After the multicast data flow is switched from the I-PMSI tunnel to the S-PMSI tunnel, Receiver 1 can receive the multicast flow, but PE3 cannot receive the multicast flow.

Network Topology

Device	Interface	IP address	Device	Interface	IP address
CE1	Gi0	14.1.1.2/16	PE2	Loopback0	3.3.3.3/32
	Gi1	40.1.1.1/16	PE3	Gi0	24.1.2.2/16
PE1	Gi0	12.1.1.1/16		Gi1	37.1.1.1/16

Device	Interface	IP address	Device	Interface	IP address
	Gi1	14.1.1.1/16		Loopback0	4.4.4.4/32
	Loopback0	1.1.1.1/32	CE2	Gi0	36.1.1.2/16
Ρ	Gi0	12.1.1.2/16		Gi1	60.1.1.1/16
	Gi1	23.1.1.1/16	CE3	Gi0	37.1.1.2/16
	Gi2	24.1.2.1/16		Gi1	70.1.1.1/16
	Loopback0	2.2.2.2/32	Source1		40.1.1.2/16
PE2	Gi0	23.1.1.2/16	Receiver1		60.1.1.2/16
	Gi1	36.1.1.1/16	Receiver2		70.1.1.2/16

Configuration Steps

Step 1: Configure the IP addresses of the interfaces. (omitted)

Step 2: Configure global OSPF, and advertise the global route.

#On PE1, configure the global OSPF.

PE1#configure terminal PE1(config)#router ospf 100 PE1(config-ospf)#network 1.1.1.1 0.0.0.0 area 0 PE1(config-ospf)#network 12.1.0.0 0.0.255.255 area 0

PE1(config-ospf)#exit

#On P, configure the global OSPF.

P#configure terminal

P(config)#router ospf 100

P(config-ospf)#network 2.2.2.2 0.0.0.0 area 0

P(config-ospf)#network 12.1.0.0 0.0.255.255 area 0

P(config-ospf)#network 23.1.0.0 0.0.255.255 area 0

P(config-ospf)#network 24.1.0.0 0.0.255.255 area 0

P(config-ospf)#exit

#On PE2, configure global OSPF.

PE2#configure terminal PE2(config)#router ospf 100 PE2(config-ospf)#network 3.3.3.3 0.0.0.0 area 0 PE2(config-ospf)#network 23.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit

#On PE3, configure global OSPF.

PE3#configure terminal PE3(config)#router ospf 100 PE3(config-ospf)#network 4.4.4.4 0.0.0.0 area 0 PE3(config-ospf)#network 24.1.0.0 0.0.255.255 area 0 PE3(config-ospf)#exit

#After configuration, view the global route table on the device.

Take PE1 as an example:

PE1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 12.1.0.0/16 is directly connected, 00:23:28, gigabitethernet0
- 0 23.1.0.0/16 [110/2] via 12.1.1.2, 00:01:12, gigabitethernet0
- C 1.1.1.1/32 is directly connected, 00:32:21, loopback0
- 0 2.2.2.2/32 [110/2] via 12.1.1.2, 00:01:12, gigabitethernet0
- 0 3.3.3.3/32 [110/3] via 12.1.1.2, 00:01:05, gigabitethernet0
- 0 4.4.4.4/32 [110/3] via 12.1.1.2, 00:01:05, gigabitethernet0

It can be seen that the global routing table of PE1 contains the routing information of the loopback ports of P, PE2 and PE3.

Note:

• For the checking method of P, PE1 and PE3, refer to PE1.

Step 3: Enable MVPN, MPLS IP and MPLS LDP (containing mLDP P2MP).

#Enable global MVPN, MPLS IP and MPLS LDP (including mLDP P2MP) on PE1, and enable MPLS IP and MPLS LDP on the interface at the same time.

PE1(config)#mvpn-id 1.1.1.1 PE1(config)#mpls ip PE1(config)#mpls ldp PE1(config-ldp)#router-id 1.1.1.1 PE1(config-ldp)#transport-address 1.1.1.1 PE1(config-ldp)#mldp p2mp PE1(config-ldp)#mldp p2mp PE1(config-ldp)#exit PE1(config)#interface gigabitethernet0 PE1(config-if-gigabitethernet0)#mpls ip PE1(config-if-gigabitethernet0)#mpls ldp PE1(config-if-gigabitethernet0)#mpls ldp PE1(config-if-gigabitethernet0)#exit e global MPLS IP and MPLS LDP (includit

#Enable the global MPLS IP and MPLS LDP (including mLDP P2MP) on the P, and enable the MPLS IP and MPLS LDP on the interface at the same time.

P(config)#mpls ip P(config)#mpls ldp P(config-ldp)#router-id 2.2.2.2 P(config-ldp)#transport-address 2.2.2.2 P(config-ldp)#mldp p2mp P(config-ldp)#exit P(config)#interface gigabitethernet0 P(config-if-gigabitethernet0)#mpls ip P(config-if-gigabitethernet0)#mpls ldp P(config-if-gigabitethernet0)#exit P(config)#interface gigabitethernet1 P(config-if-gigabitethernet1)#mpls ip P(config-if-gigabitethernet1)#mpls ldp P(config-if-gigabitethernet1)#exit P(config)#interface gigabitethernet 2 P(config-if-gigabitethernet 2)#mpls ip P(config-if-gigabitethernet 2)#mpls ldp P(config-if-gigabitethernet 2)#exit #Enable the global MVPN, MPLS IP and MPLS LDP (including mLDP P2MP) on the PE2, and enable the MPLS IP and MPLS LDP on the interface at the same time.

PE2(config)#mvpn-id 3.3.3.3 PE2(config)#mpls ip PE2(config)#mpls ldp PE2(config-ldp)#router-id 3.3.3.3 PE2(config-ldp)#transport-address 3.3.3.3

....

PE2(config-ldp)#mldp p2mp PE2(config-ldp)#exit PE2(config)#interface gigabitethernet0 PE2(config-if-gigabitethernet0)#mpls ip PE2(config-if-gigabitethernet0)#mpls ldp PE2(config-if-gigabitethernet0)#exit

#Enable the global MVPN, MPLS IP and MPLS LDP (including mLDP P2MP) on the PE3, and enable the MPLS IP and MPLS LDP on the interface at the same time.

PE3(config)#mvpn-id 4.4.4.4 PE3(config)#mpls ip PE3(config)#mpls ldp PE3(config-ldp)#router-id 4.4.4.4 PE3(config-ldp)#transport-address 4.4.4.4 PE3(config-ldp)#mldp p2mp PE3(config-ldp)#exit PE3(config)#interface gigabitethernet0 PE3(config-if-gigabitethernet0)#mpls ip PE3(config-if-gigabitethernet0)#mpls ldp PE3(config-if-gigabitethernet0)#exit

Note:

 router-id and transport-address can be configured manually or generated automatically. Generally, they are configured to be the same. If router-id and transport-address are not configured manually, the device will select them automatically. From the interfaces in the up state, first select the largest IP address in the loopback interface; If the loopback interface address is not configured for the device, the largest IP address in the normal interface will be selected.

#After configuration, view the MVPN information on the device.

Take PE1 as an example:

PE1#show ip mvpn

mvpn-id: 1.1.1.1

You can see that the MVPN ID of PE1 is 1.1.1.1.

#On the device, view the LDP and mLDP session information.

Take PE1 as an example:

PE1#show mpls ldp session

Peer IP Address Peer Type My Role State DeadTime

2.2.2.2 Multicast Active OPERATIONAL 00:02:20

Statistics for ldp sessions:

Multicast sessions: 1

www.qtech.ru

....

Targeted sessions: 0

PE1#show mpls ldp p2mp session Session[2.2.2.2]: P2MP Capability: enable MBB Capability: disable Nexthop selected: 12.1.1.2 Nexthop interface selected: gigabitethernet0

It can be seen that PE1 and P have successfully established an LDP session, and the LDP session has the P2MP capability.

Note:

- For the checking method of P, PE1 and PE3, refer to PE1.
- **Step 4:** Configure VPN instance, enable MVPN and multicast forwarding of VRF, and announce CE route to PE through OSPF.

#Configure the VPN instance on PE1 to enable MVPN and multicast forwarding, configure the I-PMSI tunnel type as mLDP P2MP, configure the S-PMSI group range as 225.0.0.0/24, and the tunnel type as mLDP P2MP, and configure PIM-SM and OSPF under VPN1.

> PE1(config)#ip vrf 1 PE1(config-vrf)#rd 100:1 PE1(config-vrf)#route-target export 100:1 PE1(config-vrf)#route-target import 100:1 PE1(config-vrf)#address-family ipv4 PE1(config-vrf-ipv4)#mvpn PE1(config-vrf-ipv4-mvpn)#i-pmsi mldp p2mp PE1(config-vrf-ipv4-mvpn)#s-pmsi group 225.0.0.0 24 mldp p2mp PE1(config-vrf-ipv4-mvpn)#exit PE1(config-vrf-ipv4)#exit PE1(config-vrf)#exit PE1(config)#ip multicast-routing vrf 1 PE1(config)#interface gigabitethernet1 PE1(config-if-gigabitethernet1)#ip vrf forwarding 1 PE1(config-if-gigabitethernet1)#ip address 14.1.1.1 255.255.0.0 PE1(config-if-gigabitethernet1)#ip pim sparse-mode PE1(config-if-gigabitethernet1)#exit PE1(config)#router ospf 200 vrf 1 PE1(config-ospf)#network 14.1.0.0 0.0.255.255 area 0 PE1(config-ospf)#exit

#On CE1, enable the multicast forwarding, and configure PIM-SM and OSPF.

CE1(config)#ip multicast-routing

CE1(config)#interface gigabitethernet0

CE1(config-if-gigabitethernet0)#ip pim sparse-mode

CE1(config-if-gigabitethernet0)#exit

CE1(config)#interface gigabitethernet1

CE1(config-if-gigabitethernet1)#ip pim sparse-mode

CE1(config-if-gigabitethernet1)#exit

CE1(config)#router ospf 100

CE1(config-ospf)#network 14.1.0.0 0.0.255.255 area 0

CE1(config-ospf)#network 40.1.0.0 0.0.255.255 area 0

CE1(config-ospf)#exit

#Configure VPN instance on PE2 to enable MVPN and multicast forwarding, and configure PIM-SM and OSPF under VPN1.

PE2(config)#ip vrf 1 PE2(config-vrf)#rd 100:1 PE2(config-vrf)#route-target export 100:1 PE2(config-vrf)#route-target import 100:1 PE2(config-vrf)#address-family ipv4 PE2(config-vrf-ipv4)#mvpn PE2(config-vrf-ipv4-mvpn)#exit PE2(config-vrf-ipv4)#exit PE2(config-vrf)#exit PE2(config)#ip multicast-routing vrf1 PE2(config)#interface gigabitethernet1 PE2(config-if-gigabitethernet1)#ip vrf forwarding 1 PE2(config-if-gigabitethernet1)#ip address 36.1.1.1 255.255.0.0 PE2(config-if-gigabitethernet1)#ip pim sparse-mode PE2(config-if-gigabitethernet1)#exit PE2(config)#router ospf 200 vrf 1 PE2(config-ospf)#network 36.1.0.0 0.0.255.255 area 0 PE2(config-ospf)#exit

#Enable multicast forwarding on CE2, configure PIM-SM and OSPF, and configure IGMPv3 on the interface connecting the multicast receiver.

CE2(config)#ip multicast-routing CE2(config)#interface gigabitethernet0 CE2(config-if-gigabitethernet0)#ip pim sparse-mode CE2(config-if-gigabitethernet0)#exit

CE2(config)#interface gigabitethernet1 CE2(config-if-gigabitethernet1)#ip pim sparse-mode CE2(config-if-gigabitethernet1)#ip igmp version 3 CE2(config-if-gigabitethernet1)#exit CE2(config)#router ospf 100 CE2(config-ospf)#network 36.1.0.0 0.0.255.255 area 0 CE2(config-ospf)#network 60.1.0.0 0.0.255.255 area 0 CE2(config-ospf)#exit

#Configure VPN instance on PE3, enable MVPN and multicast forwarding, and configure PIM-SM and OSPF under VPN1.

PE3(config)#ip vrf 1

PE3(config-vrf)#rd 100:1

PE3(config-vrf)#route-target export 100:1

PE3(config-vrf)#route-target import 100:1

PE3(config-vrf)#address-family ipv4

PE3(config-vrf-ipv4)#mvpn

PE3(config-vrf-ipv4-mvpn)#exit

PE3(config-vrf-ipv4)#exit

PE3(config-vrf)#exit

PE3(config)#ip multicast-routing vrf 1

PE3(config)#interface gigabitethernet1

PE3(config-if-gigabitethernet1)#ip vrf forwarding 1

PE3(config-if-gigabitethernet1)#ip address 37.1.1.1 255.255.0.0

PE3(config-if-gigabitethernet1)#ip pim sparse-mode

PE3(config-if-gigabitethernet1)#exit

PE3(config)#router ospf 200 vrf 1

PE3(config-ospf)#network 37.1.0.0 0.0.255.255 area 0

PE3(config-ospf)#exit

#Enable multicast forwarding on CE3, configure PIM-SM and OSPF, and configure IGMPv3 on the interface connecting the multicast receiver.

CE3(config)#ip multicast-routing CE3(config)#interface gigabitethernet0 CE3(config-if-gigabitethernet0)#ip pim sparse-mode CE3(config-if-gigabitethernet0)#exit CE3(config)#interface gigabitethernet1 CE3(config-if-gigabitethernet1)#ip pim sparse-mode CE3(config-if-gigabitethernet1)#ip igmp version 3 CE3(config-if-gigabitethernet1)#exit

CE3(config)#router ospf 100 CE3(config-ospf)#network 37.1.0.0 0.0.255.255 area 0 CE3(config-ospf)#network 70.1.0.0 0.0.255.255 area 0 CE3(config-ospf)#exit #On PE, view the VPN route table and PIM-SM interface information. Take PE1 as an example: PE1#show ip route vrf 1 Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M -Management D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS Gateway of last resort is not set C 14.1.0.0/16 is directly connected, 00:11:45, gigabitethernet1 0 40.1.0.0/16 [110/2] via 14.1.1.2, 00:11:11, gigabitethernet1 PE1#show ip pim interface vrf 1 **PIM Interface Table:** PIM VRF Name: 1 **Total 2 Interface entries Total 1 External Interface entry** Total 0 Sparse-Dense Mode Interface entry Address Interface VIF Ver/ VIF Nbr DR DR BSR CISCO Neighbor Index Mode Flag Count Pri Border **Neighbor Filter** 14.1.1.1 v2/S UP 1 FALSE FALSE gigabitethernet1 0 1 14.1.1.2

It can be seen that there is a route to CE1 in the VPN1 routing table of PE1. The PIM-SM interface table includes the enabled PIM-SM interface and the automatically generated MVPN tunnel interface.

2

v2/S UP

1

0

0.0.0.0

Note:

0.0.0.0

FALSE

• For the checking method of PE2, PE3, CE2, and CE3, refer to PE1.

tunnel1023

- The PE on the multicast source side must be configured with a tunnel type, and the PE on the multicast receiving side may not be configured with a tunnel type.
- Tunnel 1023 is an MVPN interface. When MVPN is enabled for global and VRF, each VPN will automatically generate a tunnel interface.

FALSE

Step 5: Configure MP-IBGP and use the loopback interface as the peer address; and redistribute the route with the IGP protocol under the VPN instance.

#Configure MP-IBGP on PE1 and enable VPNv4 and IPv4 MVPN address families; And redistribute the route with the IGP protocol under the VPN instance.

PE1(config)#router bgp 100 PE1(config-bgp)#neighbor 3.3.3.3 remote-as 100 PE1(config-bgp)#neighbor 3.3.3.3 update-source loopback0 PE1(config-bgp)#neighbor 4.4.4.4 remote-as 100 PE1(config-bgp)#neighbor 4.4.4.4 update-source loopback0 PE1(config-bgp)#address-family vpnv4 PE1(config-bgp-af)#neighbor 3.3.3.3 activate PE1(config-bgp-af)#neighbor 4.4.4.4 activate PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 mvpn PE1(config-bgp-af)#neighbor 3.3.3.3 activate PE1(config-bgp-af)#neighbor 4.4.4.4 activate PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#address-family ipv4 vrf 1 PE1(config-bgp-af)#redistribute ospf 200 PE1(config-bgp-af)#exit-address-family PE1(config-bgp)#exit PE1(config)#router ospf 200 vrf 1 PE1(config-ospf)#redistribute bgp 100 PE1(config-ospf)#exit

#Configure MP-IBGP on PE2 and enable VPNv4 and IPv4 MVPN address families; And redistribute the route with the IGP protocol under the VPN instance.

PE2(config)#router bgp 100

PE2(config-bgp)#neighbor 1.1.1.1 remote-as 100

PE2(config-bgp)#neighbor 1.1.1.1 update-source loopback0

PE2(config-bgp)#address-family vpnv4

PE2(config-bgp-af)#neighbor 1.1.1.1 activate

PE2(config-bgp-af)#exit-address-family

PE2(config-bgp)#address-family ipv4 mvpn

PE2(config-bgp-af)#neighbor 1.1.1.1 activate

PE2(config-bgp-af)#exit-address-family

PE2(config-bgp)#address-family ipv4 vrf 1

PE2(config-bgp-af)#redistribute ospf 200

PE2(config-bgp-af)#exit-address-family PE2(config-bgp)#exit PE2(config)#router ospf 200 vrf 1 PE2(config-ospf)#redistribute bgp 100 PE2(config-ospf)#exit

#Configure MP-IBGP on PE3 and enable VPNv4 and IPv4 MVPN address families; And redistribute the route with the IGP protocol under the VPN instance.

PE3(config)#router bgp 100

PE3(config-bgp)#neighbor 1.1.1.1 remote-as 100

PE3(config-bgp)#neighbor 1.1.1.1 update-source loopback0

PE3(config-bgp)#address-family vpnv4

PE3(config-bgp-af)#neighbor 1.1.1.1 activate

PE3(config-bgp-af)#exit-address-family

PE3(config-bgp)#address-family ipv4 mvpn

PE3(config-bgp-af)#neighbor 1.1.1.1 activate

PE3(config-bgp-af)#exit-address-family

PE3(config-bgp)#address-family ipv4 vrf1

PE3(config-bgp-af)#redistribute ospf 200

PE3(config-bgp-af)#exit-address-family

PE3(config-bgp)#exit

PE3(config)#router ospf 200 vrf 1

PE3(config-ospf)#redistribute bgp 100

PE3(config-ospf)#exit

Note:

 In the practical application, if there are two or more PE devices on the same site side, it is recommended not to redistribute routes directly between different routing protocols. If it must be configured, it is necessary to configure routing policies to prevent routing loops.

Step 6: Check the result.

#After configuration, view the BGP neighbor information on the PE.

Take PE1 as an example:

PE1#show ip bgp vpnv4 all summary BGP router identifier 1.1.1.1, local AS number 100 BGP table version is 6 1 BGP AS-PATH entries 0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

 3.3.3.3
 4
 100
 40
 41
 6
 0
 0
 0:32:01
 4

 4.4.4.4
 4
 100
 40
 41
 6
 0
 0
 0:32:01
 4

Total number of neighbors 2 PE1#show ip bgp mvpn summary BGP router identifier 1.1.1.1, local AS number 100 BGP table version is 6 1 BGP AS-PATH entries 0 BGP community entries

Neighbor		V AS	5 MsgF	Rcvd Ms	gSen	ť	TblVer Ir	nQ OutQ	Up/Down	State/PfxRcd
3.3.3.3	4	100	527	539	6	0	0 00:03	3:32	2	
4.4.4.4	4	100	527	539	6	0	0 00:03	3:32	2	

Total number of neighbors 2

From the contents of the State/PfxRcd column displayed as numbers (the number of routing prefixes received from neighbors), it can be seen that PE1 and PE2 successfully established BGP neighbors.

#View the BGP VPNv4 routing table, BGP MVPN routing table and VPN routing table on PE.

Take PE1 as an example:

PE1#show ip bgp vpnv4 vrf 1

BGP table version is 6, local router ID is 1.1.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network	Next Hop	Metric LocPrf Weight Path
---------	----------	---------------------------

Route Distinguisher: 100:1 (Default for VRF 1)

0.0.0.0	1	32	768 ?
14.1.1.2	2	327	68?
3.3.3.3	1	100	0?
3.3.3.3	2	100	0?
4.4.4.4	1	100	0 ?
4.4.4.4	2	100	0?
	0.0.0.0 14.1.1.2 3.3.3.3 3.3.3.3 4.4.4.4 4.4.4.4	0.0.0.0 1 14.1.1.2 2 3.3.3.3 1 3.3.3.3 2 4.4.4.4 1 4.4.4.4 2	0.0.0.0 1 32 14.1.1.2 2 3276 3.3.3.3 1 100 3.3.3.3 2 100 4.4.4.4 1 100 4.4.4.4 2 100

PE1#show ip bgp mvpn vrf 1 all-type BGP local router ID is 1.1.1.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

	S Stale							
Or	Origin codes: i - IGP, e - EGP, ? - incomplete							
M	MVPN Information for Route Distinguisher:100:1 (Default for VRF 1)							
In	Intra-AS I-PMSI A-D Routes:							
	Network(Originating	IP Addr) Next	Нор	Metr	ric	LocPrf Weight Path		
[B]*> 1.1.1.1	0.0.0.0	0	3276	8 i			
[B]*>i3.3.3.3	3.3.3.3	0	100	0 i			
[B]*>i4.4.4.4	4.4.4.4	0	100	0 i			
PE	E1#show ip route vrf 1							
Co Ma	odes: C - connected, anagement	S - static, R -	RIP, O	- 0SP	F, O	E-OSPF External, M -		
	D - Redirect, E - IRN	IP, EX - IRMP e>	kternal, o	- SNS	Р, В -	BGP, i-ISIS		
Ga	ateway of last resort is	s not set						
В	36.1.0.0/16 [200/1] via	3.3.3.3, 00:01:06,	gigabitet	hernet	:0			
В	37.1.0.0/16 [200/1] via	4.4.4.4, 00:01:06	, gigabitet	therne	tO			
C	14.1.0.0/16 is directly (connected, 00:23	8:25, gigat	bitethe	rnet1			
0	40.1.0.0/16 [110/2] via	14.1.1.2, 00:22:51,	gigabitetł	hernetî	1			
В	60.1.0.0/16 [200/2] via	3.3.3.3, 00:01:06	, gigabitet	therne	tO			
В	B 70.1.0.0/16 [200/2] via 4.4.4.4, 00:01:06, gigabitethernet0							
You can see VPNv4routing advertised by	that the routing infor table and VPN1 routing peer PE2 and PE3 un	mation to the p ng table of PE1. der the BGP MV	beer CE2 There is PN routir	and (class- ng table	CE3 1 MV e of F	exists under the BGP PN routing information PE1.		
#View PIM-SM	A neighbor information	on PE.						
Take PE1 as	an example:							
PE	PE1#show ip pim neighbor vrf 1							
PI	M Neighbor Table:							
PI	M VRF Name: 1							
То	tal 3 Neighbor entry							

Neighbor	Interface	Uptime/Expires	\	/er DR
Address		Pric	ority,	/Mode
3.3.3.3	tunnel1023	00:19:51/never	v2	N /
4.4.4.4	tunnel1023	00:19:51/never	v2	N / DR
14.1.1.2	gigabitethernet1	00:45:46/00:01:42	v2	1 / DR

It can be seen that PE1 and CE1 establish PIM-SM neighbors, and establish PIM-SM neighbors with the MVPN tunnel interfaces of peer PE2 and PE3 through the MVPN tunnel interface.

Note:

• For the checking methods of PE2 and PE3, refer to PE1.

For the checking methods of PE2 and PE3, refer to PE1.#Receiver1 joins IGMPv3 group 225.0.0.1 and specifies to receive the multicast flow sent by multicast source source1. Receiver2 does not join the multicast group 225.0.0.1.

#View the grouping information and multicast routing table on CE2 and CE3.

CE2#show ip igmp groups detail Interface: gigabitethernet1 Group: 225.0.0.1 00:00:10 Uptime: Group mode: Include Last reporter: 60.1.1.2 TIB-A Count: 1 TIB-B Count: 0 Group source list: (R - Remote, M - SSM Mapping) Source Address Uptime v3 Exp M Exp Fwd Flags 40.1.1.2 00:00:10 00:04:14 stopped Yes R

CE2#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 225.0.0.1) Up time: 00:03:20 KAT time: 00:00:10 RPF nbr: 36.1.1.1 RPF idx: gigabitethernet0 SPT bit: FALSE Flags:

www.qtech.ru

JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

CE3#show ip igmp groups detail

CE3#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 0 (S,G) entry Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

It can be seen that CE2 adds groups successfully, and CE2 generates corresponding (S, G) routes; CE3 does not add groups, and CE3 does not generate (S, G) routes.

#View the multicast routing table on PE2 and PE3.

PE2#show ip pim mroute vrf 1 IP Multicast Routing Table: PIM VRF Name: 1 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 225.0.0.1) Up time: 00:03:20

www.qtech.ru

KAT time: 00:00:10 RPF nbr: 1.1.1 RPF idx: tunnel1023 SPT bit: FALSE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: gigabitethernet1 00:03:20/00:02:10 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 0

PE3#show ip pim mroute vrf 2 IP Multicast Routing Table: PIM VRF Name: 2 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 0 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

It can be seen that PE2 generates corresponding (S, G) routes, while PE3 does not generate (S, G) routes.

#View BGP MVPN class-7 routing table on PE.

PE1#show ip bgp mvpn rd 100:1 type 7 BGP local router ID is 1.1.1.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete MVPN Information for Route Distinguisher:100:1 (Default for VRF 1) Source Tree Join Routes: Network(AS Number:C-S:C-G) Next Hop LocPrf Weight Path Metric [B]*>i100:40.1.1.2:225.0.0.1 3.3.3.3 0 100 0 i

	 -	-	-
www.qtecn.ru			

PE2#show ip bgp mvpn rd 100:1 type 7 BGP local router ID is 3.3.3.3 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete MVPN Information for Route Distinguisher:100:1 Source Tree Join Routes: Network(AS Number:C-S:C-G) Next Hop Metric LocPrf Weight Path [B]*> 100:40.1.1.2:225.0.0.1 0.0.0.0 0 32768 i

PE3#show ip bgp mvpn rd 100:1 type 7

It can be seen that PE1 and PE2 have corresponding class-7 MVPN routes, and PE3 has no corresponding class-7 MVPN routes.

#View the multicast routing table on PE1.

PE1#show ip pim mroute vrf 1 IP Multicast Routing Table: PIM VRF Name: 1 Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entries Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(40.1.1.2, 225.0.0.1) Up time: 00:02:50 KAT time: 00:00:40 RPF nbr: 14.1.1.2 RPF idx: gigabitethernet1 SPT bit: FALSE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: tunnel1023 00:02:50/stopped

Asserted interface list: Outgoing interface list: tunnel1023 Packet count 0

You can see that PE1 generates corresponding (S, G) routes.

#Source1 continuously sends multicast data flows with source address of 40.1.1.2 and group address of 225.0.0.1.

#View the multicast forwarding table of VPN on PE.

PE1# show ip mcache vrf 1 Multicast Forward Cache table: Total 1 MFC entries Total 0 stall upcall packet MFC (40.1.1.2/32, 225.0.0.1/32) Incoming interface: gigabitethernet1(0) Flags: PROTOCOL IPMC Ng-mvpn mfc pmsi index: 1 Output interface list: Tunnel1023(2) Waiting packets: NULL Uptime: 00:00:53, Timeout in 179 sec

PE1#show ip mvpn s-pmsi mrt vrf 1 VRF: 1 Total 10mrt entry source:40.1.1.2 group:225.0.0.1 last_bytes:38461570 Rate: 3683 kbps(100 secs) i2s Up time: 00:00:59 i2s Expiry time: 00:01:20 Up time: 00:00:59 Expiry time: 00:02:21

PE2#show ip mcache vrf 1 Multicast Forward Cache table: Total 1 MFC entries Total 0 stall upcall packet MFC (40.1.1.2/32, 225.0.0.1/32) Incoming interface: tunnel1023(2)

www.qtech.ru

••••

Flags: PROTOCOL IPMC Output interface list: gigabitethernet1(0) Waiting packets: NULL Uptime: 00:01:31, Timeout in 88 sec

PE3#show ip mcache vrf 1 Multicast Forward Cache table: Total 1 MFC entries Total 0 stall upcall packet MFC (40.1.1.2/32, 225.0.0.1/32) Incoming interface: tunnel1023(2) Flags: PROTOCOL IPMC Output interface list: NULL Waiting packets: NULL Uptime: 00:01:31, Timeout in 88 sec

It can be seen that there are corresponding multicast forwarding tables in PE1, PE2 and PE3, and the output interface information is correct. Before the multicast data flow sent by source1 is switched from the I-PMSI tunnel to the S-PMSI tunnel, both Receiver 1 and PE3 can receive the multicast flow.

Note:

- For the checking methods of CE1 and CE2, refer to PE1.
- The sending PE (PE1) receives the multicast data flow, detects that the traffic of the data stream within the S-PMS group is greater than or equal to the S-PMSI switching threshold (0 by default), starts the I-PMSI to switch to the S-PMSI timer (12s timer for short), and the multicast data flow will not switch to the S-PMSI tunnel before the i2s timer expires; After the I2S timer expires, the data flow is still greater than or equal to the S-PMSI switching threshold, and the S-PMSI tunnel is successfully established, and the data flow is switched to the S-PMSI tunnel.

#After the i2s timer expires, view the multicast forwarding table of VPN on PE.

PE1# show ip mcache vrf 1 Multicast Forward Cache table: Total 1 MFC entries Total 0 stall upcall packet MFC (40.1.1.2/32, 225.0.0.1/32) Incoming interface: gigabitethernet1(0) Flags: PROTOCOL IPMC Ng-mvpn mfc pmsi index: 2 Output interface list: Tunnel1023(2)

www.qtech.ru

Waiting packets: NULL Uptime: 00:00:53, Timeout in 179 sec

PE1#show ip mvpn s-pmsi mrt vrf 1 VRF: 1 Total 10mrt entry source:40.1.1.2 group:225.0.0.1 last_bytes:362877340 Rate: 3685 kbps(100 secs) pmsi index: 2 ptunnel index: 65537 Up time: 00:12:10 Expiry time: 00:02:50 PE2#show ip mcache vrf 1 Multicast Forward Cache table: Total 1 MFC entries Total 0 stall upcall packet MFC (40.1.1.2/32, 225.0.0.1/32) Incoming interface: tunnel1023(2) Flags: PROTOCOL IPMC Output interface list: gigabitethernet1(0) Waiting packets: NULL Uptime: 00:01:31, Timeout in 88 sec

PE3#show ip mcache vrf 1 Multicast Forward Cache table: Total 0 MFC entry Total 0 stall upcall packet

It can be seen that the multicast forwarding table entry of PE1 is correct. After the i2s timer expires, the multicast data flow sent by Source1 on PE1 is switched from the I-PMSI tunnel to the S-PMSI tunnel; PE2 still has corresponding multicast forwarding table entries, and PE3 does not have corresponding multicast forwarding entries (deleted after timeout); After the multicast data flow on PE1 is switched from I-PMSI tunnel to the S-PMSI tunnel, Receiver 1 can receive the multicast flow, and PE3 cannot receive the multicast flow.

9. MSDP

9.1. Overview

RP in the PIM-SM network only knows the multicast source information in the multicast domain, but in the actual application, the whole network is divided to multiple multicast domains. In the case, the RP in the domain cannot know the multicast source information out of the domain and the receiver cannot receive the multicast packets of other domains.

MSDP (Multicast Source Discovery Protocol) provides one multicast cross-domain solution. The MSDP mechanism transmits the multicast source information of the multicast domain to the RP of another multicast domain, and the RP in the other multicast domain can initiate adding to the multicast source of the multicast domain and set up the multicast distributing tree, so as to realize the cross-domain transmission of the multicast packets.

9.2. MSDP Function Configuration

 Table 9-1 MSDP function configuration list

Configuration Task						
Configure the MSDP basic functions	Configure the MSDP peer					
	Disable the MSDP peer					
Configure the MSDP peer connection	Configure the default MSDP peer					
	Configure the MSDP mesh group					
Configure the SA packet	Configure the SA request packet					
	Configure the SA packet filter policy					

9.2.1. Configure MSDP Peer

Set up the MSDP peer connection via the MSDP peer between the multicast domains, forming one "MSDP interconnection map". When the MSDP peer of one domain perceives the new multicast source, encapsulate the new multicast source information in the SA (Source-Active) packet and send to all remote peers setting up the MSDP peer connection. After MSDP peer receives the SA packet, the SA packet passing the RPF (Reverse Path Forwarding) is forwarded. With the relay between the MSDP peers, you can transmit the SA message sent by one RP to all the other RPs, realizing the sharing of the multicast source information between the multicast domains.

Use the TCP as the transmission protocol between the MSDP peers. Use the reliability of TCP to ensure that the MSDP protocol packets can be transmitted to the remote peer correctly.

Configuration Condition

Before configuring MSDP, first complete the following tasks:

www.qtech.ru

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Configure the PIM-SM protocol, realizing the intra-domain multicast

Configure MSDP Peer

Set up the MSDP peer connection between the local device and the specified remote device. At the remote device, you also should specify the local device as the MSDP peer so that the peer connection can be set up successfully. After the peer connection is set up successfully, the peers interact the MSDP protocol packets via the connection.

Table 9-2 Configure the MSDP peer

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the MSDP peer	ip msdp [vrf vrf-name] peer peer-ip-address [connect- source interface-name] [remote-as as-number-value]	Mandatory By default, the MSDP peer is not configured.

Note:

• When configuring the first MSDP peer, automatically enable the MSDP protocol.

Disable MSDP Peer

The administrator can disable the specified MSDP peer connection via the command according to the network demand. After disabling the MSDP peer connection, stop interacting the MSDP protocol packets between the MSDP peers.

Table 9-3 Disable the MSDP peer

Step	Command	Description
Enter global configuration mode	configure terminal	-
Disable the MSDP peer	ip msdp [vrf vrf-name] shutdown peer-ip-address	Mandatory By default, do not disable the MSDP peer.

9.2.2. Configure MSDP Peer Connection

After the device receives the SA packet, perform the RPF check. The packets passing the check are forwarded to the other peers that set up the peer connection. The packets not passing the RPF check are dropped.

www.qtech.ru

The default peer, mesh group can omit specifying the RPF check of the SA packet between the peers.

Configuration Condition

Before configuring MSDP, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Configure the PIM-SM protocol, realizing the intra-domain multicast
- Configure the MSDP peer

Configure Default MSDP Peer

When specifying the default MSDP peer, you can configure the RP range. When receiving the SA packet sent by the default peer and if the RP in the packet belongs to the permitted range, do not perform the RPF check. Otherwise, still perform the RPF check for the RP in the packet.

Table 9-4 Configure the default MSDP peer

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the default MSDP peer	ip msdp [vrf <i>vrf-name</i>] default-peer <i>peer-ip-address</i> [prefix-list <i>prefix-list-name</i>]	Mandatory By default, the MSDP default peer is not configured.

Configure MSDP Mesh Group

When receiving the SA packet from the peer in the group, the device directly passes the RPF check and does not forward the SA packet to the other peers in the group, but just forwards to the peers out of the group. This can reduce the load of the device and avoid the repeated forwarding, so as to save the network bandwidth.

Table 9-5 Configure the MSDP mesh group

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the MSDP mesh group	ip msdp [vrf <i>vrf-name</i>] mesh-group <i>mesh-group-</i> <i>name peer-ip-address</i>	Mandatory By default, no peer is added to the mesh group.

9.2.3. Configure SA Packet

Configuration Condition

Before configuring MSDP, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Configure the PIM-SM protocol, realizing the intra-domain multicast
- Configure the MSDP peer

Configure SA Request Packet

After configuring the SA request packet on the device, the device immediately sends the SA request packet to MSDP peer when receiving the new multicast group adding packet, so as to reduce the adding delay of the multicast group.

Some RP does not hope to be known by the receivers of the un-recognized other multicast domain. You can configure the filter policy of the SA request packet on all peers of the multicast domain to which the RP belongs. Only answer the SA request packet of the peers permitted by the policy.

Table 9-6 Configure the SA request packet

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure sending the SA request packet	ip msdp [vrf vrf-name] sa- request peer-ip-address	Mandatory By default, when receiving the new multicast group adding packet, the device does not send the SA request packet to the MSDP peer, but waits for the SA packet of the next period.
Configure the filter policy of the received SA request packet	ip msdp [vrf <i>vrf-name</i>] filter-sa-request <i>peer-ip-</i> <i>address</i> [list <i>access-list-</i> <i>number</i> <i>access-list-name</i>]	Mandatory By default, do not filter the SA request packet.

Note:

• ip msdp filter-sa-request only supports the standard ACL.

Configure SA Packet Filter Policy

Usually, the MSDP peer accepts the SA packets from all peers that pass the RPF check and forward to all the peers out of the mesh group. The user can configure the filter policy of the SA packet on the peer as desired, controlling the SA packets from or sent to the specified peer.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

When receiving or forwarding the SA packet, the device filters the multicast source group and RP of the SA packet.

Table 9-7	Configure	the filter	policy	of the	SA I	packet
					-	

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the filter policy of the SA packet	<pre>ip msdp [vrf vrf-name] sa- filter { in out } peer-ip- address [list { access-list- name access-list-number }] [rp-list { access-list-name access-list-number }]</pre>	Mandatory By default, do not filter the SA packet.

Note:

- The list parameter of ip msdp sa-filter only supports the extended ACL.
- The **rp-list** parameter of **ip msdp sa-filter** only supports the standard ACL.

9.2.4. MSDP Monitoring and Maintaining

Table 9-8 MSDP Monitoring and Maintaining

Command	Description
clear ip msdp [vrf <i>vrf-name</i>] peer [<i>peer-ip-address</i>]	Clear the MSDP peer information
clear ip msdp [vrf <i>vrf-name</i>] sa-cache [group-ip-address]	Clear the SA cache information
clear ip msdp [vrf <i>vrf-name</i>] statistics [<i>peer-ip-address</i>]	Clear the statistics information of the MSDP peers
show ip msdp [vrf <i>vrf-name</i>] count [<i>as-number-value</i>]	Display the SA information received by MSDP from the AS domain
show ip msdp [vrf <i>vrf-name</i>] peer [<i>peer-ip-address</i> [<i>accepted-SAs</i> <i>advertised-SAs</i>]]	Display the MSDP peer information
<pre>show ip msdp [vrf vrf-name] rpf [peer-ip- address]</pre>	Display the MSDP next-hop route information

www.qtech.ru

Command	Description
show ip msdp [vrf <i>vrf-name</i>] sa-cache [group-ip-address [source-ip-address]] [as- number-value]	Display the MSDP SA cache information
show ip msdp [vrf vrf-name] summary	Display the summery information of the MSDP peer

9.3. MSDP Typical Configuration Example

9.3.1. Configure Inter-PIM-SM Domain Multicast

Network Requirements

- The whole network includes two AS: AS100 and AS200. Run the BGP protocol between Ass and use MBGP to interact the multicast route; in AS, run the OSPF protocol to interact the route.
- Multicast domain PIM-SM1 is located in AS100; multicast domain PIM-SM2 is located in AS200. Source is one multicast source of PIM-SM1. Receiver is one receiver of PIM-SM2.
- Loopback0 and Loopback1 of Device2 are C-BSR and C-RP of PIM-SM1. Loopback0, Loopback1 of Device3 are C-BSR and C-RP of PIM-SM2.
- Between Device2 and Device3, set up the MSDP peer connection, so as to realize the cross-domain forwarding of the multicast service packet, so that Receiver can receive the multicast service packet sent by Source.

Network Topology

Figure 9-1 Networking of configuring the inter-PIM-SM domain multicast

Device	Interface	IP address	Device	Interface	IP address
Device1	Gi0	10.1.1.1/24	Device3	Gi0	10.1.3.2/24
	Gi1	10.1.2.1/24		Gi1	10.1.4.1/24
Device2	Gi0	10.1.2.2/24		Loopback0	22.22.22.22/32
	Gi1	10.1.3.1/24		Loopback1	23.23.23.23/32
	Loopback0	11.11.11.11/32	Device4	Gi0	10.1.4.2/24
Source	-	10.1.1.2/24			

Configuration Steps

MSDP

Step 1: Configure the IP address of the interface. (omitted)

Step 2: Configure OSPF so that all devices in the AS domain can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 10.1.1.0 0.0.0.255 area 0 Device1(config-ospf)#network 10.1.2.0 0.0.0.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 10.1.2.0 0.0.0.255 area 0 Device2(config-ospf)#network 11.11.11.11 0.0.0.0 area 0 Device2(config-ospf)#network 12.12.12.12 0.0.0.0 area 0 Device2(config-ospf)#exit

#Configure Device3.

Device3#configure terminal

Device3(config)#router ospf 100

Device3(config-ospf)#network 10.1.4.0 0.0.0.255 area 0

Device3(config-ospf)#network 22.22.22.22 0.0.0.0 area 0

Device3(config-ospf)#network 23.23.23.23 0.0.0.0 area 0

	Device3(config-ospf)#exit
#Configure	Device4.

Device4#configure terminal Device4(config)#router ospf 100 Device4(config-ospf)#network 10.1.4.0 0.0.0.255 area 0 Device4(config-ospf)#network 10.1.5.0 0.0.0.255 area 0 Device4(config-ospf)#exit

#View the route table of Device1.

Device1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 10.1.1.0/24 is directly connected, 00:05:44, gigabitethernet0
- C 10.1.2.0/24 is directly connected, 22:24:35, gigabitethernet1
- 0 11.11.11.11/32 [110/2] via 10.1.2.2, 01:21:25, gigabitethernet1
- 12.12.12.12/32 [110/2] via 10.1.2.2, 01:19:25, gigabitethernet1

#View the route table of Device4.

Device4#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 10.1.4.0/24 is directly connected, 22:41:14, gigabitethernet0
- C 10.1.5.0/24 is directly connected, 00:08:11, gigabitethernet1
- 0 22.22.22.22/32 [110/2] via 10.1.4.1, 01:23:33, gigabitethernet0
- 23.23.23.23/32 [110/2] via 10.1.4.1, 01:19:33, gigabitethernet0

You can see that Device1 and Device4 only learn the routes of the belonging AS domain.

Note:

- The viewing method of Device2 and Device3 is the same as that of Device1, Device4, so the viewing process is omitted.
- **Step 3:** Globally enable the multicast forwarding, enable the multicast protocol PIM-SM on the interface, and configure C-BSR and C-RP.

#Configure Device1.

Globally enable the multicast forwarding, and enable the multicast protocol PIM-SM on the interfaces.

Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim sparse-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim sparse-mode Device1(config-if-gigabitethernet1)#ip pim sparse-mode

#Configure Device2.

Globally enable the multicast forwarding, enable the multicast protocol PIM-SM on the interface, configure the BSR border on interface Gigabitethernet1, and configure Loopback1 as C-BSR, and Loopback0 as C-RP; the multicast group range of the C-RP service is 224.0.0.0/4.

Device2(config)#ip multicast-routing Device2(config)#interface loopback 0 Device2(config-if-loopback0)#ip pim sparse-mode Device2(config-if-loopback0)#exit Device2(config)#interface loopback 1 Device2(config-if-loopback1)#ip pim sparse-mode Device2(config-if-loopback1)#exitDevice2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip pim sparse-mode Device2(config-if-gigabitethernet0)#exit Device2(config-if-gigabitethernet0)#exit Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim bsr-border Device2(config-if-gigabitethernet1)#ip pim bsr-border Device2(config-if-gigabitethernet1)#ip pim bsr-border Device2(config-if-gigabitethernet1)#ip pim bsr-border

#Configure Device3.

Globally enable the multicast forwarding, enable the multicast protocol PIM-SM on the interface, configure the BSR border on interface Gigabitethernet0, and configure Loopback1 as C-BSR, and Loopback0 as C-RP; the multicast group range of the C-RP service is 224.0.0.0/4.

Device3(config)#ip multicast-routing Device3(config)#interface loopback 0 Device3(config-if-loopback0)#ip pim sparse-mode Device3(config-if-loopback0)#exit Device3(config)#interface loopback 1

www.qtech.ru

Device3(config-if-loopback1)#ip pim sparse-mode

Device3(config-if-loopback1)#exitDevice3(config)#interface gigabitethernet0

Device3(config-if-gigabitethernet0)#ip pim sparse-mode

Device3(config-if-gigabitethernet0)#ip pim bsr-border

Device3(config-if-gigabitethernet0)#exit

Device3(config)#interface gigabitethernet1

Device3(config-if-gigabitethernet1)#ip pim sparse-mode

Device3(config-if-gigabitethernet1)#exit

Device3(config)#ip pim bsr-candidate loopback1

Device3(config)#ip pim rp-candidate loopback0

#Configure Device4.

Globally enable the multicast forwarding, and enable the multicast protocol PIM-SM on the interfaces.

Device4(config)#ip multicast-routing Device4(config)#interface gigabitethernet0 Device4(config-if-gigabitethernet0)#ip pim sparse-mode Device4(config-if-gigabitethernet0)#exit Device4(config)#interface gigabitethernet1 Device4(config-if-gigabitethernet1)#ip pim sparse-mode Device4(config-if-gigabitethernet1)#ip pim sparse-mode

#View the information of the interface enabled with the PIM-SM protocol on Device4 and the PIM-SM neighbor information.

- Device4#show ip pim interface
- PIM Interface Table:
- PIM VRF Name: Default
- Total 3 Interface entries
- Total 0 External Interface entry
- Total 0 Sparse-Dense Mode Interface entry

Address CISCO	Interface Neighbor	VIF	Ver/	VIF	Nbr	DR	DR	BSR
	lr	ndex Moo	de Flag	Οοι	int P	ri		Border
Neighbo	r Filter							
10.1.4.2	register_vif0	1	v2/S UF	0				
10.1.4.2 FALSE	gigabitethernetO	0	v2/S	UP	1	1	10.1.4.2	FALSE
10.1.5.1 FALSE	gigabitethernet1	2	v2/S	UP	0	1	10.1.5.1	FALSE

www.qtech.ru

Device4#show ip pim neighbor PIM Neighbor Table: PIM VRF Name: Default Total 1 Neighbor entry

Neighbor	Interface	Uptime/Expires	Ver	DR
Address		Priorit	у/Мо	de
10.1.4.1	gigabitethernetO	23:03:12/00:01:20	v2	1/

Note:

• The viewing method of Device1, Device2, Device3 is the same as that of Device4, so the viewing process is omitted.

#View the BSR and RP information of Device4.

Device4#show ip pim bsr-router PIMv2 Bootstrap information PIM VRF Name: Default BSR address: 23.23.23.23 BSR Priority: 0 Hash mask length: 10 Up time: 01:57:44 Expiry time: 00:01:28 Role: Non-candidate BSR State: Accept Preferred

Device4#show ip pim rp mapping PIM Group-to-RP Mappings Table: PIM VRF Name: Default Total 1 RP set entry Total 1 RP entry

Group(s): 224.0.0.0/4 RP count: 1 RP: 22.22.22.22 Info source: 23.23.23.23, via bootstrap, priority 192 Up time: 01:57:45 Expiry time: 00:01:47 #View the BSR and RP information of Device1. Device1#show ip pim bsr-router

www.qtech.ru

••••

PIMv2 Bootstrap information PIM VRF Name: Default BSR address: 12.12.12.12 BSR Priority: 0 Hash mask length: 10 Up time: 02:00:24 Expiry time: 00:01:44 Role: Non-candidate BSR State: Accept Preferred

Device1#show ip pim rp mapping PIM Group-to-RP Mappings Table: PIM VRF Name: Default Total 1 RP set entry Total 1 RP entry

Group(s): 224.0.0.0/4 RP count: 1 RP: 11.11.11.11 Info source: 12.12.12.12, via bootstrap, priority 192 Up time: 02:00:30 Expiry time: 00:01:58

You can see that there is only the BSR and RP information of the belonging multicast domain on Device4, Device1.

Note:

- The viewing method of Device2 and Device3 is the same as that of Device1, Device4, so the viewing process is omitted.
- **Step 4:** Configure MP-EBGP. Set up the direct-connected EBGP peer between Device2 and Device3 and use the MBGP to interact the multicast route.

#Configure Device2.

Configure setting up the direct-connected EBGP peer with Device3, enable Multicast address stack and advertise the multicast route.

Device2(config)#router bgp 100 Device2(config-bgp)#neighbor 10.1.3.2 remote-as 200 Device2(config-bgp)#address-family ipv4 multicast Device2(config-bgp-af)#network 10.1.1.0 255.255.255.0 Device2(config-bgp-af)#network 11.11.11.11 255.255.255.255 Device2(config-bgp-af)#neighbor 10.1.3.2 activate

Device2(config-bgp-af)#exit-address-family Device2(config-bgp)#exit

#Configure Device3.

Configure setting up the direct-connected EBGP peer with Device2, enable Multicast address stack and advertise the multicast route.

Device3(config)#router bgp 200 Device3(config-bgp)#neighbor 10.1.3.1 remote-as 100 Device3(config-bgp)#address-family ipv4 multicast Device3(config-bgp-af)#network 10.1.5.0 255.255.255.0 Device3(config-bgp-af)#network 22.22.22.22 255.255.255.255 Device3(config-bgp-af)#neighbor 10.1.3.1 activate Device3(config-bgp-af)#exit-address-family Device3(config-bgp)#exit

#View the BGP neighbor status of Device3.

Device3#show ip bgp summary BGP router identifier 22.22.22.22, local AS number 200 BGP table version is 2 2 BGP AS-PATH entries 0 BGP community entries

NeighborVAS MsgRcvd MsgSentTblVerInQ OutQ Up/DownState/PfxRcd10.1.3.141001141112000

Total number of neighbors 1

According to the number displayed in the State/PfxRcd list (the number of the unicast route prefixes received from the neighbor), we can see that the BGP neighbor is set up between Device3 and Device2 successfully.

#View the BGP Multicast route table of Device3.

Device3#show bgp ipv4 multicast

BGP table version is 9, local router ID is 22.22.22.22

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network	Next Hop	Metri	c LocPrf Weight	Path
[B]*> 10.1.1.0/24	10.1.3.1	2	0 100 i	
[B]*> 10.1.5.0/24	10.1.4.2	2	32768 i	
[B]*> 11.11.11.11/32	10.1.3.1	0	0 100 i	
[B]*> 22.22.22.22/3	0.0.0.0	0	32768 i	

www.qtech.ru

....

You can see that Device3 learns the Source and RP routes of the multicast domain PIM-SM1 and the next hop is MSDP peer 10.1.3.1.

Note:

• The viewing method of Device2 is the same as that of Device3, so the viewing process is omitted.

Step 5: Configure MSDP.

#Configure Device2.

Configure setting up the direct-connected EBGP peer with Device3; enable the function of actively sending the SA request packet to the specified peer; configure using the RFC3618 rule to perform the RPF check for the MSDP packet.

Device2(config)#ip msdp peer 10.1.3.2 remote-as 200 Device2(config)#ip msdp sa-request 10.1.3.2

Device2(config)#ip msdp rpf rfc3618

#Configure Device3.

Configure setting up the direct-connected EBGP peer with Device2; enable the function of actively sending the SA request packet to the specified peer; configure using the RFC3618 rule to perform the RPF check for the MSDP packet.

Device3(config)#ip msdp peer 10.1.3.1 remote-as 100

Device3(config)#ip msdp sa-request 10.1.3.1

Device3(config)#ip msdp rpf rfc3618

#View the MSDP peer connection status and details of Device3.

Device3#show ip msdp summary

MSDP Peer Status Summary

Total 1 Peer entry

Peer Address AS State Reset Uptime/Downtime

10.1.3.1 100 Up 0 02:21:18

Device3#show ip msdp peer

MSDP Peer Table:

Total 1 Peer entry

MSDP Peer 10.1.3.1, AS 100 (configured AS)

Connection status:

State: Established, Resets: 0, Connection source: none configured

Uptime(Downtime): 02:50:00, Message sent/received: 136/161

Connection and counters cleared 02:13:25 ago

Local Address of connection: 10.1.3.2

Remote Address of connection: 10.1.3.1

Local Port: 639, Remote Port: 1179

SA-Requests: Input filter: none Sending SA-Requests to peer: enabled SA: Input filter: none Message counters: RPF Failure count: 0 SA Messages in/out: 47/0 SA Requests in/out: 0/3 SA Responses in/out: 3/0 Data Packets in/out: 0/0

You can see that the MSDP peer connection is set up successfully between Device3 and Device2.

Note:

• The viewing method of Device2 is the same as that of Device3, so the viewing process is omitted.

Step 6: Check the result.

#Receiver sends the IGMPv2 member report packet to add to multicast group 225.1.1.1; Source sends the multicast service packet with multicast group 225.1.1.1.

#View the multicast member table on Device4.

Device4#sh	ow ip igmp groups			
IGMP Conne	ected Group Membership			
Total 1 grou	ps			
Group Addr	ess Interface	Uptime	Expires Last Rep	orter V1 Expires
225.1.1.1	gigabitethernet1	00:05:11 0	0:02:38 10.1.5.2	stopped

#View the MSDP SA cache information of Device2.

Device2#show ip msdp sa-cache

MSDP Source-Active Cache - 1 entries

(10.1.1.2, 225.1.1.1), RP 11.11.11.11, Originated, 00:11:45/00:05:39

You can see that Device2 generates and caches the SA packet. The multicast source address in the SA packet is 10.1.1.2; the multicast group address is 225.1.1.1; the RP address is 11.11.11.11.

#View the MSDP SA cache information and RPF check table of Device3.

Device3#show ip msdp sa-cache

MSDP Source-Active Cache - 1 entries

(10.1.1.2, 225.1.1.1), RP 11.11.11, Recv From Peer 10.1.3.1, 00:08:39/00:05:21

Device3#show ip msdp rpf

MSDF)
------	---

www.atech.ru	_	-	-	
www.qcecii.ru				

Destination	n Nextho	p Next	hop	I	Nextho	p Metric	Pref
Address	Address	s From		Re	efCnt		
10.1.3.1	0.0.0.0	0.0.0.0	1	10	0		
11.11.11.11	10.1.3.1	10.1.3.1	1	0	20		

You can see that Device3 receives and caches the SA packet. The SA packet is from the peer 10.1.3.1. The multicast source address in the packet is 10.1.1.2; the multicast group address is 225.1.1.1; the RP address is 11.11.11.11; the next hop of on the best path from Device3 to source end RP (11.11.11.11) is 10.1.3.1.

#View the PIM-SM multicast route table of Device3.

Device3#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 1 (S,G) entry Total 1 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

```
(*, 225.1.1.1)
Up time: 00:13:57
RP: 22.22.22.22
RPF nbr: 0.0.0.0
RPF idx: None
Flags:
JOIN DESIRED
Upstream State: JOINED
Local interface list:
Joined interface list:
gigabitethernet1 00:13:57/00:02:33
Asserted interface list:
```

(10.1.1.2, 225.1.1.1) Up time: 00:13:57 KAT time: 00:03:28 RPF nbr: 10.1.3.1

www.gtech.ru

....

RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: Asserted interface list: **Outgoing interface list:** gigabitethernet1 Packet count 6906038 (10.1.1.2, 225.1.1.1, rpt) Up time: 00:13:57 RP: 22.22.22.22 Flags: **RPT JOIN DESIRED** PRUNE DESIRED **RPF SGRPT XG EQUAL** Upstream State: PRUNED Local interface list: Pruned interface list: **Outgoing interface list:** gigabitethernet1 #Receiver can receive the multicast service packet with multicast group 225.1.1.1 sent by

Note:

Source.

The viewing method of Device2 is the same as that of Device3, so the viewing process • is omitted.

9.3.2. Configure Anycast RP

Network Requirements

- The whole PIM multicast domain runs the PIM-SM protocol. •
- Loopback0 interface of Device3 is C-BSR. Loopback1 interfaces of Device2 and • Device4 are C-RP and the IP addresses are the same.
- Use the IP address of Loopback0 between Device2 and Device4 to set up the MSDP • peer connection.
- In the domain, configure multiple RPs with the same address; non-RP device selects the nearest RP used to manage the multicast source and receiver. The RPs exchange the multicast source information via MSDP so that the multicast service of the whole

www.qtech.ru

multicast domain can be interacted. If one RP fails, its managed areas are shared by other RPs.

Network Topology

Figure 9-2 Networking of configuring Anycast RP

Device	Interface	IP address	Device	Interface	IP address
Device1	Gi0	10.1.1.1/24	Device3	Loopback0	44.44.44.44/32
	Gi1	10.1.2.1/24	Device4	Gi0	10.1.4.2/24
Device2	Gi0	10.1.2.2/24		Gi1	10.1.5.1/24
	Gi1	10.1.3.1/24		Loopback0	22.22.22.22/32
	Loopback0	11.11.11.11/32		Loopback1	55.55.55.55/32
	Loopback1	55.55.55.55/32	Device5	Gi0	10.1.5.2/24
Device3	Gi0	10.1.3.2/24		Gi1	10.1.6.1/24
	Gi1	10.1.4.1/24	Source	-	10.1.1.2/24

Configuration Steps

Step 1: Configure the IP address of the interface. (omitted)

Step 2: Configure OSPF so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal

Device1(config)#router ospf 100 Device1(config-ospf)#network 10.1.1.0 0.0.0.255 area 0 Device1(config-ospf)#network 10.1.2.0 0.0.0.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 10.1.2.0 0.0.0.255 area 0 Device2(config-ospf)#network 10.1.3.0 0.0.0.255 area 0 Device2(config-ospf)#network 11.11.11 0.0.0.0 area 0 Device2(config-ospf)#network 55.55.55 0.0.0.0 area 0 Device2(config-ospf)#network 55.55.55 0.0.0.0 area 0

#Configure Device3.

Device3#configure terminal Device3(config)#router ospf 100 Device3(config-ospf)#network 10.1.3.0 0.0.0.255 area 0 Device3(config-ospf)#network 10.1.4.0 0.0.0.255 area 0 Device3(config-ospf)#network 44.44.44.44 0.0.0.0 area 0 Device3(config-ospf)#exit

#Configure Device4.

Device4#configure terminal Device4(config)#router ospf 100 Device4(config-ospf)#network 10.1.4.0 0.0.0.255 area 0 Device4(config-ospf)#network 10.1.5.0 0.0.0.255 area 0 Device4(config-ospf)#network 22.22.22.22 0.0.0.0 area 0 Device4(config-ospf)#network 55.55.55 0.0.0.0 area 0 Device4(config-ospf)#network 55.55.55 0.0.0.0 area 0

#Configure Device5.

Device5#configure terminal Device5(config)#router ospf 100 Device5(config-ospf)#network 10.1.5.0 0.0.0.255 area 0 Device5(config-ospf)#network 10.1.6.0 0.0.0.255 area 0 Device5(config-ospf)#exit

#View the route table of Device5.

Device5#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- 0 10.1.1.0/24 [110/5] via 10.1.5.1, 04:04:37, gigabitethernet0
- 0 10.1.2.0/24 [110/4] via 10.1.5.1, 04:05:13, gigabitethernet0
- 0 10.1.3.0/24 [110/3] via 10.1.5.1, 04:17:36, gigabitethernet0
- 0 10.1.4.0/24 [110/2] via 10.1.5.1, 18:19:08, gigabitethernet0
- C 10.1.5.0/24 is directly connected, 18:22:13, gigabitethernet0
- C 10.1.6.0/24 is directly connected, 04:32:51, gigabitethernet1
- 0 11.11.11.11/32 [110/4] via 10.1.5.1, 04:17:36, gigabitethernet0
- 0 22.22.22.22/32 [110/2] via 10.1.5.1, 03:56:25, gigabitethernet0
- 0 44.44.44.44/32 [110/3] via 10.1.5.1, 04:13:23, gigabitethernet0
- 0 55.55.55/32 [110/2] via 10.1.5.1, 04:17:36, gigabitethernet0

#We can see that Device5 leans the routes of multicast source, BSR and RP.

Note:

- The viewing method of Device1, Device2, Device3, and Device4 is the same as that of Device5, so the viewing process is omitted.
- **Step 4:** Globally enable the multicast forwarding, enable the multicast protocol PIM-SM on the interface, and configure C-BSR and C-RP.

#Configure Device1.

Globally enable the multicast forwarding, and enable the multicast protocol PIM-SM on the interface.

Device1(config)#ip multicast-routing Device1(config)#interface gigabitethernet0 Device1(config-if-gigabitethernet0)#ip pim sparse-mode Device1(config-if-gigabitethernet0)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ip pim sparse-mode Device1(config-if-gigabitethernet1)#ip pim sparse-mode

#Configure Device2.

Globally enable the multicast forwarding, enable the multicast protocol PIM-SM on the interface, and configure Loopback1 as C-RP; the multicast group range of the C-RP service is 224.0.0.0/4.

Device2(config)#ip multicast-routing

Device2(config)#interface loopback0

Device2(config-if-loopback0)#ip pim sparse-mode

Device2(config-if-loopback0)#exit Device2(config)#interface loopback1 Device2(config-if-loopback1)#ip pim sparse-mode Device2(config-if-loopback1)#exit Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ip pim sparse-mode Device2(config-if-gigabitethernet0)#exit Device2(config)#interface gigabitethernet1 Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#ip pim sparse-mode Device2(config-if-gigabitethernet1)#exit Device2(config)#ip pim rp-candidate loopback1

#Configure Device3.

Globally enable the multicast forwarding, enable the multicast protocol PIM-SM on the interface, and configure Loopback0 as C-BSR.

Device3(config)#ip multicast-routing Device3(config)#interface loopback0 Device3(config-if-loopback0)#ip pim sparse-mode Device3(config-if-loopback0)#exit Device3(config)#interface gigabitethernet0 Device3(config-if-gigabitethernet0)#ip pim sparse-mode Device3(config-if-gigabitethernet0)#exit Device3(config)#interface gigabitethernet1 Device3(config)#interface gigabitethernet1 Device3(config-if-gigabitethernet1)#ip pim sparse-mode Device3(config-if-gigabitethernet1)#ip pim sparse-mode Device3(config-if-gigabitethernet1)#ip pim sparse-mode Device3(config-if-gigabitethernet1)#exit Device3(config-if-gigabitethernet1)#exit

#Configure Device4.

Globally enable the multicast forwarding, enable the multicast protocol PIM-SM on the interface, and configure Loopback1 as C-RP; the multicast group range of the C-RP service is 224.0.0.0/4.

Device4(config)#ip multicast-routing Device4(config)#interface loopback0 Device4(config-if-loopback0)#ip pim sparse-mode Device4(config-if-loopback0)#exit Device4(config)#interface loopback1 Device4(config-if-loopback1)#ip pim sparse-mode Device4(config-if-loopback1)#exit Device4(config)#interface gigabitethernet0 Device4(config-if-gigabitethernet0)#ip pim sparse-mode

Device4(config-if-gigabitethernet0)#exit Device4(config)#interface gigabitethernet1 Device4(config-if-gigabitethernet1)#ip pim sparse-mode Device4(config-if-gigabitethernet1)#exit Device4(config)#ip pim rp-candidate loopback1

#Configure Device5. Globally enable the multicast forwarding and enable the multicast protocol PIM-SM on the interface.

Device5(config)#ip multicast-routing Device5(config)#interface gigabitethernet0 Device5(config-if-gigabitethernet0)#ip pim sparse-mode Device5(config-if-gigabitethernet0)#exit Device5(config)#interface gigabitethernet1 Device5(config-if-gigabitethernet1)#ip pim sparse-mode Device5(config-if-gigabitethernet1)#ip pim sparse-mode

#View the information of the interface enabled with the PIM-SM protocol on Device5 and the PIM-SM neighbor information.

Device5#show ip pim interface PIM Interface Table: PIM VRF Name: Default Total 3 Interface entries Total 0 External Interface entry Total 0 Sparse-Dense Mode Interface entry

Address CISCO	lnterface Neighbor	VIF	Ver/ VIF	Nbr	DF	R DR	BSR
	In	dex Mod	le Flag Co	unt F	Pri		Border
Neighbo	r Filter						
10.1.5.2	register_vif0	1	v2/S UP				
10.1.5.2 FALSE	gigabitethernetO	0	v2/S UF) 1	1	10.1.5.2	FALSE
10.1.6.1 FALSE	gigabitethernet1	2	v2/S UP	0	1	10.1.6.1	FALSE

Device5#show ip pim neighbor PIM Neighbor Table: PIM VRF Name: Default Total 1 Neighbor entry

www.qtech.ru

....

Neighbor	Interface	Uptime/Expires	Ver DR
Address		Priori	ty/Mode
10.1.5.1	gigabitethernetO	18:37:22/00:01:45	v2 1/
#View the BSR and RI	P information of Device5.		
Device5#s	how ip pim bsr-router		
PIMv2 Boo	tstrap information		
PIM VRF N	ame: Default		
BSR addr	ess: 44.44.44.44		
BSR Prio	rity: O		
Hash mas	sk length: 10		
Up time: ()4:36:44		
Expiry tin	ne: 00:01:35		
Role: Non	-candidate BSR		
State: Acc	cept Preferred		
Device5#s	how ip pim rp mapping		
PIM Group	-to-RP Mappings Table:		
PIM VRF N	ame: Default		
Total 1 RP s	set entry		
Total 1 RP o	entry		
Group(s):	224.0.0.0/4		

Group(s): 224.0.0.0/4 RP count: 1 RP: 55.55.55.55 Info source: 44.44.44, via bootstrap, priority 192 Up time: 04:36:44 Expiry time: 00:01:53

Note:

• The viewing method of Device1, Device2, Device3, Device4 is the same as that of Device5, so the viewing process is omitted.

Step 4: Configure MSDP.

#Configure Device2.

Configure setting up the non-direct-connected MSDP peer connection via Loopback0 with Loopback0 of Device4; enable the function of actively sending the SA request packet to the specified peer; configure the RP address in the SA packet as the IP address of Loopback0; configure using the RFC3618 rule to perform the RPF check for the MSDP packet.

Device2(config)#ip msdp peer 22.22.22.22 connect-source loopback0

....

Device2(config)#ip msdp sa-request 22.22.22 Device2(config)#ip msdp originator-id loopback0 Device2(config)#ip msdp rpf rfc3618

#Configure Device4.

Configure setting up the non-direct-connected MSDP peer connection via Loopback0 with Loopback0 of Device2; enable the function of actively sending the SA request packet to the specified peer; configure the RP address in the SA packet as the IP address of Loopback0; configure using the RFC3618 rule to perform the RPF check for the MSDP packet.

Device4(config)#ip msdp peer 11.11.11.11 connect-source loopback0 Device4(config)#ip msdp sa-request 11.11.11.11

Device4(config)#ip msdp originator-id loopback0

Device4(config)#ip msdp rpf rfc3618

#View the MSDP peer connection status and details of Device4.

Device4#show ip msdp summary

MSDP Peer Status Summary

Total 1 Peer entry

Peer Address AS State Reset Uptime/Downtime

11.11.11.11 ? Up 0 05:49:35

Device4#show ip msdp peer MSDP Peer Table: Total 1 Peer entry MSDP Peer 11.11.11.11, AS ? Connection status: State: Established, Resets: 0, Connection source: loopback0 Uptime(Downtime): 05:49:39, Message sent/received: 352/528 Connection and counters cleared 05:53:24 ago Local Address of connection: 22.22.22.22 Remote Address of connection: 11.11.11.11 Local Port: 639, Remote Port: 1053 **SA-Requests:** Input filter: none Sending SA-Requests to peer: enabled SA: Input filter: none Message counters: **RPF Failure count: 3** SA Messages in/out: 348/0

SA Requests in/out: 0/3 SA Responses in/out: 2/0

Data Packets in/out: 0/0

You can see that Device4 and Device2 set up the MSDP peer connection successfully.

Note:

• The viewing method of Device2 is the same as that of Device4, so the viewing process is omitted.

Step 5: Check the result.

Source sends the multicast service packet with multicast group 225.1.1.1.

#View the MSDP SA cache information of Device2.

Device2#show ip msdp sa-cache

MSDP Source-Active Cache - 1 entries

(10.1.1.2, 225.1.1.1), RP 55.55.55, Originated, 00:03:34/00:05:43

You can see that Device2 generates and caches the SA packet. The multicast source address in the SA packet is 10.1.1.2; the multicast group address is 225.1.1.1; the RP address is 55.55.55.55.

#View the MSDP SA cache information and RPF check table of Device4.

Device4#show ip msdp sa-cache MSDP Source-Active Cache - 1 entries (10.1.1.2, 225.1.1.1), RP 11.11.11, Recv From Peer 11.11.11.11, 00:07:02/00:05:58

Device4#s	how ip msd	p rpf					
Destination	n Nextho	p Nexth	ор	Ν	exth	op Metric	Pref
Address	Addres	s From		Ref	Cnt		
10.1.4.1	0.0.0.0	0.0.0.0	1	10	0		
11.11.11.11	10.1.4.1	55.55.55.55	3	3	11	0	
55.55.55.55	5 0.0.0.0	0.0.0.0	2	2	1	0	

You can see that Device4 receives and caches the SA packet. The SA packet is from the peer 11.11.11.11. The multicast source address in the packet is 10.1.1.2; the multicast group address is 225.1.1.1; the RP address is 11.11.11.11.

Note:

• If **ip msdp originator-id** is configured on the source RP and when it sends the SA packet to MSDP peer, it replaces the RP address in the packet with the IP address of the specified interface.

#View the PIM-SM multicast route table of Device2.

Device2#show ip pim mroute

IP Multicast Routing Table:

PIM VRF Name: Default

••••

Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entry Total 1 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(10.1.1.2, 225.1.1.1)
Up time: 00:01:14
KAT time: 00:03:23
RPF nbr: 10.1.2.1
RPF idx: gigabitethernet0
SPT bit: FALSE
Flags:
Upstream State: NOT JOINED
Local interface list:
Joined interface list:
Asserted interface list:
Outgoing interface list:
Packet count 0

- (10.1.1.2, 225.1.1.1, rpt) Up time: 00:01:14 RP: 55.55.55.55 Flags: RPF SGRPT XG EQUAL Upstream State: RPT NOT JOINED Local interface list: Pruned interface list: Outgoing interface list: #View the PIM-SM multicast route table of Device4. Device4#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry
 - Total 0 (*,G) entry

....

Total O (S,G) entry Total O (S,G,rpt) entry Total O FCR entry Up timer/Expiry timer

You can see that there is (10.1.1.2, 225.1.1.1) entry on Device2 and no (10.1.1.2, 225.1.1.1) entry on Device4. It indicates that Source initiates the PIM-SM register to the nearest RP, that is, Device2.

#Receiver sends the IGMPv2 member report packet to add to multicast group 225.1.1.1.

#View the multicast member table on Device5.

Device5#sł	now ip igmp groups					
IGMP Conn	ected Group Membership					
Total 1 grou	ps					
Group Addr	ess Interface	Uptime	Expires	Last Re	eporter	V1 Expires
225.1.1.1	gigabitethernet1	00:00:12 0	0:04:12 10	.1.6.2	stopp	bed

#View the PIM-SM multicast route table of Device2.

Device2#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 0 (*,G) entry Total 1 (S,G) entry Total 1 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(10.1.1.2, 225.1.1.1) Up time: 00:19:01 KAT time: 00:03:14 RPF nbr: 10.1.2.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list:

Joined interface list: gigabitethernet1 00:02:56/00:02:34 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 1136269

(10.1.1.2, 225.1.1.1, rpt) Up time: 00:19:01 RP: 55.55.55.55 Flags: RPF SGRPT XG EQUAL Upstream State: RPT NOT JOINED

#View the PIM-SM multicast route table of Device4.

Device4#show ip pim mroute IP Multicast Routing Table: PIM VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 1 (S,G) entry Total 1 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(*, 225.1.1.1) Up time: 00:05:54 RP: 55.55.555 RPF nbr: 0.0.0.0 RPF idx: None Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: gigabitethernet1 00:05:54/00:02:36 Asserted interface list:

www.qtech.ru

....

(10.1.1.2, 225.1.1.1)Up time: 00:05:54 KAT time: 00:03:22 RPF nbr: 10.1.4.1 RPF idx: gigabitethernet0 SPT bit: TRUE Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: gigabitethernet1 00:05:54/00:02:37 Asserted interface list: Outgoing interface list: gigabitethernet1 Packet count 2172581

(10.1.1.2, 225.1.1.1, rpt) Up time: 00:05:54 RP: 55.55.55 Flags: RPT JOIN DESIRED PRUNE DESIRED RPF SGRPT XG EQUAL Upstream State: PRUNED Local interface list: Pruned interface list: Outgoing interface list: gigabitethernet1

You can see that there is (*,225.1.1.1) entry on Device4 and no (*,225.1.1.1) entry on Device2. It indicates that Source initiates the PIM-SM adding to the nearest RP, that is, Device4.

#Receiver can receive the multicast service packet with multicast group 225.1.1.1 sent by Source.

10. MLD

10.1. Overview

MLD is short for Multicast Listener Discovery Protocol, used to set up and maintain the multicast group member relation between the IPv6 host and its dirst neighboring multicast device.

MLD router uses the local address of the IPv6 unicast link as the source address to send the MLD packet. MLD uses ICMPv6 (Internet Control Message Protocol for IPv6) packet type. All MLD packets are limited on the local link, and the hops are 1.

MLD has two versions: MLDv1n corresponds to IGMPv2, and MLDv2 corresponds to IGMPv3.

The packet types of the IGMP protocol adopting the IP protocol number 2 are different. The MLD protocol adopts the ICMPv6 (IP protocol number is 58) packet type, including MLD query packet (type value is 130), MLDv1 report packet (type value is 131), MLDv1 leave packet (type value is 132), and MLDv2 report packet (type value is 143). The MLD protocol and IGMP protocol have different packet formats, but have the same protocol actions.

10.2. MLD Function Configuration

Table 10-1 MLD function configuration list

Configuration tasks				
Configure the MLD basic functions	Enable the MLD protocol in the interface			
Adjust and optimize the MLD network	Configure the query interval of the general group			
	Configure the robustness factor			
	Configure the maximum response time			
	Configure the specified group query			
	Configure the fast leave			
Configure the MLD SSM mapping	Configure the MLD SSM mapping			

10.2.1. Configure MLD Basic Functions

Configuration Condition

Before configuring the MLD basic functions, first complete the following task:

- Enable the interface IPv6
- Enable the interface MLD

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Enable the MLD Protocol

Table 10-2 Enable the MLD protocol

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable the IPv6 multicast forwarding	ipv6 multicast-routing [vrf vrf-name]	Mandatory By default, the IPv6 multicast forwarding is disabled.
Enter the interface configuration mode	interface interface-name	-
Enable the MLD protocol	ipv6 mld enable	Mandatory By default, do not enable MLD. After enabling MLD, all MLD configurations can take effect.

Configure the MLD Version

Table 10-3 Configure the MLD version

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the MLD version	ipv6 mld version version-number	Mandatory By default, the MLD version is 2.

www.qtech.ru

Caution:

 Because the packet structure and kind of different versions of MLD protocols are different, it is suggested to configure the same version of IGMP for all devices on the same subnet.

Configure Static Group Adding

After configuring one static group or source group in the interface, the device regards that the interface has the receiver of the multicast group or source group.

Table 10-4 Configure static group adding

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the static group adding	ipv6 mld static-group group-ipv6-address [source-ipv6-address]	Mandatory By default, the interface is not added to any multicast group or source group in the static mode.

Configure Multicast Group Filter

The interface configured with the MLD multicast group filter filters the group member relation report in the segment according to the ACL rules and only the group member relation report permitted by ACL is processed and the un-permitted is directly dropped. For the existing but not permitted by ACL multicast group, immediately delete the multicast group information.

Table 10-5 Configure multicast group filter

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the IGMP multicast group filter	ipv6 mld access-group { access-list-number access-list-name }	Mandatory By default, the multicast group filter is not configured.

Note:

www.qtech.ru

• The ipv6 mld access-group command only supports the standard ACL.

10.2.2. Adjust and Optimize the MLD Network

Configuration Condition

Before adjusting and optimizing the MLD network, first complete the following tasks:

- Enable the IPv6 protocol
- Enable the MLD protocol on the interface

Configure Query Interval of General Group

MLD querier periodically sends the general group query packets to maintain the group member relation. You can modify the interval of sending the MLD general group query packets according to the actuality of the network.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the query interval of the general group	ipv6 mld query-interval interval-value	Optional By default, the interval of sending the MLD general group query packets is 125s.

Table 10-6 Configure the query interval of the general group

Note:

- The genera query intervals of the devices on the same segment should try to keep consistent.
- The general group query interval should be larger than the maximum response time. Otherwise, the configuration cannot succeed.

www.qtech.ru

Configure Robustness Factor

The robustness factor is used to prevent the packet loss.

Table 10-7 Configure the robustness factor

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the robustness factor	ipv6 mld robustness-variable variable-value	Optional By default, the robustness factor of the MLD querier is 2.

Note:

- After configuring the robustness factor, the following parameters also change with the robustness parameters:
- 1. Group member timeout = Robustness factor * general group query time + maximum response time;
- Other querier timeout = Robustness factor * general group query time + maximum response time/2;
- 3. The larger the robustness factor, the larger the MLD group member timeout and other querier timeout. Set the value according to the actuality of the network.

Configure Maximum Response Time

The general group query packet sent by the querier contains the maximum response time field and the receiver sends the group member relation report within the maximum response interval. If the receiver does not send the group member relation report within the maximum response time, the device regards that the subnet does not have the receiver of the multicast group and deletes the multicast group information immediately.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Table 10-8 Configure the maximum response time

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the maximum response time	ipv6 mld query-max-response-time seconds	Optional By default, the maximum response time of the MLD general group query is 10s.

Configure Specified Group Query

After the MLD querier receives the leave packet of one multicast group, send the specified group query packet to query the multicast group on the segment. The sending times of the packet depends on "Specified group query times". This is to know whether the subnet has the members of the multicast group. If not receiving the member relation report of the multicast group after waiting for "maximum response time", delete the information of the multicast group.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the query interval of the specified group	ipv6 mld last-member-query-interval interval-value	Optional By default, the interval of sending the specified group query packets is 1s.
Configure the query times of the specified group	ipv6 mld last-member-query-count count-value	Optional By default, the times of sending the specified group query packets is 2.

www.qtech.ru

Configure Fast Leave

The end segment in the network only connects to one host, which performs the switching action of the multicast group frequently. To reduce the leave delay, you can configure the fast leave of the multicast group on the device.

After configuring the fast leave, the device receives the leave packet of one multicast group and checks whether the multicast group belongs to the fast leave range. If yes, the device does not send the specified group query packet to the segment any more and deletes the information of the multicast group immediately.

Table 10-10 Configure the fast leave

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the source group range of the fast leave	ipv6 mld immediate-leave group-list { access-list-number access-list-name }	Mandatory By default, do not permit the fast leave of the multicast group

10.2.3. Configure the MLD SSM Mapping

Configuration Condition

Before configuring the MLD SSM mapping, first complete the following tasks:

- Enable the interface IPv6
- Enable the interface MLD

Configure the MLD SSM Mapping

To provide the PIM-SMv6 SSM service for the receiver not supporting MLDv2 in the PIM-SMv6 SSM network, we can configure the MLD SSM Mapping function on the device.

The user can configure the MLD SSM Mapping rule according to the demand of the network receiver. The group member relation report permitted by the rule is converted to the MLD non-member (IS_EX, TO_EX) relation report, and the multicast source address is the source address specified by the MLD SSM mapping rule.

		_	-	-	-
www.qtech.ru	(

 $\bullet \bullet \bullet \bullet$

Table 10-11 Configure the MLD SSM mapping

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable MLD SSM Mapping	ipv6 mld ssm-map enable [vrf vrf-name]	Mandatory By default, MLD SSM Mapping is not enabled.
Configure the MLD SSM Mapping rule	ipv6 mld ssm-map static { access-list-number access-list-name } source-ipv6-address [vrf vrf-name]	Mandatory By default, there is no MLD SSM Mapping rule.

Note:

• The **ipv6 mld ssm-map** static command only supports the extended ACL.

10.2.4. MLD Monitoring and Maintaining

Table 10-12 MLD monitoring and maintaining

Command	Description
clear ipv6 mld group [group-ipv6-address] [interface-name] [vrf vrf-name]	Clear the MLD multicast group information
clear ipv6 mld statistic interface interface-name	Clear the MLD packet statistics information on the interface
<pre>show ipv6 mld groups [[static] [interface-name] [group-ipv6-address] [detail]] [vrf vrf-name]</pre>	Display the MLD multicast group information
show ipv6 mld interface [<i>interface-name</i>] [vrf <i>vrf-name</i>]	Display the interface MLD information
show ipv6 mld statistic interface <i>interface-</i> <i>name</i> [vrf <i>vrf-name</i>]	Display the statistics information of the MLD packets

10.3. MLD Typical Configuration Example

10.3.1. Configure MLD Basic Functions

Network Requirements

- The whole network runs the PIM-SMv6 protocol.
- Device1, Device2, and Receiver are in the same LAN and Device1 is the querier.
- Receiver is one receiver of Device1 and Device2 stub network.
- Run MLDv2 between Device1, Device2 and stub network.

Network Topology

Figure 10-1 Networking of configuring MLD basic functions

Configuration Steps

- **Step 1:** Configure the IPv6 address of the interface (omitted).
- Step 2: Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the interface. Enable MLD on the interface of Device1 and Device2 connecting the Receiver.

#Configure Device1.

Globally enable the IPv6 multicast forwarding, enable the multicast protocol PIM-SMv6 on the related interfaces, and enable MLD on the interface of connecting Receiver.

Device1#configure terminal

Device1(config)#ipv6 multicast-routing

Device1(config)#interface gigabitethernet0/0/0

Device1(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode

Device1(config-if-gigabitethernet0/0/0)#exit

Device1(config)#interface gigabitethernet0/0/1

Device1(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode

Device1(config-if-gigabitethernet0/0/1)#ipv6 mld enable

Device1(config-if-gigabitethernet0/0/1)#exit

#Configure Device2.

Globally enable the IPv6 multicast forwarding, enable the multicast protocol PIM-SMv6 on the related interfaces, and enable MLD on the interface of connecting Receiver.

Device2#configure terminal

Device2(config)#ipv6 multicast-routing Device2(config)#interface gigabitethernet0/0/0 Device2(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device2(config-if-gigabitethernet0/0/0)#exit Device2(config)#interface gigabitethernet0/0/1 Device2(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device2(config-if-gigabitethernet0/0/1)#ipv6 mld enable Device2(config-if-gigabitethernet0/0/1)#exit

Step 3: Check the result.

#View the MLD version information and querier election result of Device1 interface gigabitethernet0/0/1.

Device1#show ipv6 mld interface gigabitethernet 1

Interface gigabitethernet0/0/1 (Index 23)

MLD Enabled, Active

Querier: fe80::201:2ff:fe03:406 (Self)

Default version: 2

Querier parameter:

Query interval is 125 seconds

Querier timeout is 255 seconds

Query response time is 10 seconds

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

Robustness variable is 2

#View the MLD version information and querier election result of Device2 interface gigabitethernet0/0/1.

Device2#show ipv6 mld interface gigabitethernet 1

Interface gigabitethernet0/0/1 (Index 50331674)

MLD Enabled, Active

Querier: fe80::201:2ff:fe03:406

Non-Querier: fe80::201:7aff:febc:662b Expires: 00:04:07

Default version: 2

Querier parameter:

Query interval is 125 seconds

Querier timeout is 255 seconds

Query response time is 10 seconds

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

Robustness variable is 2

Receiver sends the MLDv2 member report packet to add to multicast group FF1E::1.

#View the multicast member table of Device1.

Device1#show ipv6 mld groups

MLD Connected Group Membership

Total 1 Connected Groups

Group Interface Uptime Expires V1-Expires Last Reporter

ff1e::1 gigabitethernet0/0/1 00:00:02 00:04:17 not used fe80::b

#View the multicast member table of Device2.

Device2#show ipv6 mld groups

MLD Connected Group Membership

Total 1 Connected Groups

Group Interface Uptime Expires V1-Expires Last Reporter

ff1e::1 gigabitethernet0/0/1 00:00:02 00:04:17 not used fe80::b

Note:

- On the interface, run the MLDv2 version, be compatible with the MLDv1 member relation report and MLDv1 member leave packet by default. You can configure the running MLD version of the interface via the command ipv6 mld version.
- When multiple devices run MLD in one LAN, elect the MLD querier and the one with the smallest address is elected as the MLD querier of the LAN.

10.3.2. Configure IGMP Static Adding

Network Requirements

- The whole network runs the PIM-SMv6 protocol.
- Receiver is one receiver of the Device stub network.
- Run MLDv2 between Device and the stub network.
- Device interface gigabitethernet0/0/1 adds to multicast group FF1E::1 statically.

Network Topology

Figure 10-2 Networking of configuring MLD static adding

Configuration Steps

Step 2: Globally enable the IPv6 multicast forwarding, enable the multicast protocol PIM-SMv6 on the interface. Enable MLD on the interface of connecting the Receiver.

#Configure Device.

Globally enable the IPv6 multicast forwarding, enable the multicast protocol PIM-SMv6 on the related interfaces, and enable MLD on the interface of connecting Receiver.

Device#configure terminal Device(config)#ipv6 multicast-routing Device(config)#interface gigabitethernet0/0/0 Device(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device(config-if-gigabitethernet0/0/0)#exit Device(config)#interface gigabitethernet0/0/1 Device(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device(config-if-gigabitethernet0/0/1)#ipv6 mld enable Device(config-if-gigabitethernet0/0/1)#exit

#View the MLD information of Device interface gigabitethernet0/0/1.

Device#show ipv6 mld interface gigabitethernet 1

Interface gigabitethernet0/0/1 (Index 23)

MLD Enabled, Active

Querier: fe80::201:2ff:fe03:406 (Self)

Default version: 2

Querier parameter:

Query interval is 125 seconds

Querier timeout is 255 seconds

Query response time is 10 seconds

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

Robustness variable is 2

Step 3: Device interface gigabitethernet 1 adds to multicast group FF1E::1 statically.

#Configure Device.

Device interface gigabitethernet 1 adds to multicast group FF1E::1 statically.

Device(config)#interface gigabitethernet0/0/1 Device(config-if-gigabitethernet0/0/1)#ipv6 mld static-group ff1e::1

Device(config-if-gigabitethernet0/0/1)#exit

Step 4: Check the result.

#Source sends the multicast packet with multicast group FF1E::1.

#View the multicast member table of Device.

Device#show ipv6 mld groups MLD Static Group Membership Total 1 Static Groups Group Source Interface ff1e::1 :: gigabitethernet0/0/1

#View the multicast route table of Device.

Device#show ipv6 pim mroute IP Multicast Routing Table: PIM6 VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 1 (S,G) entry Total 1 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(*, ff1e::1) Up time: 00:01:06 RP: :: RPF nbr: :: RPF idx: None Flags: Upstream State: NOT JOINED Local interface list: gigabitethernet0/0/1 Joined interface list: Asserted interface list:

(1000::a, ff1e::1) Up time: 00:00:04 KAT time: 00:03:26 RPF nbr: ::

www.qtech.ru

••••

RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED COULD REGISTER **Upstream State: JOINED** Local interface list: Joined interface list: register_vif0 Asserted interface list: **Outgoing interface list:** register_vif0 gigabitethernet0/0/1 Packet count 1 (1000::a, ff1e::1, rpt) Up time: 00:00:04 RP: :: Flags: **RPT JOIN DESIRED RPF SGRPT XG EQUAL Upstream State: NOT PRUNED** Local interface list: Pruned interface list: Outgoing interface list:

#Receiver can receive the multicast packet with multicast group FF1E::1 sent by Source.

10.3.3. Configure MLD SSM Mapping

Network Requirements

- The whole network runs the PIM-SMv6 SSM protocol.
- Receiver1, Receiver2, and Device2 are all in one LAN.
- Run MLDv2 between Device2 and the stub network.
- Use the MLD SSM mapping on Device2 so that Receiver2 can only receive the multicast service packets sent by Source1.

www.qtech.ru

Network Topology

Configuration Steps

Step 1: Configure the IPv6 address of the interface (omitted).

Step 2: Enable the IPv6 unicast routing OSPFv3 so that all network devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#ipv6 router ospf 100 Device1(config-ospf6)#router-id 1.1.1.1 Device1(config-ospf6)#exit Device1(config)#interface gigabitethernet0/0/0 Device1(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/0)#exit Device1(config)#interface gigabitethernet0/0/1 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/1)#exit Device1(config-if-gigabitethernet0/0/2)#exit

#Configure Device2.

- Device2#configure terminal
- Device2(config)#ipv6 router ospf 100
- Device2(config-ospf6)#router-id 2.2.2.2
- Device2(config-ospf6)#exit
- Device2(config)#interface gigabitethernet0/0/0
- Device2(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0
- Device2(config-if-gigabitethernet0/0/0)#exit

#View the route table of Device2.

Device2#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS U - Per-user Static route O - OSPF, OE-OSPF External, M - Management

- L ::1/128 [0/0]
 - via ::, 05:20:37, lo0
 - 0 1000::/64 [110/2]
 - via fe80::201:2ff:fe03:406, 00:35:30, gigabitethernet0/0/0
- 0 2000::/64 [110/2] via fe80::201:2ff:fe03:406, 00:37:15, gigabitethernet0/0/0
- C 3000::/64 [0/0] via ::, 00:38:24, gigabitethernet0/0/0
- L 3000::2/128 [0/0]
 - via ::, 00:38:22, lo0
- C 4000::/64 [0/0] via ::, 00:31:55, gigabitethernet0/0/1
- L 4000::2/128 [0/0]
 - via ::, 00:31:53, lo0

Note:

- The viewing method of Device1 is the same as that of Device2, so the viewing process is omitted.
- **Step 3:** Enable the IPv6 multicast forwarding globally, configure PIM-SMv6 SSM globally and the multicast group range of the SSM service is FF3X::/32. On the interfaces, enable the multicast protocol PIM-SMv6. The interface gigabitethernet0/0/1 of Device2 runs MLDv2.

#Configure Device1.

Enable the IPv6 multicast forwarding globally, configure the PIM-SMv6 SSM globally and enable the multicast protocol PIM-SMv6 on the interface.

Device1(config)#ipv6 multicast-routing

Device1(config)#ipv6 pim ssm default

Device1(config)#interface gigabitethernet0/0/0

Device1(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode

Device1(config-if-gigabitethernet0/0/0)#exit

Device1(config)#interface gigabitethernet0/0/1

Device1(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode

Device1(config-if-gigabitethernet0/0/1)#exit

Device1(config)#interface gigabitethernet0/0/2

Device1(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode

Device1(config-if-gigabitethernet0/0/2)#exit

#Configure Device2.

Enable the IPv6 multicast forwarding globally, configure the PIM-SMv6 SSM globally, enable the multicast protocol PIM-SMv6 on the related interfaces, and run MLDv2 on the interface gigabitethernet0/0/1.

Device2(config)#ipv6 multicast-routing

Device2(config)#ipv6 pim ssm default

Device2(config)#interface gigabitethernet0/0/0

Device2(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode

Device2(config-if-gigabitethernet0/0/0)#exit

Device2(config)#interface gigabitethernet0/0/1

Device2(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode

Device2(config-if-gigabitethernet0/0/1)#ipv6 mld enable

Device2(config-if-gigabitethernet0/0/1)#exit

#View the MLD information of the interface gigabitethernet0/0/1 on Device2.

Device2#show ipv6 mld interface gigabitethernet 1

Interface gigabitethernet0/0/1 (Index 23)

MLD Enabled, Active

Querier: fe80::201:2ff:fe03:406 (Self)

Default version: 2

Querier parameter:

Query interval is 125 seconds

Querier timeout is 255 seconds

Query response time is 10 seconds

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

Robustness variable is 2

Step 4: Enable the MLD SSM mapping on Device2 and configure the MLD SSM mapping rule so that Receiver1 and Receiver2 can only receive the multicast packets sent by Source1.

#Configure Device2.

Enable the MLD SSM mapping, configure the multicast group range of the MLD SSM as FF3E::/64, and the multicast source address is 1000::a.

Device2(config)#ipv6 access-list extended 7001

Device2(config-std-nacl)#permit ipv6 any ff3e::/64

Device2(config-std-nacl)#exit

Device2(config)#ipv6 mld ssm-map enable

. . . .

Device2(config)#ipv6 mld ssm-map static 7001 1000::a

Step 5: Check the result.

Receiver1 sends the MLDv2 member report packet of the specified source group to add to the multicast group FF3E::1 and the specified multicast source is 2000::a; Receiver2 sends the MLDv1 member report packet to add to the multicast group FF3E::2.

#Source1 and Source2 both send the multicast service packets with multicast groups FF3E::1 and FF3E::2.

#View the multicast member table of Device2.

Device2#show ipv6 mld groups					
MLD Conr	nected Group M	embershi	р		
Total 2 Co	onnected Group	S			
Group	Interface	Uptime	Expi	res V1-Expires Las	t Reporter
ff3e::1	gigabitetherne	et0/0/1 00:	00:33	not used not used	fe80::a
ff3e::2	gigabitethern	et0/0/1 00	:00:33	not used not used	fe80::b
Device2#	show ipv6 mld	groups de	tail		
MLD Conr	nected Group M	embershi	р		
Total 2 Co	onnected Group	S			
Group	Interface	Uptime	Expi	res V1-Expires Las	t Reporter
ff3e::1 gigabitethernet0/0/1 00:00:36 not used not used fe80::a					
Group mode : Include					
TIB-A Count: 1					
TIB-B Count: 0					
TIB-A					

Source list: (R - Remote, M - SSM Mapping)					
Source	Uptime	Expires Flags			
2000::a	00:00:36	00:03:49 R			

ff3e::2 gigabitethernet0/0/1 00:00:36 not used not used fe80::b Group mode : Include TIB-A Count: 1 TIB-B Count: 0

TIB-A Source list: (R - Remote, M - SSM Mapping)

N	ILD	

	Source	Uptime	Expires Flags			
	1000::a	00:00:36	00:03:45 RM			
#View the multicast route table of Device2.						
	Device2#show ipv6 pim mroute					
	IP Multicast Routing Table:					
	PIM6 VRF Name: Default					
	Total 0 (*,*,RP) entry					
	Total 0 (*,G) entry					
	Total 2 (S,G) entries					
	Total 0 (S,G,rpt) entry					
	Total 0 FCR entry					
	Up timer/Expiry timer					
	(2000::a, ff3e::1)					
	Up time: 00:01:36					
	KAT time: 00:01:54					
	RPF nbr: fe80::201:2ff:fe03:4	406				
	RPF idx: gigabitethernet0/0	0/0				
	SPT bit: FALSE					
	Flags:					
	JOIN DESIRED					
	Upstream State: JOINED					
	Local interface list:					
	gigabitethernet0/0/1					
	Joined interface list:					
	Asserted interface list:					
	Outgoing interface list:					
	gigabitethernet0/0/1					
	Packet count 0					
	(1000::a. ff3e::2)					
	Un time: 00:01:36					
	KAT time: 00:01:54					
	RPF nbr: fe80::201:2ff:fe03:2	406				
	RPF idx: gigabitethernet0/	1/0				
	SPT hit: FAI SF	., •				

www.qtech.ru

Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/0/1 Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet0/0/1 Packet count 0

#Receiver1 can only receive the multicast service packets sent by Source2; Receiver2 can only receive the multicast service packets sent by Source1.

Note:

- The viewing method of Device1 is the same as that of Device2, so the viewing process is omitted.
- MLD SSM mapping needs to be used with PIM-SMv6 SSM; the multicast group range in the MLD SSM mapping rule should belong to the PIM-SMv6 SSM multicast group range. IGMP SSM mapping mainly runs MLDv1 and cannot be upgraded to the receiver host of MLDv2 to provide the supporting for the SSM model.
- The MLD SSM mapping is invalid for the MLDv2 member report packet.

10.3.4. Configure MLD Multicast Group Filter

Network Requirements

- The whole network runs the PIM-SMv6 protocol.
- Receiver is one receiver of the Device stub network.
- Run MLDv2 between Device and the stub network.
- Device interface gigabitethernet0/0/1 filters the multicast group; the range of the multicast groups Receiver is permitted to add is ff10::/16.

Network Topology

Figure 10-4 Networking of configuring IGMP multicast group filter

Configuration Steps

- **Step 1:** Configure the IPv6 address of the interface (omitted).
- **Step 2:** Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the interface.

#Configure Device.

www.qtech.ru

Globally enable the IPv6 multicast forwarding, enable the multicast protocol PIM-SMv6 on the related interfaces, and enable MLD on the interface of connecting Receiver.

Device#configure terminal Device(config)#ipv6 multicast-routing Device(config)#interface gigabitethernet0/0/0 Device(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device(config-if-gigabitethernet0/0/0)#exit Device(config)#interface gigabitethernet0/0/1 Device(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device(config-if-gigabitethernet0/0/1)#ipv6 mld enable Device(config-if-gigabitethernet0/0/1)#exit

#View the MLD information of Device interface gigabitethernet0/0/1.

Device#show ipv6 mld interface gigabitethernet 1

Interface gigabitethernet0/0/1 (Index 23)

MLD Enabled, Active

Querier: fe80::201:2ff:fe03:406 (Self)

Default version: 2

Querier parameter:

Query interval is 125 seconds

Querier timeout is 255 seconds

Query response time is 10 seconds

Last member query response interval is 1 seconds

Last member query count is 2

Group Membership interval is 260 seconds

Robustness variable is 2

Step 3: Configure the multicast group filter on Device interface gigabitethernet0/0/1.

#Configure Device.

Configure the multicast group filter on Device interface gigabitethernet0/0/1; the range of the multicast groups Receiver is permitted to add is ff10::/16.

Device(config)#ipv6 access-list extended 7001 Device(config-std-nacl)#permit ipv6 any ff10::/16 Device(config-std-nacl)#exit Device(config)#interface gigabitethernet0/0/1 Device(config-if-gigabitethernet0/0/1)#ipv6 mld access-group 7001 Device(config-if-gigabitethernet0/0/1)#exit

Step 4: Check the result.

#Receiver sends the IGMPv2 member report packet to add to multicast group FF10::1 and FF11::1.

#Source sends the multicast packets with multicast group FF10::1 and FF11::1.

#View the multicast member table of Device.

MLD

Device#show ipv6 mld groups

MLD Connected Group Membership

Total 1 Connected Groups

Group Interface Uptime Expires V1-Expires Last Reporter

ff10::1 gigabitethernet0/0/1 01:06:32 00:04:15 00:04:15 fe80::b

#View the multicast route table of Device.

- Device#show ipv6 pim mroute IP Multicast Routing Table: PIM6 VRF Name: Default Total 0 (*,*,RP) entry Total 1 (*,G) entry Total 2 (S,G) entries Total 2 (S,G,rpt) entries Total 0 FCR entry Up timer/Expiry timer
- (*, ff10::1) Up time: 00:01:00 RP: :: RPF nbr: :: RPF idx: None Flags: Upstream State: NOT JOINED Local interface list: gigabitethernet0/0/1 Joined interface list: Asserted interface list:

(1000:::a, ff10::1) Up time: 00:00:06 KAT time: 00:03:24 RPF nbr: ::

www.qtech.ru

RPF idx: None SPT bit: TRUE Flags: JOIN DESIRED **COULD REGISTER Upstream State: JOINED** Local interface list: gigabitethernet0/0/1 Joined interface list: register_vif0 Asserted interface list: Outgoing interface list: register_vif0 gigabitethernet0/0/1 Packet count 1 (1000::a, ff10::1, rpt) Up time: 00:00:06 RP: :: Flags: **RPT JOIN DESIRED RPF SGRPT XG EQUAL** Upstream State: NOT PRUNED Local interface list: Pruned interface list: Outgoing interface list: (1000::a, ff11::1) Up time: 00:00:06 KAT time: 00:03:24 RPF nbr: :: RPF idx: None SPT bit: TRUE Flags:

Flags: JOIN DESIRED COULD REGISTER Upstream State: JOINED

www.qtech.ru

Local interface list: Joined interface list: register_vif0 Asserted interface list: Outgoing interface list: register_vif0 Packet count 1 (1000::a, ff11::1, rpt) Up time: 00:00:06 RP: :: Flags: **RPF SGRPT XG EQUAL** Upstream State: RPT NOT JOINED Local interface list: Pruned interface list: Outgoing interface list:

#Receiver can only receive the multicast service packets with multicast group FF10::1 sent by Source.

Note:

 To filter based on multicast source group, use the command ipv6 mld access-group to realize, and configure the corresponding source address in the associated ACL. For example, permit ipv6 1000::/16 ff10::/16 indicates permitting the source group in the group range FF10::/16 and the specified source range 1000::/16 to add. When using the function, it is required that the interface runs MLDv2.

11. IPV6 MULTICAST BASICS

11.1. Overview

IPv6 multicast basics is the basis of running the IPv6 multicast protocol and the common part of all multicast protocols. No matter which multicast route protocol runs, we first need to enable the IPv6 multicast forwarding function so that the device can forward the multicast service packets.

Basic Function Configuration of IPv6 Multicast

Table 11-1 Basic function configuration list of IPv6 multicast

Configuration task	
Enable the IPv6 multicast forwarding	Enable the IPv6 multicast forwarding

11.1.1. Enable IPv6 Multicast Forwarding

IPv6 multicast forwarding is the basic module of the multicast forwarding. The device can forward the IPv6 multicast service packets only after enabling the IPv6 multicast forwarding function. Both the general IPv6 multicast forwarding and IPv6 multicast fast forwarding are controlled by whether to enable the IPv6 multicast forwarding.

IPv6 multicast fast forwarding is one IPv64 fast multicast forwarding technology designed to improve the forwarding performance of the service packets. It completes the route selection and service processing for a time, so as to reduce the resource consumption caused by the switching between the internal tasks of the system and the packet cache management. At last, improve the data forwarding performance of the whole system.

Configuration Condition

Before configuring the IPv6 multicast forwarding function, first complete the following task:

- Configure the IPv6 address of the interface, making the neighboring node network layer reachable;
- Configure any unicast routing protocol, making the routes in the domain reachable;
- Configure any multicast routing protocol.

Enable IPv6 Multicast Forwarding

The device can forward the IPv6 multicast service packets only after enabling the IPv6 multicast forwarding function.

Table 11-2 Enable the IPv6 multicast forwarding

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable the IPv6 multicast forwarding	ipv6 multicast-routing [vrf vrf-name]	Mandatory By default, the IPv6 multicast forwarding is not enabled.

11.1.2. Configure IPV6 Muticast Forwarding Rules

Configuration Conditions

Before configuring the IPv6 multicast forwarding rules, first complete the following tasks:

- Configure the IPv6 address of the interface so that each neighboring node can reach the network layer;
- Configure any IPv6 unicast routing protocol to make intra domain routing reachable;
- Enable IPv6 multicast forwarding;
- Configure any IPv6 multicast routing protocol.

Configure IPV6 Multicast Forwarding Management Boundary

The main function of IPv6 multicast forwarding management boundary is to filter IPv6 multicast service packets. After configuring the management boundary, the device can filter IPv6 multicast service packets. Only IPv6 multicast services allowed by ACL can pass through.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the IPv6 multicast forwarding management boundary	ipv6 multicast boundary { access-list-number access-list-name }	Mandatory By default, do not configure the IPv6 multicast forwarding management boundary.

Table 11-3 Configure the IPv6 multicast forwarding management boundary

Configure IPV6 Multicast Route Table Limit

Configure the maximum entries of IPv6 Multicast routing table. After exceeding the maximum entries of IPv6 multicast routing table, no new IPv6 multicast routing table will be created.

IPV6 MULTICAST BASICS

www.qtech.ru

Table 11-4 Configure IPV6 multicast route table limit

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure IPV6 multicast route table limit	ipv6 multicast route-limit number-value [vrf vrf-name]	Optional By default, the maximum entries of the multicast route table is 8192.

Configure TTL Threshold of IPV6 Multicast Interface

The ingress interface TTL threshold of IPv6 multicast: Only the IPv6 multicast service packet with TTL greater than the threshold can be accepted, and the IPv6 multicast data packet with TTL less than or equal to this threshold will be discarded.

The egress interface TTL threshold of IPv6 multicast: Only the IPv6 multicast service packet that are still greater than the threshold after TTL minus 1 can be forwarded, and the IPv6 multicast data packet with TTL less than or equal to this threshold will be discarded.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the ingress interface TTL threshold of IPv6 multicast	ipv6 multicast in-threshold number- value	Optional By default, the threshold of the IPv6 multicast ingress interface is 0.
Configure the egress interface TTL threshold of IPv6 multicast	ipv6 multicast out-threshold number- value	Optional By default, the threshold of the IPv6 multicast egress interface is 0.

Table 11-5 Configure the TTL threshold of the IPv6 multicast interface

IPV6 MULTICAST BASICS

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Monitoring and Maintaining of IPv6 Multicast Basics

Table 11-6 Monitoring and maintaining of IPv6 multicast basics

Command	Description
clear ipv6 mcache[[source source-ipv6- address] [group group-ipv6-address] [vrf vrf-name]] [all]]	Clear the multicast core route table
show ipv6 mcache [source <i>source-ipv6-address</i>] [group <i>group-ipv6-address</i>] [vrf <i>vrf-name</i>]	Display the multicast core route table information
show ipv6 mcast fib [source <i>source-ipv6-address</i>] [group <i>group-ipv6-address</i>][vrf <i>vrf-name</i> vrf-id <i>vrf-id</i>]	Display the multicast fast forwarding table information
<pre>show ipv6 mvif [vrf vrf-name]</pre>	Display the multicast virtual interface information

PIM-SMV6

12. PIM-SMV6

12.1. Overview

IPv6 PIM protocol and IPv4 PIM protocol have the same behaviors except the IP address structure in the packet. Refer to the brief introduction of PIM-SM.

12.2. PIM-SMv6 Function Configuration

Table 12-1 PIM-SMv6 function configuration list

Configuration Task			
Configure the PIM-SMv6 basic functions	Enable the PIM-SMv6 protocol		
Configure the PIM-SMv6 aggregation router	Configure C-RP		
	Configure static RP		
Configure the PIM-SMv6 bootstrap router	Configure C-BSR		
	Configure the BSR edge		
Configure PIM-SMv6 multicast source registration	Configure the RP reachability check		
	Configure the sending rate of the register packets		
	Configure sending rate of the register stop packets		
	Configure the source address of the register packet		
	Configure register packet filter		
Configure PIM-SMv6 neighbor parameters	Configure the period of sending the Hello packets		
	Configure the keepalive time of the neighbor		
	Configure the neighbor filter		

		www.gtech.ru
--	--	--------------

 $\bullet \bullet \bullet \bullet$

Configuration Task			
	Configure the DR priority		
Configure PIM-SMv6 SPT switching	Configure the SPT switching condition		
Configure IPv6 PIM-SSM	Configure IPv6 PIM-SSM		

12.2.1. Configure PIM-SMv6 Basic Functions

Configuration Conditions

Before configuring PIM-SMv6, first complete the following task:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable

Enable PIM-SMv6 Protocol

Table 12-2 Enable the PIM-SMv6 protocol

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enable the IPv6 multicast forwarding	ipv6 multicast-routing [vrf vrf-name]	Mandatory By default, the IPv6 multicast forwarding is not enabled.
Enter interface configuration mode	interface interface-name	-
Enable the PIM-SMv6 protocol	ipv6 pim sparse-mode ipv6 pim sparse-mode passive	Either By default, PIM- SMv6 is disabled on the interface.

Note:

• After enabling the PIM-SMv6 function, all PIM-SMv6 configurations can take effect.

12.2.2. Configure PIM-SMv6 Aggregation Router

Configuration Condition

Before configuring RP, first complete the following tasks:

....

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SMv6 protocol

Configure C-RP

RP is generated by the C-RO election. After BSR is elected, all C-RPs (Candidate-Rendezvous Point) regularly unicast the C-RP packet to BSR. BSR integrates the C-RP information and transmits the information to all devices in the PIM-SMv6 domain via the bootstrap packet.

Table 12-3 Configure C-RP

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure C-RP	ipv6 pim rp-candidate interface-name [[priority-value [interval-value [group-list { access-list-number access-list-name }]]] [group-list { access-list-number access-list- name }]] [vrf vrf-name]	Mandatory By default, there is no C-RP.

Note:

- RP election rules:
- For the group range of the C-RP service, perform the longest matching of the mask.
- If the longest matching of the mask has multiple C-RPs, compare the C-RP priority. The smaller the value, the high the priority. The one with highest priority wins.
- If there are multiple C-RPs with highest priority, perform the HASH calculation for the C-RP address and group. The one with the largest HASH value wins.
- If there are multiple RPs with the largest HASH, the C-RP with the largest IPv6 address wins.

Configure Static RP

For the simple PIM-SMv6 network, it is suggested to use the static RP. If using the static RP, do not need to perform the BSR configuration, eliminating the frequent interacting between RP and BSR, so as to save the network bandwidth.

www.qtech.ru

....

Table 12-4 Configure static RP

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the static RP	ipv6 pim rp-address <i>ipv6-address</i> [access- <i>list-name</i> access- <i>list-number</i>] [override] [vrf <i>vrf-name</i>]	Mandatory By default, there is no static RP.

Note:

• All devices in the same PIM-SMv6 domain should be configured with the same static RP.

12.2.3. Configure PIM-SMv6 Bootstrap Router

Configuration Conditions

Before configuring BSR, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SMv6 protocol

Configure C-BSR

In one PIM-SMv6 domain, there should be the unique BSR. Multiple C-BSRs (Candidate-Bootstrap Router) elects to generate the unique BSR via the bootstrap packet.

Table	12-5	Configure	C-BSR
-------	------	-----------	-------

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure C-BSR	ipv6 pim bsr-candidate interface_name [hash-mask-length [priority-value]] [vrf vrf-name]	Mandatory By default, there is no C-BSR.

Note:

- BSR election rules:
- Compare the priorities. The larger the value, the higher the priority. The one with highest priority wins.
- If the priority is the same, the one with the largest IPv6 address wins.

....

Configure BSR Border

BSR is responsible for collecting the C-RP information and transmits the information to all devices in the PIM-SMv6 domain via the bootstrap packet. The BSR range is the range of the multicast domain. The bootstrap packet cannot pass the interface configured with the BSR border. The devices out of the multicast domain range cannot take part in the forwarding of the multicast service packet in the multicast domain, so as to realize the dividing of the multicast domain.

Table 12-6 Configure the BSR border

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the BSR border	ipv6 pim bsr-border	Mandatory By default, there is no multicast border.

12.2.4. Configure PIM-SMv6 Multicast Source Register

Configuration Condition

Before configuring the multicast source register, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SMv6 protocol

Configure RP Reachability Check

Before source DR sends the register packet to RP, first perform the RP reachability check. If finding that the RP route is not reachable, do not register to RP, so as to reduce the cost of the DR.

....

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the RP reachability check	ipv6 pim register-rp-reachability [vrf vrf-name]	Mandatory By default, before performing the PIM register, do not check the RP reachability.

Note:

• To reduce the cost of the source DR, it is suggested to configure the command on the source DRs of all PIM-SMv6s.

Configure Sending Rate of Register Packets

When the source DR receives the multicast packet, encapsulate the multicast packet to the register packet and send to RP for source register until the registration is complete..

When the source DR does not complete the multicast source register and the multicast flow is large, generate lots of register packets, which increase the load of the RP device. Even RP cannot work normally. Source DR does not need to transmit all register packets of one flow to RP, so configuring the rate of sending the register packets at the source DR not only can reach the purpose of source registration, but also can reduce the RP load.

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the rate of sending the register packet	ipv6 pim register-rate-limit <i>rate-limit-</i> <i>value</i> [vrf <i>vrf-name</i>]	Mandatory By default, do not limit the rate of sending the register packet.

Table 12-8 Configure the rate of sending the register packet

Note:

• To reduce the RP load, it is suggested to configure the rate of sending the source register packets on all source DRs.

Configure Sending Rate of Register Stop Packets

After RP receives the register packet of the source DR, send the register stop packet to the source DR to complete the registration. When the RP receives lots of register packets, it is necessary to reply all register packets (send register stop packet). In fact, there are lots of repeated packets in the register stop packets. You can limit the rate of sending the register stop packet on RP to reduce the cost of RP.

....

Table 12-9	Configure th	e rate of	sending	the register	stop packet

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the rate of sending the register stop packet	ipv6 pim register-stop-rate-limit rate-limit- value [vrf vrf-name]	Mandatory By default, do not limit the rate of sending the register stop packet.

Note:

• To improve the robustness of the whole PIM-SMv6 network, it is suggested to limit the rate of the source register stop packet on all RPs.

Configure Source Address of Register Packet

When the source DR performs the source register, the source address of the register packet uses the IPv6 address of the register interface automatically registered by the system. The command can specify the source address of the register packet as the IPv6 address of one interface on the device to meet some special demand of the network.

Table 12-10 Configure the source address of the register packet

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the source address of the register packet	ipv6 pim register-source interface interface-name [vrf vrf-name]	Mandatory By default, use IPv6 address of the register interface automatically registered by the system as the source address of the register packet.

Configure Register Packet Filter

To prevent the source register attack, you can use ACL on RP to perform the multicast source filter for the register packet. Only the multicast source permitted by ACL can register successfully on RP.

www.qtech.ru

....

Table	12-11	Configure	the	register	packet filter
i ubio	1 - 1 1	Configure	110	regiotor	puonot mitor

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the register packet filter	<pre>ipv6 pim accept-register list { access-list- number access-list-name } [vrf vrf-name]</pre>	Mandatory By default, do not filter the register packet.

12.2.5. Configure PIM-SMv6 Neighbor Parameters

Configuration Condition

Before configuring the PIM-SMv6 neighbor parameters, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SMv6 protocol

Configure Sending Period of Hello Packets

The interface enabled with the PIM-SMv6 protocol periodically sends the Hello packets to set up and maintain the PIM neighbor.

Table 12-12 Configure the period of sending the Hello packet

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the period of sending the Hello packet	ipv6 pim hello-interval interval- value	Optional By default, the period of sending the Hello packet is 30s.

Configure Neighbor Keepalive Time

When the interface receives the Hello packets of one neighbor, record the holdtime carried in the Hello packet as the keepalive time of the neighbor. If not receiving the Hello packet of the neighbor within the keepalive time, it is regarded that the neighbor becomes invalid.

....

Table 12-13 Configure PIM-SMv6 neighbor keepalive time

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure PIM-SMv6 neighbor keepalive time	ipv6 pim hello-holdtime holdtime-value	Optional By default, the keepalive time of the PIM-SMv6 neighbor is 105s.

Configure Neighbor Filter

If there are many PIM neighbors in one subnet, you can use the neighbor filter function to set up the neighbor selectively, so as to save the resources of the device.

Table 12-14 Configur	e the neighbor filter
----------------------	-----------------------

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the neighbor filter	ipv6 pim neighbor-filter { access- list-number access-list-name }	Mandatory By default, do not enable the neighbor filter function.

Configure DR Priority

DR plays one important role in the PIM-SMv6 network, so selecting the appropriate DR is important. You can select the appropriate device as DR by configuring the DR priority.

One PIM-SMv6 subnet only permits one DR. According to the function, DR can be divided to source DR and receiving DR.

The main function of the source DR is to perform the source register to RP.

The main function of the receiving DR is to add to RP and set up the switching of RPT and SPT.

www.qtech.ru

Table 12-15 Configure the DR priority

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter interface configuration mode	interface interface-name	-
Configure the DR priority	ipv6 pim dr-priority priority- value	Optional By default, the DR priority is 1.

Note:

DR election rules:

- Compare the priorities. The larger the value, the higher the priority. The one with highest priority wins.
- If the priority is the same, the one with the largest IPv6 address wins.

12.2.6. Configure PIM-SMv6 SPT Switching

Configuration Condition

Before configuring SPT, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SMv6 protocol

Configure SPT Switching Condition

The receiving end DR does not know the address of the multicast source, so it can only add to RP to form RPT. The source DR performs the source register to RP and form the source tree between source DR and RP. At first, the direction of the multicast flow is from multicast source to RP and then from RP to the receiver. When the receiving end DR receives the first multicast packet, it performs adding to multicast source, forms SPT, and performs the pruning for RPT. This is called SPT switching.

The command is to configure the SPT switching condition at the receiving end DR.

www.qtech.ru

....

Table 12-16 Configure the SPT switching condition

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure the SPT switching condition	<pre>ipv6 pim spt-threshold { infinity threshold [group-list {access-list-number access-list-name }] [vrf vrf-name]</pre>	Mandatory By default, all multicast groups perform the SPT switching.

Caution:

• Do not configure SPT never-switching on RP. Otherwise, it may result in the failure of the multicast forwarding.

12.2.7. Configure IPv6 PIM-SSM

IPv6 PIM-SSM is one subset of PIM-SMv6. In IPv6 PIM-SSM, do not need RP, BSR or RPT, and there is no SPT switching, but the receiving end DR directly adds to multicast source and sets up the shortest path tree (SPT) with source as root.

Configuration Condition

Before configuring IPv6 PIM-SSM, first complete the following tasks:

- Configure the network layer address of the interface, making the neighboring node network layer reachable
- Configure any unicast route protocol, reaching the intra-domain route reachable
- Enable the PIM-SMv6 protocol on all interfaces that need multicast route forwarding

Configure IPv6 PIM-SSM

Table 12-17 Configure IPv6 PIM-SSM

Step	Command	Description
Enter global configuration mode	configure terminal	-
Configure PIM-SSM	<pre>ipv6 pim ssm { default range { access-list-number access-list-name } } [vrf vrf-name]</pre>	Mandatory By default, the SSM function is disabled.

Caution:

- When using IPv6 PIM-SSM, the receiving end should enable MLDv2.
- When the receiver cannot be upgraded to MLDv2, you can use the IGMP SSM Mapping function to cooperate with IPv6 PIM-SSM.
- Ensure that the SSM multicast group address ranges configured on all devices in the domain are consistent. Otherwise, it may result in the abnormality of IPv6 PIM-SS.

12.2.8. Configure PIM6-SM BFD

Configuration Conditions

Before configuring IPv6 PIM-SM BFD, first complete the following tasks:

- Configure the network layer address of the interface so that each neighboring node can reach the network layer;
- Configure any unicast routing protocol to make the intra-domain routing reachable.

Configure IPv6 PIM-SM BFD

Table 12-18 Configure PIM-SM BFD

Step	Command	Description
Enter global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable IPv6 PIM-SM BFD	ipv6 pim bfd	By default, do not enable the IPv6 PIM-SM BFD function.

12.2.9. PIM-SMv6 Monitoring and Maintaining

Table 12-19 PIM-SMv6 monitoring and maintaining

Command	Description			
clear ipv6 pim bsr rp-set [vrf vrf-name]	Clear the RP set information of PIM-SMv6			
clear ipv6 pim mroute [group-address [source-address]] [vrf vrf-name]	Clear the multicast route information of PIM- SMv6			
clear ipv6 pim stat [[interface <i>interface-</i> <i>name</i> [all_interface]] [vrf <i>vrf-name</i>]]	Clear the statics information of the PIM-SMv6 protocol packets			

. . . .

www.qtech.ru

www.qt	ech.ru
--------	--------

Command	Description
show ipv6 pim bsr-router [vrf vrf-name]	Display the PIM-SMv6 bootstrap route information
show ipv6 pim interface [interface-name detail detail] [vrf vrf-name]	Display the PIM-SMv6 interface information
show ipv6 pim local-members interface- name [vrf vrf-name]	Display the PIM-SMv6 local group member information
show ipv6 pim mroute [active proxy ssm [active] group group-ipv6-address [source source-ipv6-address active] source source-ipv6-address] [vrf vrf-name]	Display the PIM-SMv6 multicast route table information
<pre>show ipv6 pim neighbor [detail] [vrf vrf- name]</pre>	Display the PIM-SMv6 neighbor information
show ipv6 pim nexthop [<i>ipv6-address</i>] [vrf <i>vrf-name</i>]	Display the PIM-SMv6 next-hop router information
show ipv6 pim rp mapping [vrf vrf-name]	Display the PIM-SMv6 RP information
show ipv6 pim rp-hash group-address [vrf <i>vrf-name</i>]	Display the RP information of the multicast group mapping
show ipv6 pim statistics [vrf vrf-name]	Display the statistics information of the PIM- SMv6 protocol packets

12.3. PIM-SMv6 Typical Configuration Example

12.3.1. Configure PIM-SMv6 Basic Functions

Network Requirements

- The whole network runs the PIM-SMv6 protocol. •
- Receiver1 and Receiver2 are the two receivers of Device3 stub network. •
- Device1 and Device2 are C-BSR and C-RP. •
- Run MLDv2 between Device3 and the stub network. •

Network Topology

Figure 12-1 Networking of configuring PIM-SMv6 basic functions

Configuration Steps

- Step 1: Configure the IPv6 address of the interface. (omitted)
- **Step 2:** Enable the unicast route protocol OSPFv3 so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#ipv6 router ospf 100 Device1(config-ospf6)#router-id 1.1.1.1 Device1(config-ospf6)#exit Device1(config)#interface gigabitethernet0/0/0 Device1(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/0)#exit Device1(config)#interface gigabitethernet0/0/1 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/2)#ipv6 router ospf 100 area 0 Device1(config)#interface gigabitethernet0/0/2

#Configure Device2.

Device2#configure terminal Device2(config)#ipv6 router ospf 100 Device2(config-ospf6)#router-id 2.2.2.2 Device2(config-ospf6)#exit Device2(config)#interface gigabitethernet0/0/0 Device2(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0

Device2(config-if-gigabitethernet0/0/0)#exit Device2(config)#interface gigabitethernet0/0/1 Device2(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device2(config-if-gigabitethernet0/0/1)#exit

#Configure Device3.

Device3#configure terminal Device3(config)#ipv6 router ospf 100 Device3(config-ospf6)#router-id 3.3.3.3 Device3(config-ospf6)#exit Device3(config)#interface gigabitethernet0/0/0 Device3(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/0)#exit Device3(config)#interface gigabitethernet0/0/1 Device3(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/1)#exit Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/2)#exit Device3(config)#interface gigabitethernet0/0/3 Device3(config-if-gigabitethernet0/0/3)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/3)#exit

#View the route table of Device3.

Device3#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

- 0 0SPF, 0E-0SPF External, M Management
- L ::1/128 [0/0]

via ::, 2w6d:04:39:46, lo0

- 0 2001:1::/64 [110/2] via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0
- C 2001:2::/64 [0/0] via ::, 00:01:05, gigabitethernet0/0/0
- L 2001:2::1/128 [0/0]

- via ::, 00:01:04, lo0
- 0 2001:3::/64 [110/2] via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0 [110/2]

via fe80::201:7aff:fec0:525a, 00:00:04, gigabitethernet0/0/1

C 2001:4::/64 [0/0]

via ::, 00:00:49, gigabitethernet0/0/1

- L 2001:4::1/128 [0/0] via ::, 00:00:48, lo0
- C 2001:5::/64 [0/0] via ::, 00:00:43, gigabitethernet0/0/2
- L 2001:5::1/128 [0/0] via ::, 00:00:42, lo0
- C 2001:6::/64 [0/0] via ::, 00:00:43, gigabitethernet0/0/3
- L 2001:6::1/128 [0/0] via ::, 00:00:42, lo0

Note:

- The viewing method of Device1 and Device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 3:** Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the interface.

#Configure Device1.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device1(config)#ipv6 multicast-routing Device1(config)#interface gigabitethernet0/0/0 Device1(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/0)#exit Device1(config)#interface gigabitethernet0/0/1 Device1(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/1)#exit Device1(config)#interface gigabitethernet0/0/2 Device1(config)#interface gigabitethernet0/0/2 Device1(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode

#Configure Device2.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device2(config)#ipv6 multicast-routing Device2(config)#interface gigabitethernet0/0/0 Device2(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device2(config-if-gigabitethernet0/0/0)#exit Device2(config)#interface gigabitethernet0/0/1 Device2(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device2(config-if-gigabitethernet0/0/1)#exit

#Configure Device3.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device3(config)#ipv6 multicast-routing Device3(config)#interface gigabitethernet0/0/0 Device3(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device3(config)#interface gigabitethernet0/0/1 Device3(config)#interface gigabitethernet0/0/1 Device3(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device3(config)#interface gigabitethernet0/0/2 Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode Device3(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode Device3(config-if-gigabitethernet0/0/2)#exit Device3(config-if-gigabitethernet0/0/3) Device3(config)#interface gigabitethernet0/0/3 Device3(config-if-gigabitethernet0/0/3)#ipv6 pim sparse-mode

#View the information of the interface enabled with the PIM-SMv6 protocol on Device3 and the PIM-SMv6 neighbor information.

Device3#show ipv6 pim interface PIM6 Interface Table: PIM6 VRF Name: Default Total 5 Interface entries Total 0 External Interface entry Total 0 Sparse-Dense Mode Interface entry

Interface VIF Ver/ VIF Nbr DR BSR CISCO Neighbor Index Mode Flag Count Pri Border Neighbor Filter

www.gtech.ru

```
www.qtech.ru
```

register_vif0 2	v2/SUP	d Global	Addro	cc: "		
Auuress . 1660201	./all.leJe.ouz	u Global	Auure	55		
gigabitethernet0/0	/0 1	v2/S UP	1 1	FALS	E FALSE	
Address : fe80::2 fe80::201:7aff:fe62:	01:7aff:fe5e:60 bb7e	d2d G	Blobal	Address	: 2001:2::1	DR:
gigabitethernet0/0	/1 3	v2/S UP	1 1	FALS	E FALSE	
Address : fe80::2 fe80::201:7aff:fec0:	01:7aff:fe5e:60 525a	d2e G	lobal	Address	: 2001:4::1	DR:
gigabitethernet0/0	/2 4	v2/S UP	0	1 FALS	SE FALSE	E
Address : fe80::2 fe80::201:7aff:fe5e:	:01:7aff:fe5e:6 6d2f	d2f G	lobal	Address:	2001:5::1	DR:
gigabitethernet0/0	/3 5	v2/S UP	0	1 FALS	SE FALSE	
Address : fe80::2 fe80::201:7aff:fe5e:	01:7aff:fe5e:6 6d30	d30 (Global	Address	: 2001:6::1	DR:
Device3#show ipv	6 pim neiahba	or				
PIM6 Neighbor Tab	ole:					
PIM6 VRF Name: D	efault					
Total 2 Neighbor e	ntries					
Neighbor	Interface	Uptime/E	Expires	s Ver	DR	
Address			Pric	ority/Mod	е	

fe80::201:7aff:fe62:bb7e gigabitethernet0/0/0	00:04:01/00:01:29	v2	1/DR
fe80::201:7aff:fec0:525a gigabitethernet0/0/1	00:04:03/00:01:39	v2	1/DR

Note:

- The viewing methods of Device1 and Device2 are the same as that of Device3, so the viewing process is omitted.
- **Step 4:** Enable MLD on gigabitethernet0/0/2 and gigabitethernet0/0/3 of Device3.

#Configure Device3.

Enable MLD on gigabitethernet0/0/2 and gigabitethernet0/0/3 of Device3.

Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 mld enable Device3(config-if-gigabitethernet0/0/2)#exit Device3(config)#interface gigabitethernet0/0/3

www.qtech.ru

Device3(config-if-gigabitethernet0/0/3)#ipv6 mld enable Device3(config-if-gigabitethernet0/0/3)#exit

#Query the MLD information of Device3 interface gigabitethernet0/0/2 and gigabitethernet0/0/3.

Device3#show ipv6 mld interface Interface gigabitethernet0/0/2 (Index 11) MLD Enabled, Active Querier: fe80::201:7aff:fe5e:6d2f (Self) Default version: 2 Querier parameter: Query interval is 125 seconds Querier timeout is 255 seconds Query response time is 10 seconds Last member query response interval is 1 seconds Last member guery count is 2 Group Membership interval is 260 seconds Robustness variable is 2 Interface gigabitethernet0/0/3 (Index 12) MLD Enabled, Active Querier: fe80::201:7aff:fe5e:6d30 (Self) Default version: 2 Querier parameter: Query interval is 125 seconds Querier timeout is 255 seconds Query response time is 10 seconds Last member query response interval is 1 seconds Last member query count is 2 Group Membership interval is 260 seconds Robustness variable is 2

Note:

- You can configure the MLD version running on the interface via the command ipv6 mld version.
- **Step 5:** Configure interface gigabitethernet0/0/1 of Device1 as C-BSR and C-RP, and configure interface gigabitethernet0/0/0 of Device2 as C-BSR and C-RP.

#Configure Device1.

Configure interface gigabitethernet0/0/1 of Device1 as C-BSR and C-RP; the priority of C-BSR is 200; the multicast group range of the C-RP service is FF10::/16.

Device1(config)#ipv6 pim bsr-candidate gigabitethernet0/0/1 10 200 Device1(config)#ipv6 access-list extended 7001 Device1(config-v6-list)#permit ipv6 any ff10::/16 Device1(config-v6-list)#exit Device1(config)#ipv6 pim rp-candidate gigabitethernet0/0/1 group-list 7001

#Configure Device2.

Configure interface gigabitethernet0/0/0 of Device2 as C-BSR and C-RP; the priority of C-BSR is 0; the multicast group range of the C-RP service of Device2 is FF00::/8.

Device2(config)#ipv6 pim bsr-candidate gigabitethernet0/0/0 Device2(config)#ipv6 pim rp-candidate gigabitethernet0/0/0

#View the BSR and RP information of Device3.

Device3#show ipv6 pim bsr-router PIM6v2 Bootstrap information PIM6 VRF Name: Default BSR address: 2001:2::2 BSR Priority: 200 Hash mask length: 10 Up time: 00:03:04 Expiry time: 00:02:06 Role: Non-candidate BSR State: Accept Preferred Device3#show ipv6 pim rp mapping PIM6 Group-to-RP Mappings Table: PIM6 VRF Name: Default Total 2 RP set entries Total 2 RP entries

Group(s): ff00::/8 RP count: 1 RP: 2001:3::1 Info source: 2001:2::2, via bootstrap, priority 192 Up time: 00:21:30 Expiry time: 00:02:24

Group(s): ff10::/16 RP count: 1

RP: 2001:2::2 Info source: 2001:2::2, via bootstrap, priority 192 Up time: 00:04:31 Expiry time: 00:02:24

Caution:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- When configuring multiple C-BSRs in one multicast domain, first elect BSR according to the priority and the C-BSR with the largest priority is elected as BSR. When the priorities of C-BSRs are the same, the C-BSR with the largest ip address is elected as BSR.
- When configuring multiple C-RPs in one multicast domain and the service multicast group ranges are the same, calculate the RP of the multicast group G according to the hash algorithm.
- In the multicast domain, you can configure RP via the command **ipv6 pim rp-address**, but it is required that the static RP addresses configured on all devices in the multicast domain keep consistent.

Step 7: Check the result.

#PC1 and PC2 send the MLDv2 member report packet to add to multicast group FF10::1 and FF50::1respectively.

#Source sends the multicast packets with multicast group FF10::1, FF50::1.

#View the multicast member table of Device3.

Device3#show ipv6 mld groups

MLD Connected Group Membership

Total 2 Connected Groups

Group Interface Uptime Expires V1-Expires Last Reporter

ff10::1 gigabitethernet0/0/2 00:00:09 00:04:13 not used fe80::210:94ff:fe00:1

ff50::1 gigabitethernet0/0/3 00:00:09 00:04:14 not used fe80::210:94ff:fe00:2

#View the RP of multicast group FF10::1, FF50::1on Device3.

Device3#show ipv6 pim rp-hash ff10::1

PIM6 VRF Name: Default

RP: 2001:2::2

Info source: 2001:2::2, via bootstrap

Device3#show ipv6 pim rp-hash ff50::1

PIM6 VRF Name: Default

RP: 2001:3::1

Info source: 2001:2::2, via bootstrap

#View the multicast route table of Device3.

www.qtech.ru

....

Device3#show ipv6 pim mroute IP Multicast Routing Table: PIM6 VRF Name: Default Total 0 (*,*,RP) entry Total 2 (*,G) entries Total 2 (S,G) entries Total 2 (S,G,rpt) entries Total 0 FCR entry Up timer/Expiry timer

(*, ff10::1) Up time: 00:00:06 RP: 2001:2::2 RPF nbr: fe80::201:7aff:fe62:bb7e RPF idx: gigabitethernet0/0/0 Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/0/2 Joined interface list: Asserted interface list:

(2001:1::1, ff10::1) Up time: 00:00:05 KAT time: 00:03:25 RPF nbr: fe80::201:7aff:fe62:bb7e RPF idx: gigabitethernet0/0/0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: Asserted interface list:

www.qtech.ru

....

Outgoing interface list: gigabitethernet0/0/2 Packet count 0

(2001:1::1, ff10::1, rpt) Up time: 00:00:05 RP: 2001:2::2 Flags: RPT JOIN DESIRED RPF SGRPT XG EQUAL Upstream State: NOT PRUNED Local interface list: Pruned interface list: Outgoing interface list:

(*, ff50::1) Up time: 00:00:06 RP: 2001:3::1 RPF nbr: fe80::201:7aff:fec0:525a RPF idx: gigabitethernet0/0/1 Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/0/3 Joined interface list: Asserted interface list:

(2001:1::1, ff50::1) Up time: 00:00:05 KAT time: 00:03:27 RPF nbr: fe80::201:7aff:fe62:bb7e RPF idx: gigabitethernet0/0/0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED

www.qtech.ru

....

Local interface list: Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet0/0/3 Packet count 1

(2001:1::1, ff50::1, rpt) Up time: 00:00:05 RP: 2001:3::1 Flags: RPT JOIN DESIRED PRUNE DESIRED RPF SGRPT XG EQUAL Upstream State: PRUNED Local interface list: Pruned interface list: Outgoing interface list: gigabitethernet0/0/3

#PC1 can only receive the multicast service packet with multicast group FF10::1 sent by Multicast Server. PC2 can only receive the multicast service packet with multicast group FF50::1 sent by Multicast Server.

Note:

- The viewing method of Device1 and Device2 is the same as that of Device3, so the viewing process is omitted.
- By default, the device enables the SPT switching.

12.3.2. Configure IPv6 PIM-SSM

Network Requirements

- The whole network runs the IPv6 PIM-SSM protocol.
- PC is one receiver of Device3 stub network.
- Run MLDv2 between Device3 and the stub network.

Network Topology

Figure 12-2 Networking of configuring IPv6 PIM-SSM

Configuration Steps

- **Step 1:** Configure VLAN, and add the port to the corresponding VLAN (omitted).
- Step 2: Configure the IPv6 address of the interface. (omitted)
- **Step 3:** Enable the unicast route protocol OSPFv3 so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#ipv6 router ospf 100 Device1(config-ospf6)#router-id 1.1.1.1 Device1(config-ospf6)#exit Device1(config)#interface gigabitethernet0/0/0 Device1(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/0)#exit Device1(config)#interface gigabitethernet0/0/1 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/1)#exit Device1(config-if-gigabitethernet0/0/2)#exit

#Configure Device2.

Device2#configure terminal

Device2(config)#ipv6 router ospf 100

Device2(config-ospf6)#router-id 2.2.2.2

Device2(config-ospf6)#exit

Device2(config)#interface gigabitethernet0/0/0

Device2(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device2(config-if-gigabitethernet0/0/0)#exit Device2(config)#interface gigabitethernet0/0/1 Device2(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device2(config-if-gigabitethernet0/0/1)#exit

#Configure Device3.

Device3#configure terminal Device3(config)#ipv6 router ospf 100 Device3(config-ospf6)#router-id 3.3.3.3 Device3(config-ospf6)#exit Device3(config)#interface gigabitethernet0/0/0 Device3(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/0)#exit Device3(config0)#interface gigabitethernet0/0/1 Device3(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/2)#exit Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 router ospf 100 area 0

#View the route table of Device3.

Device3#show ipv6 route Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS U - Per-user Static route O - OSPF, OE-OSPF External, M - Management

- L ::1/128 [0/0]
 via ::, 2w6d:04:39:46, lo0
 0 2001:1::/64 [110/2]
 via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0
- C 2001:2::/64 [0/0] via ::, 00:01:05, gigabitethernet0/0/0
- L 2001:2::2/128 [0/0] via ::, 00:01:04, lo0
- 0 2001:3::/64 [110/2]

www.qtech.ru

via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0 [110/2]

via fe80::201:7aff:fec0:525a, 00:00:04, gigabitethernet0/0/1

- C 2001:4::/64 [0/0] via ::, 00:00:49, gigabitethernet0/0/1
- L 2001:4::1/128 [0/0]

via ::, 00:00:48, lo0

- C 2001:5::/64 [0/0] via ::, 00:00:43, gigabitethernet0/0/2
- L 2001:5::1/128 [0/0] via ::, 00:00:42, lo0

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 4:** Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the interface.

#Configure Device1.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device1(config)#ipv6 multicast-routing Device1(config)#interface gigabitethernet0/0/0 Device1(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/0)#exit Device1(config)#interface gigabitethernet0/0/1 Device1(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/1)#exit Device1(config)#interface gigabitethernet0/0/2 Device1(config)#interface gigabitethernet0/0/2 Device1(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode

#Configure Device2.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device2(config)#ipv6 multicast-routing

Device2(config)#interface gigabitethernet0/0/0

Device2(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode

Device2(config-if-gigabitethernet0/0/0)#exit

Device2(config)#interface gigabitethernet0/0/1

www.qtech.ru

Device2(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device2(config-if-gigabitethernet0/0/1)#exit

#Configure Device3.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device3(config)#ipv6 multicast-routing Device3(config)#interface gigabitethernet0/0/0 Device3(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device3(config-if-gigabitethernet0/0/0)#exit Device3(config)#interface gigabitethernet0/0/1 Device3(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device3(config-if-gigabitethernet0/0/1)#exit Device3(config)#interface gigabitethernet0/0/2 Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode Device3(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode

#View the information of the interface enabled with the PIM-SMv6 protocol on Device3 and the PIM-SMv6 neighbor information.

Device3#show ipv6 pim interface PIM6 Interface Table: PIM6 VRF Name: Default Total 4 Interface entries Total 0 External Interface entry

Total 0 Sparse-Dense Mode Interface entry

Interface VIF Ver/ VIF Nbr DR BSR CISCO Neighbor Index Mode Flag Count Pri Border Neighbor Filter register_vif0 2 v2/S UP

Address : fe80::201:7aff:fe5e:6d2d Global Address: ::

gigabitethernet0/0/0 1 v2/S UP 1 1 FALSE FALSE Address : fe80::201:7aff:fe5e:6d2d Global Address: 2001:2::2 DR: fe80::201:7aff:fe62:bb7e

gigabitethernet0/0/1 3 v2/S UP 1 1 FALSE FALSE Address : fe80::201:7aff:fe5e:6d2e Global Address: 2001:4::1 DR: fe80::201:7aff:fec0:525a

gigabitethernet0/0/2 4 v2/S UP 0 1 FALSE FALSE Address : fe80::201:7aff:fe5e:6d2f Global Address: 2001:5::1 DR: fe80::201:7aff:fe5e:6d2f Device3#show ipv6 pim neighbor PIM6 Neighbor Table: PIM6 VRF Name: Default Total 2 Neighbor entries

Neighbor	Interface	Uptime/Expires	Ver	DR			
Address		Priority/Mode					
fe80::201:7aff:fe62:bb7e gigabitethernet0/0/0			00:04	:01/00:01:29	v2	1/DR	
fe80::201:7aff:fec0:525a gigabitethernet0/0/1			00:04:	03/00:01:39	v2	1/DR	

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 5:** Enable MLD on gigabitethernet0/0/2 of Device3.

#Configure Device3.

Enable MLD on gigabitethernet0/0/2 of Device3.

Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 mld enable Device3(config-if-gigabitethernet0/0/2)#exit

#View the MLD information of Device3 interface gigabitethernet0/0/2.

Device3#show ipv6 mld interface gigabitethernet0/0/2

Interface gigabitethernet0/0/2 (Index 11)

MLD Enabled, Active

Querier: fe80::201:7aff:fe5e:6d2f (Self)

Default version: 2

Querier parameter:

- Query interval is 125 seconds
- Querier timeout is 255 seconds
- Query response time is 10 seconds

Last member query response interval is 1 seconds

- Last member query count is 2
- Group Membership interval is 260 seconds
- Robustness variable is 2

Note:

- You can configure the MLD version running on the interface via ipv6 mld version.
- **Step 6:** Configure IPv6 PIM-SSM on all devices; the multicast group range of the SSM service is FF3X::/32.

#Configure Device1.

Device1(config)#ipv6 pim ssm default

#Configure Device2.

Device2(config)#ipv6 pim ssm default

#Configure Device3.

Device3(config)#ipv6 pim ssm defaul

Step 7: Check the result.

#PC sends the MLDv2 member relation report of the specified source group to add to multicast group FF30::1; the specified multicast source is 2001:1::1.

#Multicast Server sends the multicast packets with multicast group FF30::1.

#View the multicast member table of Device3.

Device3#show ipv6 mld groups detail MLD Connected Group Membership **Total 1 Connected Groups** Group Interface Uptime **V1-Expires Last Reporter** Expires gigabitethernet0/0/2 ff30::1 00:26:42 not used not used fe80::210:94ff:fe00:1 Group mode : Include TIB-A Count: 1 TIB-B Count: 0 TIB-A Source list: (R - Remote, M - SSM Mapping)

Source Uptime Expires Flags 2001:1::1 00:05:55 00:03:41 R

#View the multicast route table of Device3.

Device3#show ipv6 pim mroute IP Multicast Routing Table: PIM6 VRF Name: Default Total 0 (*,*,RP) entry

www.qtech.ru

••••

Total 0 (*,G) entry Total 1 (S,G) entry Total 0 (S,G,rpt) entry Total 0 FCR entry Up timer/Expiry timer

(2001:1::1, ff30::1) Up time: 00:06:48 KAT time: 00:02:30 RPF nbr: fe80::201:7aff:fe62:bb7e RPF idx: gigabitethernet0/0/0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/0/2 Joined interface list: Asserted interface list: **Outgoing interface list:** gigabitethernet0/0/2 Packet count 275560

#PC can only receive the multicast service packet with multicast group FF30::1 sent by Source.

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- The default multicast group range of IPv6 PIM-SSM is FF3X::/32. You can modify the multicast group range of the IPv6 PIM-SSM service via the command ipv6 pim ssm range.
- For the multicast group G meeting the SSM condition, the multicast route table does not generate the (*,G) entry, but just generate the (S,G) entry.

12.3.3. Configure PIM-SMv6 Multicast Forwarding Control

Network Requirements

- The whole network runs the PIM-SMv6 protocol.
- Receiver is one receiver of Device3 stub network.
- Device2 is C-BSR and C-RP.
- On Device2 and Device3, control for the multicast source, making PC only receive the multicast service packet sent by Multicast Server 1.

www.qtech.ru

• Run MLDv2 between Device3 and the stub network.

Network Topology

Figure 12-3 Networking of configuring PIM-SMv6 multicast forwarding control

Configuration Steps

- Step 1: Configure the IPv6 address of the interface. (omitted)
- **Step 2:** Enable the unicast route protocol OSPFv3 so that all devices in the network can communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#ipv6 router ospf 100 Device1(config-ospf6)#router-id 1.1.1.1 Device1(config-ospf6)#exit Device1(config)#interface gigabitethernet0/0/0 Device1(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/0)#exit Device1(config)#interface gigabitethernet0/0/1 Device1(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/1)#exit Device1(config)#interface gigabitethernet0/0/2 Device1(config-if-gigabitethernet0/0/2)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/2)#exit Device1(config)#interface gigabitethernet0/0/3 Device1(config-if-gigabitethernet0/0/3)#ipv6 router ospf 100 area 0 Device1(config-if-gigabitethernet0/0/3)#exit Device1(config)#interface gigabitethernet0/0/4 Device1(config-if-gigabitethernet0/0/4)#ipv6 router ospf 100 area 0

Device1(config-if-gigabitethernet0/0/4)#exit Device1(config)#interface gigabitethernet0/0/5

- Device1(config-if-gigabitethernet0/0/5)#ipv6 router ospf 100 area 0
- Device1(config-if-gigabitethernet0/0/5)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#ipv6 router ospf 100 Device2(config-ospf6)#router-id 2.2.2.2 Device2(config-ospf6)#exit Device2(config)#interface gigabitethernet0/0/0 Device2(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device2(config-if-gigabitethernet0/0/0)#exit Device2(config)#interface gigabitethernet0/0/1 Device2(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device2(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0

#Configure Device3.

Device3#configure terminal Device3(config)#ipv6 router ospf 100 Device3(config-ospf6)#router-id 3.3.3.3 Device3(config-ospf6)#exit Device3(config)#interface gigabitethernet0/0/0 Device3(config-if-gigabitethernet0/0/0)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/0)#exit Device3(config)#interface gigabitethernet0/0/1 Device3(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/1)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/2)#ipv6 router ospf 100 area 0 Device3(config-if-gigabitethernet0/0/2)#ipv6 router ospf 100 area 0

#View the route table of Device3.

Device3#show ipv6 route Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS U - Per-user Static route O - OSPF, OE-OSPF External, M - Management

- L ::1/128 [0/0] via ::, 3w2d:05:13:23, lo0
- 0 2001:1::/64 [110/2] via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0
- 0 2001:2::/64 [110/2] via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0
- 0 2001:3::/64 [110/2] via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0
- 0 2001:4::/64 [110/2] via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0
- C 2001:5::/64 [0/0] via ::, 00:01:52, gigabitethernet0/0/0
- L 2001:5::2/128 [0/0] via ::, 00:01:50, lo0
- 0 2001:6::/64 [110/2] via fe80::201:7aff:fe62:bb7e, 00:00:24, gigabitethernet0/0/0 [110/2]

via fe80::201:7aff:fec0:525a, 00:00:24, gigabitethernet0/0/1

- C 2001:7::/64 [0/0] via ::, 00:01:25, gigabitethernet0/0/1
- L 2001:7::2/128 [0/0] via ::, 00:01:24, lo0
- C 2001:8::/64 [0/0] via ::, 00:01:16, gigabitethernet0/0/2
- L 2001:8::1/128 [0/0] via ::, 00:01:14, lo0

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 3:** Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the interface.

#Configure Device1.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device1(config)#ipv6 multicast-routing

Device1(config)#interface gigabitethernet0/0/0 Device1(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/0)#exit Device1(config)#interface gigabitethernet0/0/1 Device1(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/1)#exit Device1(config)#interface gigabitethernet0/0/2 Device1(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/2)#exit Device1(config)#interface gigabitethernet0/0/3 Device1(config-if-gigabitethernet0/0/3)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/3)#exit Device1(config)#interface gigabitethernet0/0/4 Device1(config-if-gigabitethernet0/0/4)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/4)#exit Device1(config)#interface gigabitethernet0/0/5 Device1(config-if-gigabitethernet0/0/5)#ipv6 pim sparse-mode Device1(config-if-gigabitethernet0/0/5)#exit

#Configure Device2.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device2(config)#ipv6 multicast-routing Device2(config)#interface gigabitethernet0/0/0 Device2(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device2(config-if-gigabitethernet0/0/0)#exit Device2(config)#interface gigabitethernet0/0/1 Device2(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode Device2(config-if-gigabitethernet0/0/1)#exit

#Configure Device3.

Globally enable the IPv6 multicast forwarding and enable the multicast protocol PIM-SMv6 on the related interfaces.

Device3(config)#ipv6 multicast-routing Device3(config)#interface gigabitethernet0/0/0 Device3(config-if-gigabitethernet0/0/0)#ipv6 pim sparse-mode Device3(config-if-gigabitethernet0/0/0)#exit Device3(config)#interface gigabitethernet0/0/1 Device3(config-if-gigabitethernet0/0/1)#ipv6 pim sparse-mode

www.qtech.ru

Device3(config-if-gigabitethernet0/0/1)#exit Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 pim sparse-mode Device3(config-if-gigabitethernet0/0/2)#exit

#View the information of the interface enabled with the PIM-SMv6 protocol on Device3 and the PIM-SMv6 neighbor information.

Device3#show ipv6 pim interface PIM6 Interface Table: PIM6 VRF Name: Default **Total 4 Interface entries** Total 0 External Interface entry Total 0 Sparse-Dense Mode Interface entry Interface VIF Ver/ VIF Nbr DR BSR CISCO Neighbor Index Mode Flag Count Pri Border Neighbor Filter register_vif0 2 v2/S UP Address : fe80::201:7aff:fe5e:6d2d Global Address: :: gigabitethernet0/0/0 v2/S UP 1 1 FALSE FALSE 1 Address : fe80::201:7aff:fe5e:6d2d Global Address: 2001:5::2 DR: fe80::201:7aff:fe62:bb7e gigabitethernet0/0/1 4 v2/S UP 1 1 FALSE FALSE Address : fe80::201:7aff:fe5e:6d2e Global Address: 2001:7::2 DR: fe80::201:7aff:fec0:525a gigabitethernet0/0/2 3 v2/S UP 0 1 FALSE FALSE Address : fe80::201:7aff:fe5e:6d2f Global Address: 2001:8::1 DR: fe80::201:7aff:fe5e:6d2f Device3#show ipv6 pim neighbor PIM6 Neighbor Table: PIM6 VRF Name: Default **Total 2 Neighbor entries**

Neighbor Interface Uptime/Expires Ver DR Address Priority/Mode fe80::201:7aff:fe62:bb7e gigabitethernet0/0/0 00:07:08/00:01:25 v2 1/DR

www.qtech.ru

```
fe80::201:7aff:fec0:525a gigabitethernet0/0/1
```

00:00:18/00:01:27 v2 1/DR

Note:

- The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.
- **Step 4:** Configure gigabitethernet0/0/0 of Device2 as the C-BSR and C-RP of the whole network and the multicast group range of the C-RP service is FF00::/8.

#Configure Device2.

Device2(config)#ipv6 pim bsr-candidate gigabitethernet0/0/0

Device2(config)#ipv6 pim rp-candidate gigabitethernet0/0/0

#View the BSR and RP information of Device3.

Device3#show ipv6 pim bsr-router

PIM6v2 Bootstrap information

PIM6 VRF Name: Default

BSR address: 2001:6::2

BSR Priority: 0

Hash mask length: 126

Up time: 00:00:21

Expiry time: 00:01:54

Role: Non-candidate BSR

State: Accept Preferred

Device3#show ipv6 pim rp mapping PIM6 Group-to-RP Mappings Table: PIM6 VRF Name: Default Total 1 RP set entry Total 1 RP entry

Group(s): ff00::/8 RP count: 1 RP: 2001:6::2 Info source: 2001:6::2, via bootstrap, priority 192 Up time: 00:00:28 Expiry time: 00:02:02

Note:

• The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.

www.qtech.ru

Step 5: On Device2 and Device3, control for the multicast source, making PC only receive the multicast service packet sent by Multicast Server 1.

#On Device2, configure the accepted register message access list, filtering the register message of Multicast Server 4.

Device2(config)#ipv6 access-list extended 7001

Device2(config-std-nacl)#deny ipv6 host 2001:4::2 any

Device2(config-std-nacl)#permit ipv6 any any

Device2(config-std-nacl)#exit

Device2(config)#ipv6 pim accept-register list 7001

#On interface valn6 and gigabitethernet0/0/0 of Device3, configure the ingress IPv6 acl, filtering the multicast service packets of Multicast Server 3.

Device3(config)#ipv6 access-list extended 7001 Device3(config-v6-list)#deny ipv6 host 2001:3::2 any Device3(config-v6-list)#permit ipv6 any any Device3(config-v6-list)#exit Device3(config)#interface gigabitethernet0/0/0 Device3(config-if-gigabitethernet0/0/0)#ipv6 access-group 7001 in Device3(config-if-gigabitethernet0/0/0)#exit Device3(config)#interface gigabitethernet0/0/1 Device3(config-if-gigabitethernet0/0/1)#ipv6 access-group 7001 in Device3(config-if-gigabitethernet0/0/1)#ipv6 access-group 7001 in

#On interface gigabitethernet0/0/2 of Device3, configure the ingress IPv6 acl, filtering the multicast service packets of Multicast Server 2.

Device3(config)#ipv6 access-list extended 7002 Device3(config-v6-list)#deny ipv6 host 2001:2::2 any Device3(config-v6-list)#permit ipv6 any any Device3(config-v6-list)#exit Device3(config)#interface gigabitethernet0/0/2 Device3(config-if-gigabitethernet0/0/2)#ipv6 access-group 7002 out Device3(config-if-gigabitethernet0/0/2)#exit

Step 7: Check the result.

#PC sends the MLDv2 member relation report to add to multicast group FF10::1.

Multicast Server 1, Multicast Server 2, Multicast Server 3, and Multicast Server 4 all send the multicast packets of multicast group FF10::1.

#View the multicast member table of Device3.

www.atech.ru
in the second second

....

	Device3#show ipv6 mld groups					
	MLD Connected Group Membership					
	Total 1 Connected Groups					
	Group	Interface	Uptime	Expires	V1-Expires Last	Reporter
	ff10::1 gig	gabitethernet0/0	/2	00:35:31	00:03:31 not used	fe80::210:94ff:fe00:1
#View the multicast route table of Device3.						
	Device3#show ipv6 pim mroute					
	IP Multicast Routing Table:					
	PIM6 VRF Name: Default					
	Total 0 (*,*,RP) entry					
	Total 1 (*,G) entry					
	Total 2 (S,G) entries					
	Total 2 (S,G,rpt) entries					
	Total 0 F0	CR entry				
	Up timer/Expiry timer					

(*, ff10::1) Up time: 00:04:25 RP: 2001:6::2 RPF nbr: fe80::201:7aff:fec0:525a RPF idx: gigabitethernet0/0/1 Flags: JOIN DESIRED Upstream State: JOINED Local interface list: gigabitethernet0/0/2 Joined interface list: Asserted interface list:

(2001:1::2, ff10::1) Up time: 00:03:33 KAT time: 00:01:51 RPF nbr: fe80::201:7aff:fe62:bb7e RPF idx: gigabitethernet0/0/0 SPT bit: TRUE

www.qtech.ru

••••

Flags: JOIN DESIRED **Upstream State: JOINED** Local interface list: Joined interface list: Asserted interface list: Outgoing interface list: vlan9 Packet count 159075 (2001:1::2, ff10::1, rpt) Up time: 00:03:33 RP: 2001:6::2 Flags: **RPT JOIN DESIRED** PRUNE DESIRED **RPF SGRPT XG EQUAL Upstream State: PRUNED** Local interface list: Pruned interface list: Outgoing interface list: gigabitethernet0/0/2 (2001:2::2, ff10::1) Up time: 00:03:33 KAT time: 00:01:51 RPF nbr: fe80::201:7aff:fe62:bb7e

RPF idx: gigabitethernet0/0/0 SPT bit: TRUE Flags: JOIN DESIRED Upstream State: JOINED Local interface list: Joined interface list: Asserted interface list: Outgoing interface list: gigabitethernet0/0/2

Packet count 156062

(2001:2::2, ff10::1, rpt) Up time: 00:03:33 RP: 2001:6::2 Flags: RPT JOIN DESIRED PRUNE DESIRED RPF SGRPT XG EQUAL Upstream State: PRUNED Local interface list: Pruned interface list: Outgoing interface list: gigabitethernet0/0/2

Note:

• The viewing method of Device1 and device2 is the same as that of Device3, so the viewing process is omitted.

#View the matching of IPv6 ACL on Device2.

Device2#show ipv6 access-list 7001

ipv6 access-list extended 7001

10 deny ipv6 host 2001:4::2 any 14 matches

20 permit ipv6 any any 51 matches

#View the matching of IPv6 ACL on Device3.

Device3#show ipv6 access-list 7001

ipv6 access-list extended 7001

10 deny ipv6 host 2001:3::2 any 10760 matches

20 permit ipv6 any any 4089685 matches

Device3#show ipv6 access-list 7002

ipv6 access-list extended 7002

10 deny ipv6 host 2001:2::2 any 2046914 matches

20 permit ipv6 any any 2049595 matches

#PC end can only receive the multicast service packets sent by Multicast Server 1.

Caution:

• When performing the multicast source control, you'd better first configure the multicast source control and then on-demand multicast source, because by default, after receiving the multicast service packet, the receiving end DR performs the SPT switching. If first on-demanding multicast source and then performing the multicast forwarding control,

www.qtech.ru

the multicast forwarding control does not take function. To prevent the multicast forwarding control from not taking function, you can configure not permitting SPT switching on the receiving end DR.

Общая информация

13. ОБЩАЯ ИНФОРМАЦИЯ

13.1. Замечания и предложения

Мы всегда стремимся улучшить нашу документацию и помочь вам работать лучше, поэтому мы хотим услышать вас. Мы всегда рады обратной связи, в особенности:

- ошибки в содержании, непонятные или противоречащие места в тексте;
- идеи по улучшению документации, чтобы находить информацию быстрее;
- неработающие ссылки и замечания к навигации по документу.

Если вы хотите написать нам по поводу данного документа, то используйте, пожалуйста, форму обратной связи на <u>qtech.ru</u>.

13.2. Гарантия и сервис

Процедура и необходимые действия по вопросам гарантии описаны на сайте QTECH в разделе «Поддержка» -> «Гарантийное обслуживание».

Ознакомиться с информацией по вопросам тестирования оборудования можно на сайте QTECH в разделе «Поддержка» -> «<u>Взять оборудование на тест</u>».

Вы можете написать напрямую в службу сервиса по электронной почте sc@qtech.ru.

13.3. Техническая поддержка

Если вам необходимо содействие в вопросах, касающихся нашего оборудования, то можете воспользоваться нашей автоматизированной системой запросов технического сервис-центра <u>helpdesk.qtech.ru</u>.

Телефон Технической поддержки +7 (495) 797-33-11 доб. 0

