

IP Protocol and Services QSR-1920, QSR-2920, QSR-3920

www.qtech.ru

1.2.3. Configure Auto Flow Forwarding Mode

Оглавление

www.qtech.ru

10

10

10 10 11

11

12

 $\bullet \bullet \bullet \bullet$

	www.qteo
Оглавление	
1. FORWARDING	
1.1. Overview	
1.2. Forwarding Function Configuration	
1.2.1. Configure Load Balancing Policy per Packet	
1.2.2. Configure Load Balancing Policy per Data Flow	

1.2.4. Configure Forced Flow Forwarding Mode

2. IPV4 FORWARDING	13
2.1. Overview	13
2.1.1. MEF Overview	13
2.1.2. Flow Forwarding Overview	13
2.2. IPV4 Forwarding Function Configuration	14
2.2.1. Configure Basic Functions of Flow Forwarding	15
2.2.2. Configure IP Packet Forwarding Processing Mode	17
2.2.3. IPv4 Forwarding Monitoring and Maintaining	18
3. IPV6 FORWARDING	19
3.1. IPV6 Forwarding Function Configuration	19
3.1.1. Configure Basic Functions of Flow Forwarding	19
3.1.2. IPv6 Forwarding Monitoring and Maintaining	22
4. ARP	23
4.1. Overview	23
4.2. ARP Function Configuration	23
4.2.1. Configure Basic Functions of ARP	23
4.2.2. Configure ARP Anti-attack Function	25
4.2.3. ARP Monitoring and Maintaining	27
4.3. ARP Typical Configuration Example	27
4.3.1. Configure ARP Proxy	27
4.3.2. Configure a Static ARP Entry	28
5. IP	30
5.1. Overview	30
5.2. IP Function Configuration	30

- 5.2.1. Configure an IP Address
 - 5.2.2. Configure Basic Functions of the IP Protocol 5.2.3. Configure Basic Functions of the ICMP Protocol
- 5.2.4. Configure Basic Functions of the TCP Protocol 40
- 5.2.5. Configure TCP Anti-Attack Function

32

34

37

45

	www.qtech.ru	
5.2.6. Configure TCP Max. Segment Size	47	
5.2.7. Configure Basic Functions of the UDP Protocol	47	
5.2.8. IP Basics Monitoring and Maintaining	50	
6. IPV6 BASIS	52	
6.1. Overview	52	
6.2. IPv6 Basic Function Configuration	52	
6.2.1. Configure Interface IPv6 Address	53	
6.2.2. Configure IPv6 Basic Functions	56	
6.2.3. Configure IPv6 Neighbor Discovery Protocol	58	
6.2.4. Configure ICMPv6 Function	65	
6.2.5. Configure the IPv6 TCP Anti-Attack Function	66	
6.2.6. Configure TCP Max. Segment Size	68	
6.2.7. Enable ND Quick Pick-up Function	69	
6.2.8. Configure L3 Interface ND Proxy	69	
6.2.9. IPv6 Basic Monitoring and Maintaining	70	
6.3. IPv6 Basic Configuration Example	72	
6.3.1. Configure the IPv6 Address of the Interface	72	
6.3.2. Configure IPv6 Neighbor Discovery	74	
6.3.3. Configure L3 ND Proxy	77	
7. VFR	79	
7.1. Overview	79	
7.2. VFR Function Configuration	79	
7.2.1. Enable IP VFR	79	
7.2.2. Configure IP VFR Parameter	80	
7.2.3. Configure Anti-tiny Fragment Attack	82	
8. IPV6 VFR	83	
8.1. Overview	83	
8.2. IPv6 VFR Function Configuration	83	
8.2.1. Enable IPv6 VFR	83	
8.2.2. Configure IPv6 VFR Parameter	84	
8.2.3. Configure Anti-tiny Fragment Attack	86	
9. GRE	87	
9.1. Overview	87	
9.2. GRE Function Configuration	88	
9.2.1. Configure a GRE Tunnel	88	
9.2.2. GRE Monitoring and Maintaining	91	
9.3. GRE Typical Configuration Example	91	

	www.qtech.ru	
9.3.1. Configure GRE Basic Functions	91	
9.3.2. Configure GRE over IPv6 Basic Functions	94	
10. IPIP	99	
10.1. Overview	99	
10.2. IPIP Function Configuration	100	
10.2.1. Configure IPIP Tunnel	100	
10.2.2. IPIP Monitoring and Maintaining	101	
10.3. IPIP Typical Configuration Example	101	
10.3.1. Configure IPIP Basic Function	101	
11. TRANSITION TUNNEL	105	
11.1. Overview	105	
11.2. Transition Tunnel Function Configuration	107	
11.2.1. Configure the IPv6 over IPv4 Manual Tunnel	107	
11.2.2. Configure IPv4 Compatible IPv6 Auto Tunnel	109	
11.2.3. Configure the 6to4 Tunnel	111	
11.2.4. Configure the ISATAP Tunnel	112	
11.2.5. Monitoring and Maintaining of Transition Tunnel	114	
11.3. Typical Configuration Examples of Transition Tunnel	114	
11.3.1. Configure Basic Functions of IPv6 over IPv4 Manual Tunnel	114	
11.3.2. Configure Basic Functions of IPv4 Compatible IPv6 Auto Tunnel	117	
11.3.3. Configure the Basic Functions of the 6to4 Tunnel	120	
11.3.4. Configure 6to4 Tunnel Relay	123	
11.3.5. Configure Basic Functions of ISATAP Tunnel	127	
12. IPV6 TUNNEL	132	
12.1. Overview	132	
12.2. IPv6 Tunnel Function Configuration	133	
12.2.1. Configure an IPv6 Tunnel	133	
12.2.2. IPv6 Tunnel Monitoring and Maintaining	135	
12.3. Typical Configuration Example of IPv6 Tunnel	135	
12.3.1. Configure Basic Functions of IPv6 Tunnel	135	
13. DVPN TUNNEL	140	
13.1. Overview of DVPN Tunnel	140	
13.2. DVPN Tunnel Function Configuration	141	
13.2.1. Configure MGRE Tunnel	141	
13.2.2. Configure UDP Tunnel	144	
13.2.3. DVPN Tunnel Monitoring and Maintaining	148	
13.3. DVPN Tunnel Typical Configuration Example	149	

	www.qtech.ru	
13.3.1. Configure MGRE Basic Functions	149	
13.3.2. Configure UDP Basic Functions	154	
14. DHCP	162	
14.1. Overview	162	
14.2. DHCP Function Configuration	163	
14.2.1. Configure a DHCP Address Pool	164	
14.2.2. Configure Other Parameters of a DHCP Server	169	
14.2.3. Configure the Functions of a DHCP Client	171	
14.2.4. Configure the Function of a DHCP Relay	173	
14.2.5. DHCP Monitoring and Maintaining	176	
14.3. DHCP Typical Configuration Example	177	
14.3.1. Configure a DHCP Server to Statically Allocate IP Addresses	177	
14.3.2. Configure a DHCP Server to Dynamically Allocate IP Addresses	179	
14.3.3. Configure a DHCP Relay	183	
14.3.4. Configure the DHCP Relay to Support Option82	184	
15. DHCPV6	187	
15.1. Overview	187	
15.2. DHCPv6 Function Configuration	188	
15.2.1. Configure a DHCPv6 Address Pool	189	
15.2.2. Configure Other Parameters of a DHCPv6 Server	192	
15.2.3. Configure the Functions of a DHCPv6 Client	194	
15.2.4. Configure the Function of a DHCPv6 Relay	195	
15.2.5. DHCPv6 Monitoring and Maintaining	198	
15.3. DHCPv6 Typical Configuration Example	199	
15.3.1. Configure a DHCPv6 Server to Statically Allocate IPv6 Addresses	199	
15.3.2. Configure a DHCPv6 Server to Dynamically Allocate IPv6 Addresses	201	
15.3.3. Configure DHCPv6 Relay	203	
16. DNS	206	
16.1. Overview	206	
16.2. DNS Function Configuration	206	
16.2.1. Configure DNS Cache Specification	207	
16.2.2. Configure the DNS Client Function	208	
16.2.3. Configure DNS Proxy Function	209	
16.2.4. Configure the DNS Detection Function	210	
16.2.5. Configure DNS Transparent Proxy Function	211	
16.2.6. Configure DNS64 Function	213	
16.3. DNS Typical Configuration Example	214	

 $\bullet \bullet \bullet \bullet$

	www.qtech.ru	••••
16.3.1. Configure Static Domain Name Resolution	214	
16.3.2. Configure Dynamic Domain Name Resolution	215	
16.3.3. Configure DNS Proxy	216	
16.3.4. Configure DNS Transparent Proxy	218	
16.3.5. Configure DNS Link Transparent Proxy	220	
16.3.6. Configure NAT64-Based DNS64	222	
17. L2TP	225	
17.1. Overview	225	
17.2. L2TP Function Configuration	227	
17.2.1. Configure the VPDN group	227	
17.2.2. Configure VPDN Authentication	232	
17.2.3. Configure VPDN Group Parameter	232	
17.2.4. Configure Spontaneous Tunnel	235	
17.2.5. L2TP Monitoring and Maintaining	238	
17.3. L2TP Typical Example Configuration	238	
17.3.1. Configure L2TP Forced Mode Combining PPPoE	238	
17.3.2. Configure L2TP Forced Mode Combining 4G Private Network	244	
17.3.3. Configure L2TP Spontaneous Mode Combining 4G Public Network	247	
17.3.4. Configure Android Terminal Establishing L2TP over IPSec Connec Public Network	tion on 252	
17.3.5. Configure Android Terminal Establishing L2TP over IPSec Connec Private Network	tion on 260	
18. L2TPV3	268	
18.1. Overview	268	
18.2. L2TPv3 Function Configuration	269	
18.2.1. Configure L2TPv3 Template	270	
18.2.2. Enable L2TPv3 Function	275	
18.2.3. L2TPv3 Monitoring and Maintaining	277	
18.3. L2TPv3 Typical Configuration Example	278	
18.3.1. Configure Dynamic Session Established over Ethernet Interface	278	
18.3.2. Configure Dynamic Session Established over WAN Interface	281	
18.3.3. Configure Static Session Established over Ethernet Sub Interface	285	
18.3.4. Configure L2TPv3 Over L2TPv2	288	
18.3.5. Configure L2TPv3 over IPsec	294	
19. NAT	300	
19.1. Overview	300	
19.2. NAT Function Configuration	301	
19.2.1. Configure NAT Interface	303	

	www.qtech.ru	••••
19.2.2. Configure NAT Address Pool	304	
19.2.3. Configure Static NAT	307	
19.2.4. Configure Dynamic NAT	311	
19.2.5. Configure NAT Destination Address Translation	313	
19.2.6. onfigure NAT444 Translation	314	
19.2.7. Configure NAT ALG Function	316	
19.2.8. Configure NAT Logs	316	
19.2.9. NAT Monitoring and Maintaining	317	
19.3. NAT Typical Configuration Example	318	
19.3.1. Configure Inside Source NAT Static Address/Port Translation	318	
19.3.2. Configure NAT444 Static Port Block Translation	319	
19.3.3. Configure Inside Source NAT Dynamic Address Translation	321	
19.3.4. Configure Inside Source NAT Dynamic Port Translation	323	
19.3.5. Configure Intranet Users to Access Extranet via Multiple Exports	325	
19.3.6. Configure Across-vrf Internal Source NAT Dynamic Port Translation	327	
19.3.7. Configure NAT444 Dynamic Port Block Translation	330	
19.3.8. Configure NAT Internal Server Translation	332	
19.3.9. Configure Outside Source NAT Static Address/Port Translation	334	
19.3.10. Configure Outside Source NAT Dynamic Address Translation	335	
20. NAT64	338	
20.1. Overview	338	
20.1.1. NAT64 IPv6 Network Specific Prefix	338	
20.1.2. NAT64 Packet Translation Process	339	
20.2. NAT64 Function Configuration	340	
20.2.1. Enable the NAT64 Function	340	
20.2.2. Configure NAT64 Flow Log Function	341	
20.2.3. Configure NAT64 IPv6 Network Specific Prefix	341	
20.2.4. Configure the NAT64 Filter Policy	342	
20.2.5. Configure the NAT64 Address Pool	343	
20.2.6. Configure NAT64 Available Port Range	344	
20.2.7. Configure NAT64 v4-v6 Source Static Translation Rule	344	
20.2.8. Configure NAT64 IPv6 Internal Server Translation Rule	345	
20.2.9. Configure NAT64 Static Translation Rules	346	
20.2.10. Configure NAT64 Dynamic Translation Rules	347	
20.2.11. Configure NAT64 IPv4 Internal Server Translation Rules	348	
20.2.12. Configure NAT64 ALG Switch	349	
20.2.13. NAT64 Monitoring and Maintaining	349	

	www.qtech.ru	••••
20.3. NAT64 Typical Configuration Examples	350	
20.3.1. Configure NAT64 Static Address Translation	350	
20.3.2. Configure NAT64 Dynamic Address Translation	351	
20.3.3. Configure NAT64 Dynamic Port Translation	354	
20.3.4. Configure IPV4 internet to Access IPV6 Internal Server	356	
20.3.5. Configure IPV6 internet to Access IPV4 Internal Server	358	
20.3.6. Configure Exchange Access of IPV4 and IPv6 Networks	360	
20.3.7. Configure IPv6 internet to Access IPv4 Network	362	
21. NAT66	364	
21.1. Overview	364	
21.2. NAT66 Function Configuration	365	
21.2.1. Configure Current Interface as NAT66 Internal Interface	366	
21.2.2. Configure Current Interface as NAT66 External Interface	366	
21.2.3. Configure NAT66 Internal Source Address Static Translation Rule	367	
21.2.4. Configure NAT66 Internal Source Address Dynamic Translation Rule	e 369	
21.2.5. Configure NAT66 Internal Server Translation Rule	371	
21.2.6. Configure NAT66 Flow Log Function	371	
21.2.7. Configure NAT66 ALG Switch	372	
21.2.8. NAT66 Monitoring and Maintaining	373	
21.3. NAT66 Typical Configuration Example	373	
21.3.1. Configure Internal Source NAT66 Static Address/Port Translation	373	
21.3.2. Configure Internal Source NAT66 Dynamic Address Translation	374	
21.3.3. Configure Internal Source NAT66 Dynamic Port Translation	376	
21.3.4. Configure NAT66 Internal Server Translation	378	
22. BANDWIDTH LIMIT	380	
22.1. Overview	380	
22.2. Bandwidth Limit Function Configuration	380	
22.2.1. Configure Uplink Traffic Bandwidth Limit	380	
22.2.2. Configure Downlink Traffic Bandwidth Limit	381	
22.3. Bandwidth Limit Typical Configuration Example	382	
22.3.1. Configure IP-based Bandwidth Limit	382	
23. CONNECTION LIMIT	385	
23.1. Overview	385	
23.2. Connection Limit Function Configuration	385	
23.2.1. Configure Connection Aging Time Function	385	
23.2.2. Configure Connection Limit Policy Function	386	
23.2.3. Configure Global Application Connection Restriction Policy Function	387	

	www.qtech.ru	••••
23.2.4. Configure the Max. Specification Function of Connection	388	
23.2.5. Configure Forarding Action Function When Failed to Get Connection	Node 388	
23.2.6. Connection Restriction Monitoring and Maintaining	389	
23.3. Connection Restriction Typical Configuration Example	390	
23.3.1. Configure Globally Referencing IPv4 and IPv6 Connection Restriction	Policy 390	
24. TPC	394	
24.1. Overview	394	
24.2. TPC Function Configuration	394	
24.2.1. Configure TPC Basic Functions	394	
24.2.2. Configure TPC Extended Function	395	
24.2.3. TPC Monitoring and Maintaining	397	
25. FEC	398	
25.1. Overview	398	
25.2. FEC Function Configuration	398	
25.2.1. Configure FEC Basic Function	398	
25.2.2. Configure FEC Extended Function	399	
25.2.3. FEC Monitoring and Maintaining	400	
26. ОБЩАЯ ИНФОРМАЦИЯ	401	
26.1. Замечания и предложения	401	
26.2. Гарантия и сервис	401	
26.3. Техническая поддержка	401	

1. FORWARDING

1.1. Overview

To improve the service packet forwarding performance for the data communication device, a fast forwarding technology is designed. It shifts down and completes the routing and service handling in the layer compression mode at a time. This greatly reduces resource consumption caused by internal system task switching and packet cache management and finally improves the data forwarding performance for the overall system. This technology is a data forwarding software platform that is extensible and irrelevant to the hardware platform. It not only supports the data forwarding software platform of different products, but also supports fast forwarding of data packets, such as IPv4 unicast, IPv4 multicast, IPv6, and MPLS. These software platforms are collectively called as the fast forwarding platform.

In the multi-core distribution system, service data will be balanced to multiple cores based on the multi-core load balancing policy. This improves the system data forwarding capability. There are two CPU multi-core load balancing policies: load policy per data flow and load policy per packet.

1.2. Forwarding Function Configuration

Table 1-1 Forwarding function list

Configuration Task	
Configure the load balancing policy per packet	Configure the load balancing policy per packet
Configure the load balancing policy per data flow	Configure the load balancing policy per data flow
Configure the auto flow forwarding mode	Configure the auto flow forwarding mode
Configure the forced flow forwarding mode	Configure the forced flow forwarding mode

1.2.1. Configure Load Balancing Policy per Packet

Configuration Condition

None

Configure Load Balancing Policy per Packet

Load policy per packet: Each core takes turns to handle a packet every time. This method cannot ensure the sequence of the service data flow, but it can ensure the CPU multi-core load balancing.

Forwarding

Table 1-2 Configure the load balancing policy per packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the load balancing policy per packet	forwarding policy per- packet	Optional By default, the load balancing is performed per packet.

1.2.2. Configure Load Balancing Policy per Data Flow

Configuration Condition

None

Configure Fast Forwarding Function over Interface

Load policy per data flow: Load is balanced by data flow. Different traffic distribution methods are adopted for service data flow of different types. For example, the IPv4 and IPv6 service data packet adopts IP quintuple as the key value for hash traffic distribution. The MPLS service data packet adopts the MPLS label as the key value for hash traffic distribution. Where, a data flow will be forwarded and handled only on a CPU core. This method can ensure the continuity of the same flow packet processing.

Table 1-3 Configure the load b	balancing policy per data flow
--------------------------------	--------------------------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the load balancing policy per data flow	forwarding policy per-flow	Optional By default, the load balancing is performed per data flow.

1.2.3. Configure Auto Flow Forwarding Mode

Configuration Condition

None

Configure Auto Flow Forwarding Mode

The service using flow acceleration (such as ACL) is enabled on the interface, and the shortest path forwarding packet uses flow acceleration.

Forwarding

Table 1-4 Configure the auto flow forwarding mode

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the auto flow forwarding mode	forwarding flow auto- mode	Optional By default, the shortest path uses the forced flow forwarding.

1.2.4. Configure Forced Flow Forwarding Mode

Configuration Condition

None

Configure Forced Flow Forwarding Mode

On the shortest path, forwarding packet is forced to use flow forwarding.

 Table 1-5 Configure the forced flow forwarding mode

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the forced flow forwarding mode	forwarding flow force- mode	Optional By default, shortest path uses the forced flow forwarding.

2. IPV4 FORWARDING

2.1. Overview

The IPv4 forwarding includes the entire process from receiving the packet to sending out the packet. After receiving the packet, the interface uses the MEF to search for the routing, finds the corresponding outbound interface, and then sends out the packet. At the same time, if the ACL service is configured for the packet Rx and Tx interfaces, the flow forwarding records the packet handling result by the ACL. In this way, the packet can be searched for the corresponding handling result in the flow table entry and there is no need to deliver the packet to the ACL for handling. Thus, the flow forwarding accelerates the packet forwarding.

2.1.1. MEF Overview

The MEF mainly searches for the routing and obtains the forwarding information on the fast forwarding platform. The MEF table entry is the projection of the core routing table. It synchronously updates with the core routing table and searches for the routing using the LPM (Longest Prefix Match). The MEF table entry consists of two parts: FIB block and ADJ information. The MEF obtains the packet forwarding information by searching for the FIB block and ADJ information.

The MEF has all the features and benefits of fast forwarding:

- The searching speed is fast. No matter how large the forwarding table is, the routing searching can be completed upon a maximum of four times memory visits. The MEF is applicable to scenarios of all scales.
- The MEF has a stable performance. Because the complete projection of the core routing table is saved in the MEF table entry, if the driver receives the packet and the MEF fails to search the table, the packet is dropped directly. In this case, the upper CPU load is greatly relieved. This ensures that the CPU performance is given to the full play.
- The MEF is created before the packet flow. The cache entry is created without the progress switching. This improves the forwarding performance.
- The MEF will not be aging and updates synchronously with the core routing table. When the core routing table changes or the link information changes, the MEF table entry updates synchronously. No problems in the fast switching such as cache aging or invalid cache exist. Free from the routing instability, the MEF can be applied to multiple complex network scenarios.
- The link information is saved in the MEF. Complete forwarding information can be obtained by searching the forwarding table in the receiving progress, and then the forwarding is completed. There is no overhead related to the progress switching.
- The MEF provides effective load balancing mechanism and effectively utilizes the network resources by target flow, packet, and source flow.

2.1.2. Flow Forwarding Overview

The flow forwarding mainly records the forwarding and control result of the stable data flow on the fast forwarding platform and applies them to the subsequent packet forwarding of this data flow. In the common handling process, when the packet enters the router, actions such as packet resolution, link transmission protocol, ACL, NAT, PBR, and outbound routing are mandatory. Subsequently, the packet with the same header of the preceding packet will be

handled in the same process when it enters the router. The flow forwarding records the results that every module on the forwarding path handles the packet to the flow table when the packet is completely handled. When the subsequent packet reaches, directly search the flow table. If such flow already exists in the flow table, handle the packet using the result of the preceding packet instead of completely handling the packet. In this way, the forwarding speed accelerates.

In the packet forwarding process, after the packet is received, a corresponding table entry is searched in the flow table. If a corresponding table entry is found, go on the subsequent handling. If a corresponding table entry fails to be found, the packet is handled based on the process of creating the flow table, as shown in Figure 2-1.

2.2. IPV4 Forwarding Function Configuration

Table 2-1 Flow forwarding function list

Configuration Task			
Configure basic functions of the flow forwarding	Enable the flow forwarding function		
	Configure the maximum number of entries for the flow table		
	Configure the aging time for the active flow		
	Configure the aging time for the non-active flow		
	Configure periodical reporting		
	Configure fragment packet forwarding function		
Configure the IP packet forwarding processing mode	Configure the processing mode for the IP packet with the options		
	Configure the checksum for the IP packet		

2.2.1. Configure Basic Functions of Flow Forwarding

Configuration Condition

None

Enable Flow Forwarding Function

After enabling the flow forwarding, the packet handling results will be recorded in the flow forwarding table entry.

Table 2-2 Enable the flow forwarding function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the flow forwarding function	ip flow enable	Optional By default, the flow forwarding function is enabled.

Configure Maximum Number of Entries for Flow Table

Because the flow table entry occupies large memory, it is recommended that the user not change the maximum number of entries for the flow table.

Table 2-3 Configure the maximum number of entries for the flow table

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Set the maximum number of entries for the flow table	ip flow entries slot- number entry-number	Mandatory By default, the maximum number of the entries of the flow table is 256K.

Note:

• The maximum number of entries of the flow table is set in the flow forwarding initialization based on the memory size of the current device. Therefore, manual configuration is not recommended.

Configure Aging Time for Active Flow

If a flow table entry is hit by a packet flow in a certain time, the packet flow corresponding to the flow table entry is called the active flow. When the existence time of the active flow exceeds the aging time of the active time, the flow table entry corresponding to the active flow will be forced to age. That is, this flow table entry is deleted.

Table 2-4 Configure the aging time for the active flow

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Set the aging time for the active flow	ip flow timeout active active-time	Mandatory By default, the aging time for the active flow is 3600 minutes.

Configure Aging Time for Non-active Flow

If a flow table entry is not hit by a packet flow in a certain time, the packet flow corresponding to the flow table entry is called the non-active flow. When the existence time of the non-active flow exceeds the aging time of the non-active time, the flow table entry will be forced to age. That is, this flow table entry is deleted.

Table 2-5 Configure the aging time for the non-active flow

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the aging time for the non-active flow	ip flow timeout inactive inactive-time	Mandatory By default, the aging time of the non-active flow is 60s.

Configure Periodic Reporting

The command is used to control whether to report the IPv4 data flow to ipfix periodically. By default, it is reported periodically.

Table 2-6 Configure reporting periodically

Step	Command	Description
Enter the global configuration mode	configure terminal	-

Step	Command	Description
Set periodical reporting	ip flow period upstream	Optional By default, the IP data flow is reported to ipfix periodically.

Configure Fragment Packet Flow Forwarding Function

The command is used to enable the flow forwarding function of the IPv4 fragment packets. By default, the function is disabled.

Table 2-7	Configure	the fragment	packet flow	forwarding	function
	Configure	the magnitude	packet now	iorwarang	ranouori

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the fragment packet flow forwarding function	ip flow fragment	Optional By default, the function is disabled.

2.2.2. Configure IP Packet Forwarding Processing Mode

Configuration Condition

None

Configure Processing Mode for the IP Packets with Options

During forwarding, you can configure the processing mode for the IP packets with options. You can process or drop.

Table 2-8 Configure the processing mode for the IP packets with options

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the processing mode for the IP packets with options	dfp ip options { process drop }	Mandatory By default, it is necessary to process the IP packet with options.

Configure Checksum for IP Packet

During forwarding, you can configure checksum for the received IP packet.

Table 2-9 Configure checksum for the received IP packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure checksum for the received IP packet	dfp ip recv-cksum	Mandatory By default, do not perform checksum for the received IP packet.

2.2.3. IPv4 Forwarding Monitoring and Maintaining

Table 2-10 IPv4 forwarding monitoring and maintaining

Command	Description
<pre>show ip flow { interface interface-name { ingress egress } parameter entry user }</pre>	Display the flow table entry information or the configuration parameters of the flow forwarding

3. IPV6 FORWARDING

3.1. IPV6 Forwarding Function Configuration

Table 3-1 Flow forwarding function list

Configuration Task		
Configure basic functions of the flow forwarding	Enable the flow forwarding function	
	Configure the maximum number of entries for the flow table	
	Configure the aging time for the active flow	
	Configure the aging time for the non-active flow	
	Configure the periodic reporting	
	Configure the fragment packet flow forwarding function	
Configure IPv6 packet forwarding processing mode	Configure the processing mode for the IPv6 packet with options	
	Configure the checksum for the IPv6 packet	

3.1.1. Configure Basic Functions of Flow Forwarding

Configuration Condition

None

Enable Flow Forwarding Function

After enabling the flow forwarding, the packet handling results will be recorded in the flow forwarding table entry.

Table 3-2 Enable the flow forwarding function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the flow forwarding function	ipv6 flow enable	Optional By default, the flow forwarding function is enabled.

Configure Maximum Number of Entries for Flow Table

Because the flow table entry occupies large memory, it is not recommended to modify the maximum number of entries for the flow table.

Table 3-3 Configure the maximum number of entries for the flow table

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Set the maximum number of entries for the flow table	ipv6 flow entries <i>lpu-</i> <i>number entry-number</i>	Mandatory By default, the maximum items of the flow table is 4096K.

Note:

• The maximum number of entries of the flow table is set in the flow forwarding initialization based on the memory size of the current device. Therefore, manual configuration is not recommended.

Configure Aging Time for Active Flow

If a flow table entry is hit by a packet flow in a certain time, the packet flow corresponding to the flow table entry is called the active flow. When the existence time of the active flow exceeds the aging time of the active time, the flow table entry corresponding to the active flow will be forced to age. That is, this flow table entry is deleted.

Table 3-4 Configure the aging time for the active flow

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Set the aging time for the active flow	Ipv6 flow-cache timeout active active-time	Mandatory By default, the aging time for the active flow is 3600 minutes.

Configure Aging Time for Non-active Flow

If a flow table entry is not hit by a packet flow in a certain time, the packet flow corresponding to the flow table entry is called the non-active flow. When the existence time of the non-active flow exceeds the aging time of the non-active time, the flow table entry will be forced to age. That is, this flow table entry is deleted.

Table 3-5 Configure the aging time for the non-active flow

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Set the aging time for the non-active flow	Ipv6 flow-cache timeout inactive inactive-time	Mnadatory By default, the aging time for the non-active flow is 60 minutes.

Configure Periodic Reporting

The command is used to control whether the IPv6 data flow is periodically reported to ipfix. By default, it is reported periodically.

Table 3-6 Configure periodic reporting

Step	Command	Description
Enter the global configuration mode	configure terminal	-

Step	Command	Description
Configure periodic reporting	ipv6 flow period upstream	Optional By default, the IPv6 data floe can be periodically reported to ipfix.

Configure Fragment Packet Flow Forwarding Function

The command is used to enable the flow forwarding function of the fragment packet. By default, the flow forwarding function of the fragment packet is disabled.

Table 3-7 Configure the fragment packet forwarding function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the flow forwarding function of the fragment packet	ipv6 flow fragment	Optional By default, the flow forwarding function of the fragment packet is disabled.

3.1.2. IPv6 Forwarding Monitoring and Maintaining

Table 3-8 IPv6 forwarding monitoring and maintaining

Command	Description
<pre>show ipv6 flow { interface interface-</pre>	Display the configuration parameters of
name { ingress egress } parameter	the flow entry information or flow
entry user }	forwarding

4. ARP

4.1. Overview

Address Resolution Protocol (ARP) provides dynamic mapping from IP addresses to MAC addresses. The Ethernet frames to be transmitted in the Ethernet can be encapsulated properly only after MAC addresses are specified. The ARP protocol is used to obtain MAC addresses that correspond to IP addresses.

4.2. ARP Function Configuration

Table 4-1 RP function list

Configuration Tasks		
Configure basic functions of ARP.	Configure a static ARP entry.	
	Configure the maximum number of dynamic ARP entries.	
	Configure the dynamic ARP aging time.	
	Configure ARP receive queue depth.	
	Configure ARP proxy.	
Configure ARP anti-attack function	Configure ARP anti-spoofing attack	

4.2.1. Configure Basic Functions of ARP

Configuration Condition

None

Configure a Static ARP Entry

Configuring static ARP means that a user manually specifies the mapping between IP addresses and MAC addresses.

Table 4-2 Configuring static ARP

Step	Command	Description
Enter the global configuration mode.	configure terminal	-

www.gtech.ru	

Step	Command	Description
Configure a static ARP entry.	arp [vrf vrf-name] { ip- address host-name } mac-address [alias [advertise] advertise [alias]]	Mandatory.

Note:

- When the configured static ARP entry contains an alias, if an ARP request for this IP address is received, the MAC address in the static ARP entry is used for response.
- When the configured static ARP entry contains the advertise option, the static ARP is notified regularly if the static ARP notification is enabled.

Configure the Maximum Number of Dynamic ARP Entries

The purpose of configuring the maximum number of dynamic ARP entries is to prevent dynamically learned ARP from occupying too many system resources.

Table 4-3 C	Configuring the	maximum numb	per of dynamic	ARP entries

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the maximum number of dynamic ARP entries.	arp limited max-entries	Mandatory. By default, the maximum number of dynamic ARP entries is 2000.

Configure the Dynamic ARP Aging Time

The life cycle of a dynamically learned ARP entry is the aging time. Within the aging time, the device sends ARP requests periodically. If it receives an ARP response, it resets the aging time. If the aging time expires, the device deletes the dynamic ARP entry.

Table 4-4 Configuring the dynamic ARP aging time

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-

www.qtech.ru

Step	Command	Description
Configure the dynamic ARP aging time.	arp timeout { second disable }	Mandatory. The default aging time is 1200 seconds.

Configure ARP Receive Queue Depth

The received ARP packets will be first cached in the ARP receive queue and the system reads and handles the packets cached in the receive queue in turn. When the cached ARP packets reach the queue depth, the subsequent received ARP packets will be dropped. The user can adjust the ARP receive queue depth based on the network burst ARP.

Table 4-5 Configure the ARP receive queue depth

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the ARP receive queue depth	arp queue-length length	Mandatory By default, the queue depth is 200 bytes.

Configure ARP Proxy

An ARP request is sent by one network host to another network, and the intermediate device between the two networks can respond to the ARP request. This process is called ARP proxy.

Table 4-6 Configuring ARP proxy

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-
Configure ARP proxy.	ip proxy-arp	Mandatory.
		By default, the ARP proxy function is enabled.

4.2.2. Configure ARP Anti-attack Function

Configuration Condition

None

. . . .

Configure ARP Anti-proofing Attack

In terms of the ARP proofing on the Ethernet, configure the ARP anti-proofing attack to avoid such problems.

Configuring this function includes ARP scanning, ARP binding, and static ARP notification enabling.

- ARP scanning is used to complete the ARP resolution in a specified IP address segment.
- ARP binding is used to bind the dynamic ARP as static ARP.
- Static ARP notification enabling is used to notify the ARP entries with notification tags in the static ARP.

Step	Command	Description
Execute ARP scanning	arp [vrf vrf-name] scan begin-ip-address end-ip- address [bind [alias [advertise] advertise [alias]]]	Mandatory When the bind is contained, the scanned dynamic ARP is bound as the static ARP.
Execute ARP binding	<pre>arp [vrf vrf-name] bind { all { begin-ip-address end-ip-address [alias [advertise] advertise [alias]] } </pre>	Optional
Enter the global configuration mode	configure terminal	-
Configure the static ARP with notification tags	arp [vrf vrf-name] ip- address mac-address advertise	Optional The static ARP is configured independently.
Enable the static ARP notification	arp advertise [interval interval-time]	Mandatory By default, this function disabled.

Table 4-7Configure the ARP anti-spoofing attack

4.2.3. ARP Monitoring and Maintaining

Table 4-8 ARP monitoring and maintaining

Command	Description
clear arp attack-detection	Clears the suspected host information of ARP attack
clear arp-cache [<i>start-ip-addr end-ip-</i> <i>addr</i> [force]] [interface <i>if-name</i> [force]] [vrf <i>vrf-name</i> [<i>start-ip-addr end-ip-addr</i> [force]]] [force]	Clears the ARP cache
show arp statistic [all]	Displays the ARP quantity statistics information
show arp [vrf vrf-name]	Displays the ARP table.
show arp attack-detection	Displays the information about the host which has been suspected of initiating static ARP attacks.

4.3. ARP Typical Configuration Example

4.3.1. Configure ARP Proxy

Network Requirements

- Device is directly connected to PC1 and PC2 respectively. The network number of the LAN in which PC1 and PC2 is located is 10.0.0/16.
- The MAC address of the interface gigabitethernet0 of Device is 0001.7a13.0102.
- Through the ARP proxy of Device, PC1 can successfully ping PC2, and PC1 can learn the MAC address of PC2.

Network Topology

Figure 4-1 Networking for configuring ARP proxy

Configuration Steps

- Step 1: Configure the IP addresses for all interfaces. (Omitted)
- Step 2: Check the result.

ARP	www.qtech.ru	
#Ping the PC2 IP address 10.0.1.2 from PC1.		
C:\Documents and Settings>ping 10.0.1.2		
Pinging 10.0.1.2 with 32 bytes of data:		
Reply from 10.0.1.2: bytes=32 time<1ms TTL=255		
Reply from 10.0.1.2: bytes=32 time<1ms TTL=255		
Reply from 10.0.1.2: bytes=32 time<1ms TTL=255		
Reply from 10.0.1.2: bytes=32 time<1ms TTL=255		
Ping statistics for 10.0.1.2:		
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),		
Approximate round trip times in milli-seconds:		
Minimum = 0ms, Maximum = 0ms, Average = 0ms		
#Query the ARP entry of Device.		
Device#show arp		
Protocol Address Age (min) Hardware Addr Type Interface	Switchport	
Internet 10.0.0.1 - 0001.7a13.0102 ARPA gigabitethernet0	N/A	
Internet 10.0.0.2 1 B8AC.6F2D.4498 ARPA gigabitethernet	0 N/A	
Internet 10.0.1.1 - 0001.7a13.0103 ARPA gigabitethernet1	N/A	
Internet 10.0.1.2 1 4437.e603.0d63 ARPA gigabitethernet1	N/A	
#Query the ARP entry of PC1.		
C:\Documents and Settings>arp -a		
Interface: 10.0.0.2 0x5		

 Internet Address
 Physical Address
 Type

 10.0.0.1
 00-01-7a-13-01-02
 dynamic

 10.0.1.2
 00-01-7a-13-01-02
 dynamic

#Ping from PC1 to PC2 is successful, the PC1 has learned the MAC address of PC2.

Note:

• By default, ARP proxy is enabled for a device.

4.3.2. Configure a Static ARP Entry

Network Requirements

- Device and PC are directly connected.
- The MAC address of PC is 4437.e603.0d63.
- The IP address and MAC address of PC is bound to Device.
- PC can successfully ping the address of the interface gigabitethernet1 of Device.

www.qtech.ru

Network Topology

Figure 4-2 Networking for configuring a static ARP entry

Configuration Steps

Step 1: Configure IP addresses for all interfaces. (Omitted)

Step 2: Bind the IP address and MAC address of PC to Device.

#Configure Device.

Bind the IP address and MAC address of PC to Device.

Device(config)#arp 10.0.0.1 4437.e603.0d63

Step 3: Check the result.

#Query the ARP entry of Device.

Device1#show arp		
Protocol Address	Age (min) Hardware Addr Type Interface	Switchport
Internet 10.0.0.1 -	4437.e603.0d63 ARPA gigabitethernet1	NA
Internet 10.0.0.254	- 0001.7a13.0102 ARPA gigabitethernet1	NA

#PC pings the IP address 10.0.0.254 of the interface gigabitethernet1 on Device. C:\Documents and Settings>ping 10.0.0.254

Pinging 10.0.0.254 with 32 bytes of data:

Reply from 10.0.0.254: bytes=32 time<1ms TTL=255 Reply from 10.0.0.254: bytes=32 time<1ms TTL=255 Reply from 10.0.0.254: bytes=32 time<1ms TTL=255 Reply from 10.0.0.254: bytes=32 time<1ms TTL=255

Ping statistics for 10.0.0.254: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms #PC can successfully ping the address of the interface gigabitethernet1 of Device.

www.qtech.ru

5. IP

5.1. Overview

The Internet Protocol (IP) is based on data packets. It is used in data exchange between computer networks. The protocols that are supported by the device include: IP, Internet Control Message Protocol (ICMP), Transfer Control Protocol (TCP), User Datagram Protocol (UDP), and Socket.

Among them, IP packets are the base of the TCP/IP protocol stack. The IP layer is responsible for addressing, fragmentation, reassembly, and protocol information partitioning. As the network layer protocol, the IP protocol performs route addressing and control packet transmission.

The UDP protocol and the UDP protocol is set up based on the IP protocol. They provide connection-based reliable data transmission services and non-connection-based unreliable data transmission services respectively.

ICMP is mainly used to provide network detection services. It also provides an error report if the network layer or transmission layer protocol becomes abnormal, and it informs the related device of the abnormality to facilitate network control management.

5.2. IP Function Configuration

Table 5-1 IP basic function list

Configuration Tasks		
Configure an IP address.	Configure an IP address for an interface.	
	Configure an unnumbered IP address for an interface.	
Configure basic functions of the IP protocol.	Configure the depth of the IP packet receive queue.	
	Configure the Time To Live (TTL) of transmitted IP packets.	
	Configure timeout for packet reassembly.	
	Enable IP packet receiving verification and check.	
	Configure transmitted IP packets to calculate a checksum.	
	Enable IP routing cache.	

Р	www.qtech.ru	••••
Configuration Tasks		
Configure basic functions of the ICMP protocol.	Enable global ICMP redirection.	
	Enable global ICMP redirection.	
	Enable ICMP destination unreachable.	
	Configure ICMP rate limit.	
Configure basic functions of the TCP protocol.	Configure the size of the TCP receiving cache.	
	Configure the size of the TCP transmitting cache.	
		7

Configure the maximum number of TCP retransmissions.

Configure the maximum length of TCP packets.

Configure the maximum TCP round-trip time.

Configure the TCP connection idle time.

Configure TCP connection setup waiting time.

Configure the maximum number of TCP keep-alive times.

Enable the TCP timestamp.

Enable TCP selective retransmission.

Configure the TCP protocol Enable the TCP syncache function anti-attack function

Enable the TCP syncookies function

Enable the TCP connection accelerated aging function

Configuration Tasks		
Configure basic functions of the UDP protocol.	Configure TTL of UDP packets.	
	Configure the size of the UDP receiving cache.	
	Configure the size of the UDP transmitting cache.	
	Enable UDP verification and check.	
	Fill in UDP packet checksum.	

5.2.1. Configure an IP Address

An IP address is a 32-bit number. It is used to uniquely identify a network device that runs the IP protocol on the Internet.

An IP address consists of the following two parts:

- Network number (Net-id): It identifies the network in which the device is located.
- Host number (Host-id): It specifies the host number in the device network.

To facilitate IP address management, IP addresses are categorized into five classes, and each IP address class has its own functions. IP addresses of classes A to C are used for address allocation, IP addresses of class D is used in multicast applications, and IP addresses of class E are used for test purpose. The following table shows the IP addresses classes and their ranges.

Table 5-2 IP address classes and their	ranges
	rangee

Address Type	Available Network Address Range	Description
A	1.0.0.0-127.0.0.0	Network number 127 is used for loopback interfaces.
В	128.0.0.0-191.255.0.0	-
С	192.0.0.0-223.255.255.0	-
D	224.0.0.0-239.255.255.255	Class D addresses are used for multicast.

 $\bullet \bullet \bullet \bullet$

www.qtech.ru

www.qtech.ru

Address Type	Available Network Address Range	Description
E	240.0.0.0-255.255.255.255	255.255.255.255 is used for broadcast address and the other class E addresses are used for test purpose.

With the development of the Internet, IP address resources have gradually been consumed up. Address allocation based on classes causes address waste, so the concept of "subnet" is introduced. "Subnet" takes some host numbers in the IP addresses as subnet numbers. In this way, a large network is divided into multiple subnets. This facilitates network planning and deployment.

The three address segments, 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, and 192.168.0.0-192.168.255.255 are private and reserved addresses, and they cannot be allocated to the public network.

This section describes how to configure an interface IP address and how to configure an unnumbered interface IP address.

Configuration Condition

None

Configure an IP Address for an Interface

An IP address can only be configured for an interface that supports the IP protocol. One interface can only be configured with one primary IP address but it can be configured with multiple secondary IP addresses.

Table 5-3 Configuring a	an IP address	for an interface
-------------------------	---------------	------------------

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-
Configure an IP address for an interface.	ip address <i>ip-address</i> { <i>network-mask</i> <i>mask-len</i> } [secondary]	Mandatory

Note:

- One interface can only be configured with one primary IP address, therefore, the newly configured primary IP address replaces the original primary IP address.
- Before an interface is configured with secondary IP addresses, the interface must be configured a primary IP address. An interface can be configured with a maximum of 100 secondary IP addresses.
- The IP addresses of different interfaces must not in the same network segment, but the primary and secondary IP addresses of one interface can be in the same network segment.

Configure an Unnumbered IP Address for an Interface

Unnumbered IP addresses save IP addresses. In the case of unnumbered IP addresses, the IP addresses of other interfaces can be borrowed instead of allocated independently. If an unnumbered interface generates an IP packet, the source IP address of the packet is the primary IP address of a borrowed interface. In configuring an unnumbered IP address for an interface, the interface to be borrowed must be specified, so that the IP address of the interface can be borrowed.

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-
Configure an unnumbered IP address for an interface.	ip unnumbered reference- interface	Mandatory

Table 5-4 Configuring an unnumbered IP address for an interface

Note:

- The borrowed interface must be configured with the primary IP address, and the interface must not be configured with an unnumbered IP address.
- The primary IP address of an interface can be borrowed by multiple interfaces, but only the primary IP address of the interface can be borrowed.

5.2.2. Configure Basic Functions of the IP Protocol

In the TCP/IP protocol stack, the IP protocol is the network layer core protocol that is responsible for network interconnection. The IP protocol is a connectionless protocol. Before transmitting data, you need not set up a connection. The IP protocol tries best to deliver packets, but is does not ensure that all packets can reach the destination orderly.

Configuration Condition

None

Configure the Depth of the IP Packet Receive Queue

The IP packets received by a device are first cached in the IP packet receive queue of an interface. The system reads packets orderly in the queue for processing. If the cached IP packets reach the specified queue depth, the later IP packets are discarded. You can adjust the depth of the IP packet receive queue according to burst of IP packets in the network.

Table 5-5 Configuring the depth of the IP packet receive queue

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the depth of the IP packet receive queue to a specified value.	ip option queue-length queue-size	Mandatory. By default, the depth of the IP packet receive queue is 200 bytes.
Configure the depth of the IP packet receive queue to the default value.	default ip option queue- length	Optional

Configure the TTL of Transmitted IP Packets

The header of an IP packet contains the Time-To-Live (TTL) field, which is decreased by one once the IP packet passes a routing device. When the TTL is 0, the device discards the IP packet. By default, the TTL of IP packets transmitted by the device is 255, that is, the packet can only be transmitted for up to 255 times. If you want to limit the number of packet forwarding times, adjust the TTL value for the transmitted IP packets.

Table 5-6 Configuring the TTL of transmitted IP packets

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the TTL of transmitted IP packets to a specified value.	ip option default-ttl <i>ttl -</i> value	Mandatory. By default, the TTL of transmitted IP packets is 255.
Configure the TTL of transmitted IP packets to a default value.	default ip option default- ttl	Optional

www.qtech.ru

Configure Timeout for Packet Reassembly

If an IP packet is fragmented during the transmission, after the fragments reach the destination, they need to be reassembled to form a complete IP packet. Before all fragments are received, the received fragments are cached temporarily. If reassembly times out before all fragments reach the destination, the received fragments are discarded.

Table 5-7 Configuring timeout for packet reassembly

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configuring timeout for packet reassembly to a specified value.	ip option fragment-ttl <i>ttl-value</i>	Mandatory. By default, the timeout for packet reassembly is 60, and the unit is 0.5 second.
Configuring timeout for packet reassembly to the default value.	default ip option fragment-ttl	Optional

Note:

• The unit for timeout of packet reassembly is 0.5 second.

Enable IP Packet Receiving Verification and Check

You can enable this function to verify and check the received IP packets. If the checksum is incorrect, the packet will be discarded.

Table 5-8 Enabling IP packet receiving verification and check

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable IP packet receiving verification and check.	ip option recv-checksum	Mandatory. By default, the function is enabled.
Configure the method for verifying and checking the received IP packets to the default value.	default ip option recv- checksum	Optional

www.qtech.ru

Enable IP Routing Cache

After a packet is sent from socket to the IP layer, if the destination address is the same as the previous packet and the route is valid, the packet directly use the route in the cache without the need of searching for another route.

Table 5-9 Enabling IP routing cache

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable IP routing cache.	ip upper-cache	Mandatory. By default, the IP routing cache function is enabled.

5.2.3. Configure Basic Functions of the ICMP Protocol

In the TCP/IP protocol stack, ICMP is mainly used to provide network detection services. It also provides an error report if the network layer or transmission layer protocol becomes abnormal, and it informs the related device of the abnormality to facilitate network control management.

Configuration Condition

None

Enable Global ICMP Redirection

After a device receives an IP packet to be forwarded, if it is found that the receiving interface of the packet and the transmitting interface of the packet are the same through route selection, the device forwards the packet and sends back an ICMP redirection packet to the source end, requesting the source end to reselect the correct next hop for transmission of later packets. By default, a device can send ICMP redirection packets. In some special cases, you can prohibit a device from sending ICMP redirection packets.

Table 5-10 Enabling global ICMP redirection

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable global ICMP redirection.	ip redirect	Mandatory. By default, the global ICMP redirection function is enabled.

Enable Global ICMP Redirection

In sending ICMP redirection packets, if you need to send ICMP redirection packets, you need to enable the ICMP redirection function on the interface.

Table 5-11 Enabling global ICMP redirection

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-
Enable ICMP redirection on an interface.	ip redirects	Mandatory. By default, the ICMP redirection function is enabled on an interface.

Note:

• You can send ICMP redirection packets only when the ICMP redirection function is enabled globally and on the interface.

Enable ICMP Destination Unreachable

After a device receives IP data packets, if the destination is unreachable, the packet is discarded and the ICMP destination unreachable error packet is sent back to the source end.

- If route selection of a forwarded IP packet fails, a host unreachable ICMP error packet is sent back to the source end.
- For an IP packet that can be forwarded, if you need to fragment the IP packet but a Don't Fragment (DF) bit is set in the packet, an ICMP error packet indicating that "segmentation is required but a DF bit is set" is sent to the source end.
- For an IP packet whose destination address is the local device, if the device does not support the upper-layer protocol of the device, it sends a "protocol unreachable" ICMP error packet to the source end.
- For an IP packet whose destination address is the local device, if the transport layer port of the packet of the packet does not match the port that the device process monitors, the device sends back a "port unreachable" ICMP error packet to the source end.

If a device encounters a malicious attack by a large number of ICMP destination unreachable packets, the device performance is degraded, and network traffic is increased. To prevent such case, you can disable the function of sending ICMP destination unreachable packets.

www.qtech.ru

Table 5-12 Enabling ICMP destination unreachable

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-
Enable ICMP destination unreachable.	ip unreachables	Optional. By default, the ICMP destination unreachable function is enabled.

Configure ICMP Rate Limit

If a device encounters a malicious attack by a large number of ICMP error packets, the device performance is degraded, and network traffic is increased. To prevent such case, you can configure ICMP packet rate limit. The types of ICMP error packets include: unreachable packets, redirection packets, TTL timeout packets, and parameter error packets. The default rate limit of the packets is 10pps, while the transmitting rate of the other types of packets is 0, that is, no rate limit. In addition, you can configure the transmitting rates for different types of packets independently. If no rate is configured for a type of packets, the default value is used.

www.qtech.ru

....

Table 5-13 Configuring ICMP rate limit

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable ICMP rate limit.	ip icmp ratelimit enable	Mandatory. By default, the function is enabled.
Configure ICMP rate limit.	<pre>ip icmp ratelimit { default pps echo-reply { pps unlimit } mask-reply { pps unlimit } param-problem { pps unlimit } redirect { pps unlimit } time-exceed { pps unlimit } time-stamp-reply { pps unlimit } unlimit } unreach { pps unlimit } }</pre>	Mandatory. By default, the ICMP rate limit function is enabled.

5.2.4. Configure Basic Functions of the TCP Protocol

In the TCP/IP protocol stack, TCP is a connection-oriented transport layer protocol. Before sending data through the TCP protocol, you must first set up a connection. The TCP protocol provides congestion control and ensures reliable data transmission.

Configuration Condition

None

Configure the Size of the TCP Receiving Cache

In some special network environment, you can configure both the size of receiving cache and the size of transmitting cache of a TCP connection so that the network can reach the optimal performance. If the TCP connection receiving cache is not configured, the size of the receiving cache is the default value.

Table 5-14 Configuring the size of the TCP receiving cache

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the size of the TCP receiving cache.	ip tcp recvbuffers buff- size	Mandatory. By default, the size of the receiving cache is 8192 bytes.

Configure the Size of the TCP Transmitting Cache

In some special network environment, you can configure both the size of receiving cache and the size of transmitting cache of a TCP connection so that the network can reach the optimal performance. If the TCP connection transmitting cache is not configured, the size of the transmitting cache is the default value.

Table 5-15	Configuring	the s	size of the	TCP	transmitting cache
	0 0				0

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the size of the TCP transmitting cache.	ip tcp sendbuffers buff- size	Optional. By default, the size of the transmitting cache is 8192 bytes.

Configure the Maximum Number of TCP Retransmissions

After the server sends a SYN-ACK packet, if it does not receive a response packet from the client, the server retransmits the packet. If the number of retransmissions exceeds the maximum number of retransmissions defined by the system, the system disconnects the TCP connection.

www.qtech.ru

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the maximum number of TCP retransmissions.	ip tcp retransmits retransmits-count	Mandatory. By default, the maximum number of TCP retransmissions is 3.

Configure the Maximum Length of TCP Packets

The maximum length of TCP packets is the maximum length of data blocks that are sent by the transmitting end of a TCP connection to the receiving end. When a connection is set up, the smaller maximum packet length of the two ends is used as the maximum packet length in sending TCP packets by the two ends. If a TCP packet exceeds the maximum packet length, the transmitting ends fragments the packet before sending it.

Table 5-17	Configuring	the maximum	lenath of T	CP packets
	een gannig		longer of t	e paonete

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the maximum length of TCP packets.	ip tcp segment-size seg- size	Optional. By default, the maximum length of TCP packets is 512 bytes.

Configure the Maximum TCP Round-Trip Time

The TCP round trip time refers to the time between the time point at which the transmitting end sends a TCP packet and the time point at which the transmitting end receives the response packet. The maximum TCP round-trip time that is configured during TCP connection setup is taken as the initial value of the TCP round-trip time. The later TCP round-trip time is calculated according to the actual round-trip time. By default, the maximum TCP round-trip time is 3 seconds.

Table 5-18 Configuring the maximum TCP round-trip time

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the maximum TCP round-trip time.	ip tcp round-trip round- trip-time	Mandatory. By default, the maximum TCP round-trip time is 3 seconds.

Configure the TCP Connection Idle Time

After a TCP connection is set up, if no data is exchanged, the TCP connection idle time times out. Then TCP performs a keep-alive test. After the maximum number of keep-alive times is reached, the TCP connection is disconnected. By default, the TCP connection idle time is 2 hours.

Table 5-19 Configuring the TCP connection idle time

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the TCP connection idle time.	ip tcp idle-timeout idle- time	Mandatory. By default, the TCP connection idle time is 14400, and the unit is 0.5 second.

Note:

• The unit of the TCP connection idle time is 0.5 second.

Configure TCP Connection Setup Waiting Time

The setup of a TCP connection requires three handshakes. After a TCP client sends a connection request packet, it waits for the response from the TCP server before completing connection setup. After the time for waiting for connection setup timeout before a response is received, connection setup is terminated. By default, the time for waiting for setting up a TCP connection is 75 seconds.

Table 5-20 Configuring TCP connection setup waiting time

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure TCP connection setup waiting time.	ip tcp init-timeout init- time	Mandatory. By default, the time for waiting for setting up a TCP connection is 150 seconds, and the unit is 0.5 second.

Note:

• The unit of the TCP connection setup waiting time is 0.5 second.

Configure the Maximum Number of TCP Keep-Alive Times

If no data is exchanged on a TCP connection for TCP connection idle time, a TCP keep-alive packet is sent for keep-alive test. If the keep-alive test fails, a keep-alive test is performed again. If the maximum number of TCP keep-alive times exceeds the threshold, the TCP connection will be disconnected. By default, the maximum number of TCP keep-alive times is 3.

Table 5-21 Configuring the maximum number of TCP keep-alive times

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the maximum number of TCP keep-alive times.	ip tcp keep-count keep- count	Mandatory. By default, the maximum number of TCP keep-alive times is 3.

Enable the TCP Timestamp

TCP automatically calculates the packet round-trip time according to the serial number of the request packet and that of the response packet. However, the calculation is not accurate. Use of TCP timestamps can revise the problem. The transmitting end adds a timestamp into a packet, and the receiving end sends back the timestamp in the response packet. The transmitting end calculates the packet round-trip time according to the returned timestamp. By default, the function is disabled.

www.qtech.ru

Table 5-22 Enabling the TCP timestamp

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable the TCP timestamp.	ip tcp timestamp	Mandatory. By default, the function is disabled.

Enable TCP Selective Retransmission

After TCP sends a series of packets, if the transmission of one packet fails, the series of packets need to be retransmitted. After TCP selective transmission is enabled, only the packet that fails to be transmitted needs to be retransmitted. This reduces the system and line cost. By default, the function is disabled.

Table 5-23 Enable TCP selective retransmission

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure TCP selective retransmission.	ip tcp selective-ack	Mandatory. By default, the function is disabled.

5.2.5. Configure TCP Anti-Attack Function

If the TCP server receives lots of SYN packets, but the peer end does not answer the SYN+ACK response of the server. As a result, lots of the server memory is consumed, occupying a half of the connection queue of the server, and the TCP server cannot serve for the normal request. As for the attack, you can configure the TCP anti-attack function to prevent.

Configuration Condition

None

Enable the TCP syncache Function

When the SYN packet is received, there is no rush to distribute TCB, but first reply one SYN+ACK packet and save the half-open connection information in a private cache until the correct response ACK packet is received.

www.qtech.ru

....

Table 5-24 Enable the TCP syncache function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the TCP syncache function	ip tcp syncache	Mandatory By default, the function is not enabled.

Enable the TCP syncookies Function

The function does not use any storage resource, but adopts one special algorithm to generate Sequence Number. The algorithm considers the fixed information of the peer IP and port, and local IP and port, as well as the local fixed information that the peer party does not know, such as MSS and time. After the peer ACK packet is received, re-calculate and view whether it is the same as the Sequence Number-1 in the peer response packet, so as to decide whether to distribute the TCB resource.

Table 5-25 Enable the TCP syncookies function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the TCP syncookies function	ip tcp syncookies	Mandatory By default, the function is not enabled.

Enable TCP Connection Aging Function

This function checks the number of TCP connections to the current system and compares it with the expected connection threshold; if the number of current accessed TCP connections reaches two-thirds of the expected connection threshold, check and accelerate the aging of TCP connections to avoid the existence of dead connections and recover resources as soon as possible.

www.qtech.ru

....

Table 5-26 Enable the TCP connection aging function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the function of accelerating the TCP connection	ip tcp naptha threshold num	Mandatory By default, the function is not enabled.

5.2.6. Configure TCP Max. Segment Size

This function sets the maximum segment size of the TCP packet on the interface. When the connection is established through TCP, the mss value is encapsulated into the header to set the maximum segment size of the packet sent by the connection to the mss value.

Configuration Conditions

None

Configure TCP Packet MSS

The command is used to control the size of the packet transmitted by connection as mss.

Table 5-27 Configure TCP connection mss

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration	interface interface-name	-
Configure the <i>mss</i> value	ip tcp adjust-mss mss-value	Mandatory By default, it is not configured.

5.2.7. Configure Basic Functions of the UDP Protocol

In the TCP/IP protocol stack, UDP is a connectionless-oriented transport layer protocol. Before sending data through the TCP protocol, you need not set up a connection. The UDP protocol provides unreliable data transmission without congestion control.

Configuration Condition

None

....

Configure TTL of UDP Packets

Configuring TTL of UDP packets means to fill in the TTL value in the IP header of UDP packets. The header of an IP packet contains the Time-To-Live (TTL) field, which is decreased by one once the IP packet passes a routing device. When the TTL is 0, the device discards the IP packet. By default, the TTL value of the IP packet of a UDP packet is 64.

Table 5-28 Configuring TTL of UDP packets

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure TTL of UDP packets.	ip udp default-ttl <i>time-to-</i> <i>live</i>	Mandatory. By default, the TTL value of the IP packet of a UDP packet is 64.

Configure the Size of the UDP Receiving Cache

In some special network environment, you can configure both the size of receiving cache and the size of transmitting cache of a UDP connection so that the network can reach the optimal performance. If the UDP connection receiving cache is not configured, the size of the receiving cache is the default value, 41600 bytes.

Table 5-29 Configuring the size of the UDP receiving cache

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the size of the UDP receiving cache.	ip udp recvbuffers buffer- size	Mandatory. By default, the size of the UDP receiving cache is 41600 bytes.

Configure the Size of the UDP Transmitting Cache

In some special network environment, you can configure both the size of receiving cache and the size of transmitting cache of a UDP connection so that the network can reach the optimal performance. If the UDP connection transmitting cache is not configured, the size of the transmitting cache is the default value, 9216 bytes.

www.qtech.ru

Table 5-30 Configuring the size of the UDP transmitting cache

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the size of the UDP transmitting cache.	ip udp sendbuffers buffer-size	Mandatory. By default, the size of the UDP transmitting cache is 9216 bytes.

Enable UDP Verification and Check

To prevent errors that occur during transmission of UDP packets, after UDP packets are received, UDP verification and check need to be performed. The system compares the UDP packet verification field calculated by the receiving end and the UDP packet header checksum field. If the two values are different, the system determines that a transmission error has occurred, and then discards the packet. By default, the function is enabled.

Table 5-31 Enabling UDP verification and check

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable UDP verification and check.	ip udp recv-checksum	Mandatory. By default, the function is enabled.

Fill in UDP Packet Checksum

To prevent UDP packets from encountering transmission errors, in transmitting UDP packets, the transmitting end fills in the UDP packet checksum to be calculated into the UDP packet header checksum field for the receiving end to perform checksum check. By default, the function is enabled.

www.qtech.ru

Table 5-32 Filling in UDP packet checksum

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure to fill in packet checksum in transmitting UDP packets.	ip udp send-checksum	Mandatory. By default, the function is enabled.

5.2.8. IP Basics Monitoring and Maintaining

Table 5-33 IP basics monitoring and maintaining

Command	Description
clear ip icmpstat	Clears ICMP protocol statistics.
clear ip statistics	Clears IP protocol statistics.
clear ip tcpstat	Clears TCP protocol statistics.
clear ip tcp syncache statistics	Clears the syncache statistics information of the TCP protocol
clear ip udpstat	Clears UDP protocol statistics.
show ip icmpstat	Displays ICMP protocol statistics.
<pre>show ip interface [interface-name brief]</pre>	Displays the interface IP address.
show ip sockets	Displays the Socket details.
show ip statistics [interface interface- name]	Displays IP protocol statistics.
show ip tcpstat	Displays TCP protocol statistics.

www.a	tec	h.ru	
www.q			

Command	Description
show ip tcp syncache detail	Displays the syncache entity information of the TCP protocol
show ip tcp syncache statistics	Displays the TCP syncache statistics information
show ip udpstat	Displays UDP protocol statistics.
show tcp tcb [detail]	Displays TCP protocol control block details.

6. IPV6 BASIS

6.1. Overview

IPv6 (Internet Protocol Version 6) is the second generation standard protocol of the network layer protocol, also known as IPng (IP Next Generation). It is a set of specifications designed by IETF (Internet Engineering Task Force) and an upgraded version of IPv4.

L3 interface ND proxy

The L3 interface ND agent is used to realize the interworking of different network segments connected through two interfaces. Usually, the device will not respond to the NS request of the network segment corresponding to the non packet receiving interface, so different network segments cannot communicate directly. When the nd proxy function is enabled for the L3 interface, if the device receives ns belonging to other interface network segments from the interface, it can also respond to NA. So that hosts belonging to different network segments can also establish neighbor entries and communicate normally. Its typical application scenario is the networking of large and small network segments.

6.2. IPv6 Basic Function Configuration

Table 6-1 IPv6 basic function configuration list

Configuration Tasks	
Configure the IPv6 address	Configure the interface IPv6 address
Configure IPv6 basic functions	Enable the IPv6 unicast forwarding function
	Enable the interface IPv6 function
	Configure the IPv6 packet hop limit
	Configure the IPv6 MTU of the interface
Configure the IPv6 neighbor discovery protocol	Configure the IPv6 static neighbor
	Configure the aging time of the IPv6 neighbor entry in the STALE state Configure the interval of re-transmitting the NS packet
	Configure the times of sending the NS packet when IPv6 repeats the address detection
	Configure the related parameters of the RA packet

www.qtech.ru

y		
	-	

Configuration Tasks	
Configure the IPv6 neighbor discovery protocol	Enable the function of the interface sending the re-direct packet
Configure the ICMPv6 function	Configure the rate of sending the ICMPv6 error packet
	Enable the function of sending the ICMPv6 packet with unreachable destination
Configure the IPv6 TCP anti-attack	Enable the TCP syncache function
function	Enable the TCP syncookies function
	Enable the function of accelerating the aging of the TCP connection
Enable the ND fast pick-up function	Enable the ND fast pick-up function
Configure the ND proxy function of the L3 interface	Enable the ND proxy function of the L3 interface

6.2.1. Configure Interface IPv6 Address

The most striking difference between IPv6 and IPv4 is that the length of the IP address increases from 32 bits to 128 bits. The IPv6 address is represented as a series of 16-bit hex numbers separated by colon (:). Each IPv6 address is divided into eight groups, each group of 16 bits represented by four hexadecimal digits, and the groups are separated by colons, such as 2000:0000:240F:0000:0000:0CB0:123A:15AB.

In order to simplify the representation of the IPv6 address, process the "0" in the IPV6 address as follows:

- The preamble "0" in each group can be omitted, that is, the above address can be represented as 2000:0:240F:0:0:CB0:123A:15AB.
- If the address contains two or more consecutive groups of zero, it can be replaced by a double colon "::" that is, the above address can be represented as 2000:0:240F:: CB0:123A:15AB.
- The double colon "::" can only be used once in an IPv6 address. Otherwise, the number of zeros represented by "::" cannot be determined when the device converts "::" to zero to recover 128-bit addresses.

The IPv6 address consists of two parts: address prefix and interface identifier. The address prefix is equivalent to the network number field in the IPv4 address and the interface identifier is equivalent to the host number field in the IPv4 address.

The IPv6 address prefix is expressed as: IPv6 address/prefix length. The IPv6 address is any of the forms listed above, and the prefix length is a decimal number that indicates how many bits in front of the IPv6 address is the address prefix.

There are three kinds of IPv6 addresses, that is, unicast address, multicast address, and anycast address:

- Unicast address: used to uniquely identify an interface, similar to IPv4 unicast address.
 The packets sent to one unicast address will be sent to the interface identified by this address.
- Multicast address: used to identify a set of interfaces, similar to IPv4 multicast address. The packets sent to one multicast address are sent to all the interfaces identified by this address.
- Anycast Address: used to identify a group of interfaces and the packet whose destination is an anycast address is sent only to one interface in the group. According to the routing protocol, the interface of receiving the packet is the closest interface from source.

The IPv6 address type is specified by the first few bits of the address, called the format prefix. The corresponding relationship between the main address type and the format prefix is shown in Table 1-2.

Address Type		Format Prefix (Binary)	Prefix ID
Unicast address	Un-specified address	000 (128 bits)	::/128
	Loopback address	001 (128 bits)	::1/128
	The local address of the link	111111010	FE80::/10
	Global unicast address	Other forms	-
Multicast ad	dress	11111111	FF00::/8

Table 6-2 The corresponding relationship between the IPv6 address type and the format prefix

Address Type	Format Prefix (Binary)	Prefix ID
Anycast address	Distributed from the unic format of the unicast add	ast address space, use the tress

IPv6 unicast addresses can be of various types, including global unicast addresses, link local addresses, and site local addresses.

- The global unicast address is equivalent to the IPv4 public network address, which is provided to the Internet service provider. This type of addresses allows the aggregation of routing prefixes, thus limiting the number of global routing entries.
- Link local addresses are used for the communication between the local nodes on the link in the neighborhood discovery protocol and stateless automatic configuration. The packet using the link local address as the source or destination address is not forwarded to other links.
- Loopback address: Unicast address 0:0:0:0:0:0:0:0:0:0:1 (simplified as: 1) is called a loopback address and cannot be assigned to any physical interface. Its function is the same as the loopback address in IPv4, that is, the node sends IPv6 packets to itself.
- Un-specified address: The address "::" is called an unspecified address and cannot be assigned to any node. Before a node obtains a valid IPv6 address, it can be entered in the source address field of the IPv6 packet sent, but not as the destination address of the IPv6 packet.

The special multicast addresses reserved by IPv6 are shown in table 1-3.

Address	Usage
FF01::1	The multicast address of all nodes in the local scope of the node
FF02::1	The multicast address of all nodes in the local scope of the link
FF01::2	The multicast address of all routers in the local scope of the node
FF02::2	The multicast address of all routers in the local scope of the link

Table 6-3 The special multicast address list of IPv6

Configuration Condition

None

....

Configure the IPv6 Address of the Interface

Table 6-4 Configure the IPv6 address of the interface

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the IPv6 address of the interface	ipv6 address { <i>linklocal-address</i> link-local <i>prefix-address</i> [anycast eui-64] autoconfig }	Mandatory By default, the interface is not configured with the IPv6 address.

Note:

- One interface can be configured with multiple IPv6 addresses.
- After one interface is configured with the IPv6 address, automatically enable the IPv6 function.

6.2.2. Configure IPv6 Basic Functions

Configuration Condition

None

Enable IPv6 Unicast Forwarding Function

By default, the IPv6 unicast forwarding function is enabled. In some special cases, the user can disable the IPv6 unicast forwarding function. After disabling the function, do not forward the IPv6 packet.

Table 6-5 Enable IPv6 unicast forwarding function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable IPv6 unicast forwarding function	ipv6 unicast-routing	Mandatory By default, the IPv6 unicast forwarding function is enabled.

Enable IPv6 Function of the Interface

Before performing the IPv6 configuration on one interface, first enable the IPv6 function. Otherwise, some configuration will not take effect.

Table 6-6 Enable the IPv6 function of the interface

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable the IPv6 function of the interface	ipv6 enable	Mandatory By default, the IPv6 function of the interface is disabled.

Configure the Hop Limit of the IPv6 Packet

The IPv6 header contains the Hop Limit field, whose function is the same as the TTL field in the IPv4 header, representing the times the packet can be forwarded by the router over the network.

With the command, you can configure the hop limit in the IPv6 packet header generated by the device.

....

Table 6-7 Configure the hop limit of the IPv6 packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the hop limit of the IPv6 packet	ipv6 hop-limit value	Mandatory By default, the hop limit of the IPv6 packet sent by the device is 64.

Configure the IPv6 MTU of the Interface

Table 6-8 Configure the IPv6 MTU of the interface

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the IPv6 MTU of the interface	ipv6 mtu <i>value</i>	Mandatory By default, do not configure the IPv6 MTU of the interface

6.2.3. Configure IPv6 Neighbor Discovery Protocol

IPv6 Neighbor Discovery protocol includes the following functions: address resolution, neighbor unreachable detection, duplicate address detection, router discovery / prefix discovery, address auto configuration and redirection.

The ICMPv6 packet type used by the ND protocol and its functions are shown in the following table.

www.qtech.ru

....

Table 6-9 The ICMPv6	packet type	used by the ND	protocol and	l its functions
----------------------	-------------	----------------	--------------	-----------------

ICMPv6 Packet Type	Type No.	Function
Router request packet (RS: Router Solicitation)	133	After a node starts, it sends a request to the router of configuration information, used for auto configuration
Router advertisement packet (RA: Router Advertisement)	134	Respond for the RS packet Without suppressing the sending of RA packets, the router periodically sends RA packets, including prefix information options and some flag bits.
Neighbor request packet (NS: Neighbor Solicitation)	135	Get the link-layer address of the neighbor Verify whether the neighbor is reachable Perform the repeated address detection
Neighbor advertisement packet (NA: Neighbor Advertisement)	136	Respond for the NS packet The node sends the NA packet automatically when the link layer changes, advertising the change information of the node to the neighbor node.
Re-direction packet (Redirect)	137	When meeting a certain condition, the default gateway sends a redirect packet to the source host, making the host re-select the correct next hop address for subsequent packet transmission.

Address resolution

Get the link-layer address of the neighbor node on one link, which is realized by the NS packet and NA packet

• Neighbor unreachable detection

After getting the link-layer address of the neighbor node, verify whether the neighbor node is reachable via the NS packet and NA packet.

- 1. The node sends the NS packet, whose the destination address is the IPv6 address of the neighbor node
- 2. If receiving the confirm packet of the neighbor node, it is regarded that the neighbor is reachable. Otherwise, it is regarded that the neighbor is not reachable.
- Duplicate address detection

After the node gets one IPv6 address, it is necessary to use the duplicate address detection function to confirm whether the address is used by other nodes.

• Router discovery/prefix discovery and address auto configuration

Router discovery/prefix discovery indicates the node gets the neighbor router and its network prefix from the received RA packet, as well as other configuration parameters.

Address stateless auto configuration indicates that the node automatically configures the IPv6 address according to the information obtained by router discovery / prefix discovery.

Router discovery/prefix discovery is achieved through RS packets and RA packets.

• Re-direction

When the host starts, there may be only one default route to the default gateway in its routing table. When meeting certain conditions, the default gateway sends ICMPv6 redirect packets to the source host, informing the host to choose a better next hop for sending the subsequent packets.

Configuration Condition

None

Configure IPv6 Static Neighbor

Resolving the IPv6 address of the neighbor node into the link layer address can be realized by the address resolution function of the IPv6 ND protocol, or by configuring the static neighbor manually.

The IPv6 neighbor is uniquely identified by the IPv6 address of the neighbor node and the L3 interface connected to the neighbor node.

Table 6-10 Configure the IPv6 static neighbor

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the IPv6 static neighbor	ipv6 neighbor <i>ipv6-</i> address interface-name mac-address	Mandatory By default, do not configure the IPv6 static neighbor.

Configure the Age Time of the IPv6 Neighbor Entry in the STALE State

IPv6 neighbor entries have five reachability states: INCOMPLETE, REACHABLE, STALE, DELAY and PROBE. The STALE state indicates not knowing whether the neighbor is reachable or not. The neighbor entry in STALE state has an aging time, and the neighbor entries in STALE state reaching the aging time will migrate to the DELAY state.

Table 6-11 Configure the age time of the IPv6 neighbor entry in the STALE state

Step	Command	Description
Enter the global configuration mode	configure terminal	-

....

Step	Command	Description
Configure the age time of the IPv6 neighbor entry in the STALE state	ipv6 neighbor stale- aging aging-time	Optional By default, the age time of the IPv6 neighbor entry in the STALE state is 7200s.

Configure the Re-transmission Interval of the NS Packet

When the device sends an NS packet, and if it does not receive a response within a specified time interval, it will resend the NS packet. The interval for re-sending NS packet can be configured by the following command.

Table 6-12 Configure the interval of re-sending the NS packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the re- transmission interval of the NS packet	ipv6 nd ns-interval value	Mandatory By default, the interval of sending the NS packet is 1000ms.

Configure the Times of the IPv6 Duplicate Address Detection Sending the NS Packet

After the interface is configured with the IPv6 address, the NS packet is sent for duplicate address detection. If no response is received within a certain period of time, the NS packet is continued to be sent. When the number of NS packets sent reaches the set value, no response is received, the address is considered available.

....

Table 6-13 Configure the times of the IPv6 duplicate address detection sending the NS packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the times of the IPv6 duplicate address detection sending the NS packet	ipv6 nd dad attempts value	Mandatory By default, the times of the IPv6 duplicate address detection sending the NS packet is 1.

Configure the Related Parameters of the RA Packet

Users can configure whether the interface sends the RA packet and the interval of sending the RA packet according to the actual situation, and can configure the parameters of the RA packet to inform the host. When the host receives the RA message, it can use these parameters to do the corresponding operation.

Table 6-14 The parameters and descriptions in the RA packet

Parameter	Description
Hop Limit	When sending the IPv6 packet, the host will fill the Hop Limit field in the IPv6 header using this parameter value. At the same time, the parameter value is also used as the Hop Limit field value in the device reply packet.
MTU	The MTU of the released link, which can be used to ensure that all nodes on one link adopt the same MTU value
Router Lifetime	Used to set the time of the router that sends the RA packet serving as the default router of the host. The host can determine whether to take the router sending the RA packet as the default router based on the router lifetime parameter value of the received RA packet.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

Parameter	Description
The time of the neighbor keeping the reachable state (Reachable Time)	When the neighbor reachability detection confirms that the neighbor is reachable, the device assumes that the neighbor is reachable within the set reachable time; if a packet needs to be sent to the neighbor after the set time, reconfirm that the neighbor is reachable.

Table 6-15	Configure	the related	parameters	of the RA	A packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the prefix option information in the RA packet	ipv6 nd prefix { <i>ipv6-prefix</i> default } [<i>valid-lifetime</i> infinite no-advertise no-autoconfig off-link] [<i>prefered-lifetime</i> infinite]	Mandatory By default, do not configure the prefix option information.
Configure the value of the Hop Limit field in the RA packet sent by the interface to be got from the global configuration	ipv6 nd ra hop-limit	Optional By default, do not configure the value of the Hop Limit field in the RA packet sent by the interface to be got from the global configuration, and the value of the Hop Limit field is 0.
Configure the maximum interval and minimum interval of sending the RA packet	ipv6 nd ra interval <i>max-value</i> [<i>min-value</i>]	Optional By default, the maximum interval of sending the RA packet is 600s, and the minimum interval is 198s.

www.qtech.ru

....

Step	Command	Description
Configure the RA packet to carry the MTU option	ipv6 nd ra mtu	Optional By default, the RA packet does not carry the MTU option.
Configure the lifetime of the router in the RA packet	ipv6 nd ra-lifetime <i>value</i>	Optional By default, the lifetime of the router in the RA packet is 1800s.
Prohibit the interface from sending the RA packet periodically	ipv6 nd suppress-ra period	Optional By default, the interface does not send the RA packet periodically.
Prohibit the interface from replying the RS packet	ipv6 nd suppress-ra response	Optional By default, the interface does not reply the RA packet when receiving the RS packet.

Enable the Interface to Send the Re-direct Packet

After receiving the IPv6 packet that needs to be forwarded, the device finds that the receiving interface of the packet is the same as the sending interface by selecting the route. At this time, the device forwards the packet and sends back the redirect packet to the source, informing the source to re-select the correct next hop for sending the subsequent packets. By default, a device can send a redirect packet, but in some specific cases, the user can prevent the device from sending a redirect packet.

Table 6-16 Enable the function of the interface sending the re-direct packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-

www.qtech.ru

....

Step	Command	Description
Enable the function of the interface sending the re- direction packet	ipv6 redirects	Optional By default, the function of the interface sending the re-direction packet is enabled.

6.2.4. Configure ICMPv6 Function

In IPv6 protocol stack, Internet Control Message Protocol is mainly used to provide network detection services, and provide error reports to inform the corresponding devices when the network layer or transport layer protocol is abnormal, so as to control and manage the network.

Configuration Condition

None

Configure the Rate of Sending the ICMPv6 Error Packet

If there are too many ICMPv6 error packets sent in the network, it may lead to network congestion. To avoid this, users can configure the maximum number of ICMPv6 error packets sent within a specified time.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the rate of sending the ICMPv6 error packets	ipv6 icmp error-interval interval [buckets]	Optional By default, the period of sending the ICMPv6 error packets is 100ms, and the maximum number of the ICMPv6 error packets sent in the period is 10.

Table 6-17 Configure the rate of sending the ICMPv6 error packets

Enable the Function of Sending the ICMPv6 Packet with Unreachable Destination

The function of sending the ICMPv6 packet with the unreachable destination indicates that after receiving one IPv6 packet and if its destination is reachable, the device discards the packet and sends the ICMPv6 unreachable error packet to the source.

The device will send ICMPv6 unreachable error packet when meeting the following conditions:

 When forwarding packets, and if failed to find the route, the device sends the ICMPv6 error packet "No route to the destination address" to the source.

....

- When a device forwards a packet, and if it is unable to send it due to a management policy (such as firewall, ACL), it sends an ICMPv6 error packet "the communication with destination address is prohibited by management policy" to the source.
- If the destination IPv6 address of the packet exceeds the range of the source IPv6 address (for example, the source IPv6 address of the packet is the link local address, and the destination IPv6 address of the packet is the global unicast address) when forwarding a packet, and as a result, the packet cannot reach the destination, the device will send the ICMPv6 error packet "out of the source address range" to the source.
- If the device fails to resolve the link layer address of the destination IPv6 address when forwarding the packet, it sends the "address unreachable" ICMPv6 error packet to the source.
- When a device receives an IPv6 packet whose destination address is the local and transport layer protocol is UDP, and if the destination port number of the packet does not match the process in use, it sends a "port unreachable" ICMPv6 error packet to the source.

Because the information transmitted to the user process by ICMPv6 destination unreachable error packet is unreachable, if there is a malicious attack, it may affect the normal use of the terminal users. To avoid these phenomena, the user can disable the function of sending the ICMPv6 destination unreachable error packet.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable the function of sending the ICMPv6 packet with the unreachable destination	ipv6 unreachables	Optional By default, the function of sending the ICMPv6 packet with the unreachable destination is enabled.

Table 6-18 Enable the function of sending the ICMPv6 packet with the unreachable destination

6.2.5. Configure the IPv6 TCP Anti-Attack Function

If the IPv6 TCP server receives a large number of SYN packets, but the peer does not reply the SYN+ACK response to the server, this will lead to a large amount of memory consumption on the server, occupying the semi-connected queue of the server, and as a result, the IPv6 TCP server cannot serve the normal request. This attack can be avoided by configuring the IPv6 TCP anti-attack function.

....

Configuration Condition

None

Enable IPv6 TCP syncache Function

Instead of rushing to allocate TCB when receiving SYN packets, the function first replies a SYN + ACK packet and stores this semi-open connection information in a dedicated cache until the correct ACK packet is received, and then reallocates the TCB.

Table 6-19 Enable IPv6 TCP syncache function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the IPv6 TCP syncache function	ipv6 tcp syncache	Mandatory By default, the IPv6 TCP syncache function is disabled.

Enable IPv6 TCP syncookies Function

This function does not use any storage resources at all. It uses a special algorithm to generate Sequence Number. This algorithm takes into account the IPv6 address and port of the peer party, the IPv6 address and port fixed information of one's own party, and some fixed information of one's own party that the peer party cannot know, such as MSS and time. After receiving the ACK packet of the peer party, recalculate it to see whether it is the same as the Sequence Number-1 in the response packet of the peer party, so as to decide whether to allocate TCB resources.

....

Table 6-20 Enable the IPv6 TCP syncookies function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the IPv6 TCP syncookies function	ipv6 tcp syncookies	Mandatory By default, the IPv6 TCP syncookies function is disabled.

Enable the Function of Accelerating IPv6 TCP Connection Aging

This function checks the number of IPv6 TCP connections to the current system and compares it with the expected connection threshold; if the number of current accessed IPv6 TCP connections reaches two-thirds of the expected connection threshold, check and accelerate the aging of IPv6 TCP connections to avoid the existence of dead connections and recover resources as soon as possible.

Table 6-21 Enable the function of accelerating the IPv6 TCP connection aging

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the function of accelerating the IPv6 TCP connection aging	ipv6 tcp naptha threshold num	Mandatory By default, the function is not enabled.

6.2.6. Configure TCP Max. Segment Size

This function sets the maximum segment size of the TCP packet on the interface. When the connection is established through TCP, the mss value is encapsulated into the header to set the maximum segment size of the packet sent by the connection to the mss value.

Configuration Condition

None

Configure TCP Packet MSS

The command is used to control the size of the packet transmitted by connection as mss.

Table 6-22 Configure TCP connection mss

www.qtech.ru

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the <i>mss</i> value	ipv6 tcp adjust-mss mss-value	Mandatpry By default, it is not configured.

6.2.7. Enable ND Quick Pick-up Function

Configuration Condition

None

Enable ND Quick Pick-up Function

Table 6-23 Enable the ND quick pick-up function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the ND quick pick-up function	nd fast-response	Mnadatory By default, the global ND quick pick- up function is enabled.

6.2.8. Configure L3 Interface ND Proxy

Configuration Condition

None

Configure L3 Interface ND Proxy

 $\bullet \bullet \bullet \bullet$

....

Table 0-24 Configure the LS ND proxy function	Table 6-24	Configure	the L3	ND	proxy	/ function
---	------------	-----------	--------	----	-------	------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the L3 interface configuration mode	interface interface-name	Mandatory After entering the L3 interface configuration mode, subsequent configuration takes effect only on the current interface.
Configure the L3 interface ND proxy function	nd proxy enable	Mandatory By default, the interface does not enable the proxy function.

6.2.9. IPv6 Basic Monitoring and Maintaining

Table 6-25 IPv6 basic monitoring and maintaining

Command	Description
clear ipv6 icmp6stat	Clear the ICMPv6 statics information
clear ipv6 interface statistics	Clear the IPv6 packet statistics information of the interface
clear ipv6 mtu	Clear the MTU information of the IPv6 path
clear ipv6 neighbors	Clear the IPv6 dynamic neighbor entry
clear ipv6 statistics	Clear the IPv6 basic statistics information
clear ipv6 tcp syncache statistics	Clear the syncache statistics information of the IPv6 TCP protocol

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Command	Description
clear ipv6 tcp6stat	Clear the IPv6 TCP statistics information
clear ipv6 udp6stat	Clear the IPv6 UDP statistics information
clear nd fast-response statistics	Clear the ND quick pick-up statistics
show ipv6 hop-limit	Show the IPv6 global Hop Limit value
show ipv6 frag-queue	Show the cached IPv6 fragment packet
show ipv6 icmp6state	Show the ICMPv6 statistics information
show ipv6 interface	Show the IPv6 information of the interface
show ipv6 interface statistics	Show the IPv6 statistics information of the interface
show ipv6 max-mtu	Show the IPv6 MTU maximum value supported by the system
show ipv6 mtu	Show the MTU information of the IPv6 path
show ipv6 neighbors	Show the IPv6 neighbor information
show ipv6 prefix	Show the IPv6 address prefix information
show ipv6 sockets	Show the IPv6 socket information
show ipv6 statistics	Show the IPv6 basic statistics information
show ipv6 tcp syncache detail	Show the syncache entry information of the IPv6 TCP protocol
show ipv6 tcp syncache statistics	Show the syncache statistics information of the IPv6 TCP protocol

Command	Description
show ipv6 tcp6state	Show the IPv6 TCP statistics information
show ipv6 udp6state	Show the IPv6 UDP statistics information

6.3. IPv6 Basic Configuration Example

6.3.1. Configure the IPv6 Address of the Interface

Network Requirements

• Two devices are connected via the Ethernet port, configure the IPv6 global unicast address for the interface, and verify the connectivity between them.

Network Topology

Figure 6-1 Networking for configuring the Ipv6 address of the interface

Configuration Steps

Step 1: Configure the global unicast address of the interface.

#Configure the global unicast address of Device1 interface gigabitethernet1 as 2001:1::1/64.

Device1(config)#interface gigabitethernet1

Device1(config-if-gigabitethernet1)#ipv6 address 2001:1::1/64

Device1(config-if-gigabitethernet1)#exit

#Configure the global unicast address of Device2 interface gigabitethernet1 as 2001:1::2/64.

Device2(config)# interface gigabitethernet1

Device2(config-if-gigabitethernet1)#ipv6 address 2001:1::2/64

Device2(config-if-gigabitethernet1)#exit

Step 2: Check the result.

#View the Device1 interface information.

Device1#show ipv6 interface gigabitethernet1 gigabitethernet1 is up VRF: global IPv6 is enable, link-local address is fe80::0201:7aff:fe46:a64d Global unicast address(es): 2001:0001::0001, subnet is 2001:0001::/64 Joined group address(es):

www.qtech.ru

ff02::0001:ff00:0001 ff02::0002 ff02::0001 ff02::0001 ff02::0001:ff46:a64d ND control flags: 0x1 MTU is 1500 bytes ICMP redirects are enabled ICMP unreachables are enabled ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds ND advertised reachable time is 0 (unspecified) ND advertised retransmit interval is 0 (unspecified)

After configuring the IPv6 address, enable the IPv6 protocol function on the interface automatically, generate the local address of the link automatically, and add into the corresponding multicast group.

#View the interface information of Device2.

Device2#show ipv6 interface gigabitethernet1 gigabitethernet1 is up VRF: global IPv6 is enable, link-local address is fe80::0201:7aff:fe22:e222 Global unicast address(es): 2001:0001::0002, subnet is 2001:0001::/64 Joined group address(es): ff02::0001:ff00:0002 ff02::0001:ff00:0 ff02::0002 ff02::0001 ff02::0001:ff22:e222 ND control flags: 0x1 MTU is 1500 bytes ICMP redirects are enabled ICMP unreachables are enabled ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds ND advertised reachable time is 0 (unspecified) ND advertised retransmit interval is 0 (unspecified)

#Ping the link local address of Device2 fe80::0201:7aff:fe22:e222 on Device1.

Device1#ping fe80::0201:7aff:fe22:e222

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to fe80::201:7aff:fe22:e222 , timeout is 2 seconds:

Output Interface: gigabitethernet1 !!!!! Success rate is 100% (5/5). Round-trip min/avg/max = 0/96/483 ms.

Note:

• When pinging the link local address, it is necessary to specify the egress interface, which is the interface on the same link of the ping link local address.

#On Device1, ping the global unicast address of Device2 2001:1::2.

Device1#ping 2001:1::2

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 2001:1::2 , timeout is 2 seconds: !!!!! Success rate is 100% (5/5). Round-trip min/avg/max = 0/36/183 ms.

Device1 and Device2 can ping each other.

6.3.2. Configure IPv6 Neighbor Discovery

Network Requirements

- Device and PC belong to one LAN.
- Configure the interface of Device gigabitethernet1 with the EUI-64 address.
- PC gets the IPv6 address prefix via the IPv6 neighbor discovery protocol, configure the IPv6 address according to the got address automatically. Realize the communication of the IPv6 protocol between PC and Device.

Network Topology

Figure 6-2 Networking for configuring IPv6 neighbor discovery

Configuration Steps

Step 1: Configure the EUI-64 unicast address, and enable the RA advertising function.

#Configure Device gigabitethernet1 with the EUI-64 address, and enable the RA advertising function of gigabitethernet1.

Device(config)#interface gigabitethernet1 Device(config-if-gigabitethernet1)#ipv6 address 2001:1::/64 eui-64 Device(config-if-gigabitethernet1)#no ipv6 nd suppress-ra period Device(config-if-gigabitethernet1)#no ipv6 nd suppress-ra response Device(config-if-gigabitethernet1)#exit

Note:

• By default, the RA advertising function is disabled.

#View the interface information of Device.

Device#show ipv6 interface gigabitethernet1 gigabitethernet1 is up VRF: global IPv6 is enable, link-local address is fe80::0201:7aff:fe5d:e7d3 Global unicast address(es): 2001:0001::0201:7aff:fe5d:e7d3, subnet is 2001:0001::/64 [EUI] Joined group address(es): ff02::0001:ff00:0 ff02::0002 ff02::0001 ff02::0001:ff5d:e7d3 ND control flags: 0x85 MTU is 1500 bytes ICMP redirects are enabled ICMP unreachables are enabled ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds ND advertised reachable time is 0 (unspecified) ND advertised retransmit interval is 0 (unspecified) ND config flags is 0x0 ND MaxRtrAdvInterval is 600 ND MinRtrAdvInterval is 198 ND AdvDefaultLifetime is 1800"

Step 2: Configure PC.

#On the PC, install the Ipv6 protocol. The Ipv6 configuration depends on the operation system. This text takes Windows XP as an example to describe.

C:\>ipv6 install Installing...

www.qtech.ru

Succeeded.

Step 3: Check the result.

#View the PC interface information.

C:\>ipconfig

.....(some displayed information is omitted)

Ethernet adapter 130:

Connection-specific DNS Suffix .: IP Address. : 130.255.128.100 Subnet Mask : 255.255.0.0 IP Address. : 2001:1::15b3:d4:f13d:c3da IP Address. . . . : 2001:1::3a83:45ff:feef:c724 IP Address. . . . : fe80::3a83:45ff:feef:c724%6 Default Gateway . . . : fe80::201:7aff:fe5e:cfc1%6

You can see that the PC gets the Ipv6 address prefix 2001:1::/64, and generates the global unicast address according to the prefix automatically.

Note:

• After the Windows XP host gets the address prefix, it generates two global unicast addresses. The interface ID of one address is generated according to the MAC address of the interface, and the interface ID of the other address is generated randomly.

#On Device, ping the link local address of the PC fe80::3a83:45ff:feef:c724.

Device#ping fe80::3a83:45ff:feef:c724

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to fe80::3a83:45ff:feef:c724 , timeout is 2 seconds:

Output Interface: gigabitethernet1

Success rate is 100% (5/5). Round-trip min/avg/max = 0/29/149 ms.

#On Device, ping the auto generated global unicast address 2001:1::15b3:d4:f13d:c3da and 2001:1::3a83:45ff:feef:c724 on the PC.

Device#ping 2001:1::15b3:d4:f13d:c3da

Press key (ctrl + shift + 6) interrupt it.

Sending 5, 76-byte ICMP Echos to 2001:1::15b3:d4:f13d:c3da , timeout is 2 seconds:

!!!!!

www.qtech.ru

```
Success rate is 100% (5/5). Round-trip min/avg/max = 0/36/183 ms.
```

Device#ping 2001:1::3a83:45ff:feef:c724

Press key (ctrl + shift + 6) interrupt it.

Sending 5, 76-byte ICMP Echos to 2001:1::3a83:45ff:feef:c724 , timeout is 2 seconds:

!!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 0/26/133 ms.

PC and Device can ping each other.

Note:

• When pinging the link local address, it is necessary to specify the egress interface, which is the interface on the same link of the ping link local address.

6.3.3. Configure L3 ND Proxy

Network Requirements

- Device is directly connected with PC1 and PC2 respectively. The network prefix of PC1 and PC2 is the same, which is 2001:1:1:: / 48.
- The MAC address of Device interface gigabitethernet0 is 0001.7a6a.01f0
- Through the device's L3 ND agent, PC1 can ping PC2.

Network Topology

Figure 6-3 Networking of configuring L3 ND proxy

Configuration Steps

- Step 1: Configure the IP address of the interface (omitted).
- Step 2: Configure the L3 ND proxy.

#On the L3 interface gigabitethernet0 of Device, enable L3 ND proxy.

Device(config)#interface gigabitethernet0

Device(config-if-gigabitethernet0)#nd proxy enable

Device(config-if-gigabitethernet0)#exit

#On the L3 interface gigabitethernet1 of Device, enable L3 ND proxy.

Device(config)#interface gigabitethernet1

Device(config-if-gigabitethernet1)#nd proxy enable

						www.qtecn.ru	
	Device(config-if-gig	abitether	net1)#exit				
Step 3:	Check the result.						
# PC1 pin	ng PC2 address 2001:1:1:2	::1.					
	C:\Documents and S	ettings>µ	oing 2001:1:1:2::1				
	Pinging 2001:1:1:2::1 w	vith 32 by	/tes of data:				
	Reply from 2001:1:1:2	::1: bytes	=32 time=9971ms	TTL=25	55		
	Reply from 2001:1:1:2	::1: bytes	=32 time<1ms TTL	=255			
	Reply from 2001:1:1:2	::1: bytes	=32 time<1ms TTL	=255			
	Reply from 2001:1:1:2	::1: bytes	=32 time<1ms TTL	=255			
	Ping statistics for 20	001:1:1:2::1					
	Packets: Sent = 4,	Receive	d = 4, Lost = 0 (0%	% loss),	,		
	Approximate round	trip time	s in milli-second	s:			
	Minimum = Oms, N	laximum	n = 997ms, Averag	ge = 249	9ms		
#View the	e neighbor table entry of De	evice.					
	Device#show ipv6 n	eighbors					
	IPv6 Address		Age Link-laye	r Addr	flags S	tate Interface	
	2001:1:1:1:1	0	00e0.4c6b.f753	405	STALE g	jigabitethernet0)
	2001:1:1:2::1	1	0857.00da.4715	405	STALE g	gigabitethernet	
#View the	e neighbor table entry of PC	21.					
	C:\Documents and S	Settings≻r	netsh interface ip	v6 sho	w neighbor	S	
	Internet Address		Listernet Address				

2001:1:1:1:2	00-01-7a-6a-01-f0 Stale (Router)
2001:1:1:2::1	00-01-7a-6a-01-f0 Stale (Router)
an ping PC2, and PC1 learned t	he neighbor table entry of PC2. The MAC address

#PC1 can ping PC2, and PC1 learned the neighbor table entry of PC2. The MAC address in the neighbor table entries is the MAC address of gigabitethernet0 0001.7a6a.01f0.

Note:

• By default, the device does not enable the L3 ND proxy.

7. VFR

7.1. Overview

IP fragmentation packets may be out-of-order in transmission. Because the out-of-order packets do not have the transmission layer information, these packets cannot be correctly handled by some service modules, such as ACL. To tackle this problem, the VRF (Virtual Fragmentation Reassembly) caches the fragmented packets, analyze the packets, extract the transmission layer information, and provide the information to ACL. The VRF supports anti-tiny fragment attack. If the IP payload length of the first fragment of the arrived packet is less than the length of the transmission layer protocol header, the tiny fragment attack is suffered. The anti-attack function can reduce the system resource consumption.

7.2. VFR Function Configuration

Table 7-1 IP VFR function list

Configuration Task			
Enable the IP VFR	Enable the IP VFR		
Configure the IP VFR parameter	Configure the aging time for the IP VFR		
	Configure the automatic updating for the IP VFR		
	Configure the max. cache packets		
	Configure the max. packets cached by each fragment record		
Configure the anti-tiny fragment attack	Configure the anti-tiny fragment attack		

7.2.1. Enable IP VFR

Configuration Condition

None

Enable IP VFR

Enable the IP VFR on the inbound interface. When the IP fragmented packet is received, the VFR attempts to analyze the packet fragmentation. If the first fragmentation of the fragmented packet is saved in the fragmentation records. If other fragmentation of the fragmented packet arrives at first (the fragmented packet is out-of-order), the transmission layer information cannot be obtained. The VFR attempts to cache the fragmentation, obtains the transmission layer information when the first fragment of the packet arrives, and then sends out the packet. When the first fragment of the packet does not arrive in a long time, sends out all the cached packets.

www.gtech.ru

Table 7-2 Enable the IP VFR

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable the IP VFR	ip virtual-reassembly	Mandatory By default, the IP VFR is not enabled.

Note:

When the fragmented packet arrives out of order, the VFR may increase the forwarding delay of the fragmentation, reducing the fragmentation forwarding performance.

7.2.2. Configure IP VFR Parameter

The IP VFR parameter can configure the aging time and automatic updating.

Configuration Condition

Before configuring the IP VFR parameter, first complete the following task:

Enable the IP VFR.

Configure Aging Time for IP VFR

When the device receives the IP fragmented packet, the fragmentation record is created. When the aging time times out, the fragmentation record is deleted.

Table 7-3 Configure the aging time for the IP VFR

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the aging time for the IP VFR	ip virtual-reassembly timeout seconds	Mandatory By default, the aging time is 1s.

Configure Auto Updating for IP VFR

If the IP VFR automatic updating is configured, the aging time of the subsequent received fragmented packet will be updated automatically in the aging process.

Table 7-4 Configure the automatic updating for the aging time of the fragmented records

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the automatic updating for the IP VFR	ip virtual-reassembly auto-update	Mandatory By default, the automatic updating for the IP VFR is not configured.

Configure Max. Packets Cached by IP VFR

After configuring the maximum number of packets cached in IP VFR, if the cached packets exceed the configured maximum in processing fragment packets, the packets will not be cached.

Table 7-5 Configure the maximum cached packets

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the maximum number of packets cached in IP VFR	ip virtual-reassembly hold global global	Mandatory By default, the maximum number of the cached packets is 128.

Configure Max. Packets Cached by IP VFR Fragmentation Record

After configuring the maximum number of the packets cached by the fragmentation records of the IP VFR, if the cached packets in one fragment record exceed the configured maximum in processing fragment packets, the fragment records will not cache the packet.

www.qtech.ru

....

Table 7-6 Configure the	maximum number	of the packets	cached by fragment	records
			, ,	

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the maximum number of the packets recorded by IP VFR fragmentation records	ip virtual-reassembly hold single single	Mandatory By default, the maximum number of the packets cached by fragment records is 6.

7.2.3. Configure Anti-tiny Fragment Attack

Configuration Condition

Before configuring the anti-tiny fragment attack function, first complete the following task:

• Enable the IP VFR.

Configure Anti-tiny Fragment Attack

If the IP payload length of the first fragment of the arrived packet is less than the length of the transmission layer protocol header, the tiny fragment attack is suffered. When a large number of such fragmented packets are received, abundant fragmentation records need to be created, resulting in excessive system resource consumption. If the anti-tiny fragment attack is configured, the fragmentation record for this tiny fragment will not be created, thus reducing the system resource consumption.

Table 7-7	Configure	the a	nti-tiny	fragment	attack

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the anti-tiny fragment attack	ip virtual-reassembly arbitrary	Mandatory By default, the anti-tiny fragment attack is not configured.

IPV6 VFR

8. IPV6 VFR

8.1. Overview

IPv6 fragmentation packets may be out-of-order in transmission. Because the out-of-order packets do not have the transmission layer information, these packets cannot be correctly handled by some service modules, such as ACL. To tackle this problem, the IPv6 VRF (ipv6 virtual-reassembly, IPv6 VFR) caches the fragmented packets, analyze the packets, extract the transmission layer information, and provide the information to the ACL and other service modules. IPv6 VRF supports anti-tiny fragment attack function. If the IPv6 payload length of the first packet received is less than the header length of the transport layer protocol, it is considered that it has been attacked by tiny fragment, and the anti-attack function can reduce the consumption of system resources.

8.2. IPv6 VFR Function Configuration

Configuration Task			
Enable the IPv6 VFR	Enable the IPv6 VFR		
Configure the IPv6 VFR parameter	Configure the aging time for the IPv6 VFR		
	Configure the IPv6 VRF auto updating		
	Configure the maximum number of the cached packets		
	Configure the maximum packets cached by each fragmentation record		
Configure the anti-Tiny Fragment attack	Configure the anti-Tiny Fragment attack		

Table 8-1 IPv6 VFR function list

8.2.1. Enable IPv6 VFR

Configuration Condition

None

Enable IPv6 VFR

Enable the IPv6 VFR on the inbound interface. When the IPv6 fragmented packet is received, the VFR attempts to analyze the packet fragmentation. If the first fragmentation of the fragmented packet arrives at first, the transmission layer information of the fragmented packet is saved in the fragmentation records. If other fragmentation of the fragmented packet arrives at first (the fragmented packet is out-of-order), the transmission layer information cannot be obtained. The VFR attempts to cache the fragmentation, obtains the transmission layer

IPV6 VFR

www.qtech.ru

....

information when the first fragment of the packet arrives, and then sends out the packet. When the first fragment of the packet does not arrive in a long time, sends out all the cached packets.

Table 8-2 Enable the IPv6 VFR

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable the IPv6 VFR	lpv6 virtual-reassembly	Mandatory By default, the IPv6 VFR is not enabled.

Note:

When the fragmented packet arrives out of order, the IPv6 VFR may increase the forwarding delay of the fragmentation, reducing the fragmentation forwarding performance.

8.2.2. Configure IPv6 VFR Parameter

The IPv6 VFR parameter can configure the aging time and automatic updating and auto updating.

Configuration Condition

Before configuring the IPv6 VFR parameter, first complete the following task:

• Enable the IPv6 VFR.

Configure Aging Time for IPv6 VFR

When the device receives the IPv6 fragmented packet, the fragmentation record is created. When the aging time times out, the fragmentation record is deleted.

Table 8-3 Configure the aging time for the IPv6 VFR

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the aging time for the IPv6 VFR	Ipv6 virtual-reassembly timeout seconds	Mandatory By default, the aging time is 1s.

Configure Auto Updating of IPv6 VFR

If the IPv6 VFR auto updating is configured, the aging time of the subsequent received fragmented packet will be updated automatically in the aging process.

....

Table 8-4 Configure the auto updating for the aging time of the fragmentation records

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure IPv6 VFR auto updating	ipv6 virtual-reassembly auto-update	Mandatory By default, do not configure the IPv6 VFR auto updating.

Configure Max. Packets Cached by IPv6 VFR

After configuring the maximum number of packets cached in IPv6 VFR, if the cached packets exceed the configured maximum in processing fragment packets, the packets will not be cached.

Table 8-5 Configure the maximum cached packets

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the maximum number of the packets cached by IPv6 VFR	ipv6 virtual-reassembly hold global global	Mandatory By default, the maximum number of the cached packets is 128.

Configure Max. Packets Cached by IPv6 VFR Fragmentation Record

After configuring the maximum number of the packets cached by the fragmentation records of the IPv6 VFR, if the cached packets in one fragment record exceed the configured maximum in processing fragment packets, the fragment records will not cache the packet.

IPV6 VFR

....

Table 8-6 Configure the maximum number of the packets cached by fragment records

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the maximum number of the packets cached by the fragmentation records of the IPv6 VFR	ipv6 virtual-reassembly hold single single	Mandatory By default, the maximum number of the packets cached by the fragmentation records is 6.

8.2.3. Configure Anti-tiny Fragment Attack

Configuration Condition

Before configuring the anti-tiny fragment attack function, first complete the following task:

• Enable the IPv6 VFR.

Configure Anti Tiny Fragment Attack

If the IPv6 payload length of the first received fragment packet is less than the length of the transmission layer protocol header, the tiny fragment attack is suffered. When a large number of such fragmented packets are received, abundant fragmentation records need to be created, resulting in excessive system resource consumption. If the anti-tiny fragment attack is configured, the fragmentation record for this tiny fragment will not be created, thus reducing the system resource consumption.

Table 8-7 Configure the anti-tiny fragment attack

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the anti-tiny fragment attack	ipv6 virtual-reassembly arbitrary	Mandatory By default, do not configure the anti-tiny fragment attack.

GRE

9. GRE

9.1. Overview

Generic Routing Encapsulation (GRE) is a generic tunnel encapsulation protocol which defined how to use a network protocol to encapsulate another network protocol.

GRE tunnel is one tunnel technology among a lot of tunnel technologies. The starting point and end point of a tunnel need to be manually configured. The tunnel is a virtual end-to-end connection. It provides a transmission channel for the encapsulated packets. The two ends of the tunnel encapsulates and de-capsulates data packets respectively.

• GRE encapsulation:

If a data packet needs to be transmitted through a GRE tunnel, the tunnel adds a GRE header to the packet header, and adds an IP header to the GRE header. Set the protocol number of the IP header to 47 (GRE protocol number in the IP header), set the source address of the IP header to the source address of the tunnel, and set the destination address of the IP header to the destination address of the tunnel.

• GRE packet structure

Payload packet: The network layer packet (such as IP packet) before it enters the tunnel is taken as the valid payload of the tunnel packet. The protocol of the packet is called the passenger protocol of the GRE tunnel.

GRE header: It refers to the GRE header that is added to the payload packet after the payload packet enters the tunnel. The GRE header contains the GRE protocol and some information related to the passenger protocol.

Delivery header: The encapsulated external protocol header (such as IP header) is the header of the protocol for the network in which the tunnel is located. It is a transmission tool which helps one protocol packet to traverse the network of another protocol.

• GRE packet forwarding

After a packet is encapsulated at the starting point of a GRE tunnel, it selects a route according to the destination after encapsulation, and then it is sent out through the corresponding network interface. Intermediate devices take the packet as a common packet until the packet reaches the end of the tunnel.

• GRE decapsulation:

Decapsulation is the reverse process of encapsulation. After the end point of the tunnel receives the packet, it analyzes Delivery header. If the end point of the tunnel finds that the destination is its own address, it checks the protocol field of the IP header. If the protocol field is 47 (GRE protocol number), the end point of the tunnel hands over the packet to the GRE tunnel for processing. The tunnel first removes Delivery header and then checks the protocol number, checksum, and keyword in the GRE header. After required processing, the tunnel removes the GRE header, and hands over the Payload packet to the passenger protocol for later processing. Then, the decapsulation is completed.

www.qtech.ru

9.2. GRE Function Configuration

Table 10-1 GRE function list

Configuration Tasks	
Configure a GRE tunnel.	Configure a GRE tunnel.

9.2.1. Configure a GRE Tunnel

Configuration Condition

Before configuring a GRE tunnel, ensure that:

- Interface IP addresses have been configured so that neighbor nodes are reachable at the network layer.
- Tunnel interfaces have been created and the basic parameters have been configured. (Refer to tunnel interface configuration manual.)
- A unicast protocol has been configured so that the routes at the two ends of the tunnel are reachable.

Configure a GRE Tunnel

Table 10-2 Configuring a GRE tunnel

Step		Command	Description
Enter the global configuration mode.		configure terminal	-
Enter the tunnel interface configuration mode.		interface tunnel tunnel- number	-
Configure the tunnel interface address.	Configure IPv4 unicast address	ip address <i>ip-address</i> { <i>mask</i> <i>mask-length</i> }	Mandatory. By default, no address is configured for the tunnel interface.
	Configure the IPv6 global unicast address or anycast address or local address of the site or auto get address	ipv6 address { <i>ipv6-address/prefix-length</i> [anycast eui-64] autoconfig }	

GRE

	-
ANALAN C	tech ru
WW WW WW. Q	lech.iu

Step		Command	Description
Configure the tunnel interface address.	Configure the local address of the IPv6 link	ipv6 address <i>IPv6-address</i> link-local	Optional By default, after the interface enables IPv6, generate the local address of the link automatically.
Configure the tunne GRE	l interface mode to	tunnel mode gre [ip ipv6]	Optional. By default, the tunnel interface mode is GRE over IPv4.
Configure the source interface name on th	e address or ne tunnel interface.	tunnel source { <i>ip-</i> <i>address</i> <i>ipv6-address</i> <i>interface-name</i> }	Mandatory. By default, the source address and interface name are not configured on the tunnel interface.
Configure the destination address or host name on the tunnel interface.		tunnel destination { <i>ip-address</i> }	Mandatory. By default, the destination address is not configured on the tunnel interface.
Configure the verification function on the tunnel interface		tunnel checksum	Optional By default, the verification function on the tunnel interface is not configured. The verification function cannot be configured at the both ends of the tunnel.

GRE

www.qtech.ru

Step	Command	Description
Configure the keywords on the tunnel interface	tunnel key key-number	Optional By default, the keyword on the tunnel interface is not configured. The keywords on the both ends of the tunnel must be consistent. Otherwise, the tunnel transmission will fail.
Configure the keep-alive action on the tunnel interface	keepalive [period [retries]]	Optional By default, the keep-alive function on the tunnel interface is not configured.

Note:

- On the two end of a tunnel, the source addresses and destination addresses must be configured. The source address of one end is the destination end of the other end.
- In configuring the source of a tunnel, if the interface mode is adopted, the primary address of the source interface is used as the source address of the tunnel.
- The two ends of a tunnel must be configured with the same tunnel mode; otherwise, transmission through the tunnel fails.
- The keep-alive function only takes effect on the GRE over IPv4 tunnel. When the keepalive function is configured, the tunnel will send the keep-alive packet periodically. If consecutive N keep-alive packets (N indicates the configured retries value) are not responded, the peer end is considered as not working normally. Then, disable the local tunnel interface. The tunnel will also send the keep-alive packet periodically when the tunnel is disabled. The keep-alive function is not required to be configured at the both ends of the tunnel.

9.2.2. GRE Monitoring and Maintaining

Table 10-3 GRE monitoring and maintaining

Command	Description
show tunnel [tunnel-id]	Displays the configuration information of all tunnels or a specified tunnel.

9.3. GRE Typical Configuration Example

9.3.1. Configure GRE Basic Functions

Network Requirements

- IP Network1 and IP Network2 are two private networks of Device1 and Device3.
- IP Network1 and IP Network2 communicate with each other through the GRE tunnel between Device1 and Device3.

Network Topology IP Network IP Network Gi0 Gi1 192.168.1.1/24 192.168.100.1/24 Gi1 Gi0 Gi0 Gi1 2.0.0.2/24 1.0.0.1/24 1.0.0.2/24 2.0.0.1/24 Device1 Device2 Device3

Figure 9-1 Networking for configuring GRE basic functions

Configuration Steps

Step 1: Configure IP addresses for all interfaces. (Omitted)

Step 2: Configure Open Shortest Path First (OSPF).

#Configure Device1.

Device1#configure terminal

Device1(config)#router ospf 100

Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

GRE

Device2(config-ospf)#exit

#Configure Device3.

Device3#configure terminal

Device3(config)#router ospf 100

Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device3(config-ospf)#exit

#Query the routing table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- 0 1.0.0.0/24 [110/65536] via 2.0.0.1, 00:18:40, gigabitethernet0
- C 2.0.0.0/24 is directly connected, 00:22:27, gigabitethernet0
- C 192.168.100.0/24 is directly connected, 00:00:28, gigabitethernet1

Note:

• The method for querying the routing table of Device 1 and Device2 is the same as that for Device 3, so the processes are not described here.

Step 3: Configure a GRE tunnel.

#On Device1, configure GRE tunnel tunnel1, set the source address to 1.0.0.1, destination address to 2.0.0.2, and IP address to 10.0.0.1.

Device1(config)#interface tunnel 1

Device1(config-if-tunnel1)#tunnel source 1.0.0.1

Device1(config-if-tunnel1)#tunnel destination 2.0.0.2

Device1(config-if-tunnel1)#ip address 10.0.0.1 255.255.255.0

Device1(config-if-tunnel1)#exit

#On Device3, configure GRE tunnel tunnel1, set the source address to 2.0.0.2, destination address to 1.0.0.1, and IP address to 10.0.0.2.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel source 2.0.0.2

Device3(config-if-tunnel1)#tunnel destination 1.0.0.1

Device3(config-if-tunnel1)#ip address 10.0.0.2 255.255.255.0

Device3(config-if-tunnel1)#exit

#Query the GRE tunnel information of Device3.

Device3#show tunnel 1

Tunnel 1:

Tunnel mode is gre ip

Gre checksum validation is disabled

Gre key is not set

Gre keepalive is disabled

Source ipv4 address is 2.0.0.2 (Source ipv4 address is up on source interface gigabitethernet0)

Destination ipv4 address is 1.0.0.1

Tunnel state is up

Encapsulation vrf is global(0x0)

TTL(time-to-live) is 255

TOS(type of service) is not set

total(1)

Note:

- The method for querying the GRE tunnel information of Device 1 is the same as that for Device 3, so the process is not described here.
- If a tunnel is located at different network segments, both the two devices at the two ends of the tunnel must be configured with a static route that reaches the peer tunnel with the tunnel interface as the output interface.

Step 4: Configure the static route.

#On Device1, configure the static route to the egress interface tunnel1 of IP Network2.

Device1(config)#ip route 192.168.100.0 255.255.255.0 tunnel1

#On Device3, configure the static route to the egress interface tunnel1 of IP Network1.

Device3(config)#ip route 192.168.1.0 255.255.255.0 tunnel1

#View the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- 0 1.0.0.0/24 [110/65536] via 2.0.0.1, 00:43:30, gigabitethernet0
- C 2.0.0.0/24 is directly connected, 00:47:17, gigabitethernet0
- C 10.0.0.0/24 is directly connected, 00:17:12, tunnel1
- S 192.168.1.0/24 [1/100000] is directly connected, 00:00:10, tunnel1

GRE

C 192.168.100.0/24 is directly connected, 00:00:28, gigabitethernet1

Note:

• The method for querying the routing table of Device 1 is the same as that for Device 3, so the process is not described here.

9.3.2. Configure GRE over IPv6 Basic Functions

Network Requirements

- IP Network1 and IP Network2 are the private IP networks of Device1 and Device3 respectively.
- IPv6 Network1 and IPv6 Network2 are the private IPv6 networks of Device1 and Device3 respectively.
- IP Network1 and IP Network2 communicate with each other through the GRE over IPv6 tunnel between Device1 and Device3.
- IPv6 Network1 and IPv6 Network2 communicate with each other through the GRE over IPv6 tunnel between Device1 and Device3.

Network Topology

Figure 9-2Networking of configuring GRE over IPv6 basic functions

Configuration Steps

- Step 1: Configure IP addresses for all interfaces. (Omitted)
- **Step 2:** Configure OSPFv3, making Device1, Device2, Device3 be able to communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#ipv6 router ospf 100 Device1(config-ospf6)#router-id 1.1.75.1 Device1(config-ospf6)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ipv6 router ospf tag 100 area 0

G	R	E
-	•••	-

Device1(config-if-gigabitethernet1)#exit

#Configure Device2.

Device2#configure terminal

Device2(config)#ipv6 router ospf 100

Device2(config-ospf6)#router-id 1.2.75.1

Device2(config-ospf6)#exit

Device2(config)#interface gigabitethernet0

Device2(config-if-gigabitethernet0)#ipv6 router ospf tag 100 area 0

Device2(config-if-gigabitethernet0)#exit

Device2(config)#interface gigabitethernet1

Device2(config-if-gigabitethernet1)#ipv6 router ospf tag 100 area 0

Device2(config-if-gigabitethernet1)#exit

#Configure Device3.

Device3#configure terminal

Device3(config)#ipv6 router ospf 100

Device3(config-ospf6)#router-id 1.1.73.1

Device3(config-ospf6)#exit

Device3(config)#interface gigabitethernet0

Device3(config-if-gigabitethernet0)#ipv6 router ospf tag 100 area 0

Device3(config-if-gigabitethernet0)#exit

#View the IPv6 route table of Device3.

Device3#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

- U Per-user Static route
- 0 0SPF, 0E-0SPF External, M Management
- L ::1/128 [0/0] via ::, 6w0d:23:09:31, lo0
- 0 2001:1::/64 [110/2] via fe80::508b:fff:fee4:ff6, 00:08:37, gigabitethernet0
- C 2001:2::/64 [0/0] via ::, 00:15:51, gigabitethernet0
- L 2001:2::2/128 [0/0] via ::, 00:15:50, lo0
- C 3002::/64 [0/0] via ::, 00:15:06, gigabitethernet2

GRE

L 3002::1/128 [0/0] via ::, 00:15:04, lo0

Note:

• The method for querying the routing table of Device 1 and Device2 is the same as that for Device 3, so the processes are not described here.

Step 3: Configure GRE over IPv6 tunnel.

#Configure GRE over IPv6 Tunnel 1 on Device1, the source address is 2001:1:: 1, the destination address is 2001:2:: 2, the IP address is 10.0.0.1, and the IPv6 address is 10:: 1.

Device1(config)#interface tunnel 1

Device1(config-if-tunnel1)#tunnel mode gre IPv6

Device1(config-if-tunnel1)#tunnel source 2001:1::1

Device1(config-if-tunnel1)#tunnel destination 2001:2::2

Device1(config-if-tunnel1)#ip address 10.0.0.1 255.255.255.0

Device1(config-if-tunnel1)#ipv6 address 10::1/64

Device1(config-if-tunnel1)#exit

#Configure GRE over IPv6 Tunnel 1 on Device3 with source address of 2001:2:: 2, destination address of 2001:1:: 1, IP address of 10.0.0.2 and IPv6 address of 10:: 2.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel mode gre IPv6

Device3(config-if-tunnel1)#tunnel source 2001:2::2

Device3(config-if-tunnel1)#tunnel destination 2001:1::1

Device3(config-if-tunnel1)#ip address 10.0.0.2 255.255.255.0

Device3(config-if-tunnel1)#ipv6 address 10::2/64

Device3(config-if-tunnel1)#exit

#View the GRE tunnel information of Device3.

Device3#show tunnel 1

Tunnel 1:

Tunnel mode is gre ipv6

Gre checksum validation is disabled

Gre key is not set

Source ipv6 address is 2001:2::2(Source ipv6 address is up on source interface gigabitethernet0)

Destination ipv6 address is 2001:1::1

Tunnel state is up

Encapsulation vrf is global(0x0)

- TTL(time-to-live) is 255
- TOS(type of service) is not set

www.qtech.ru

total(1)

Note:

- The viewing method of Device1 is the same as that of Device3, and the viewing process is omitted.
- When the tunnel is not in the same network segment, the static route to the peer end tunnel needs to be configured on the devices at both ends of the tunnel, and the egress interface is the tunnel interface.

Step 4: Configure the static route.

#On Device1, configure the static route to the egress interface of IP Network2 tunnel1.

Device1(config)#ip route 192.168.100.0 255.255.255.0 tunnel1

#On Device1, configure the static route to the egress interface of IPv6 Network2 tunnel1.

Device1(config)#IPv6 route 3002::/64 tunnel1

#On Device3, configure the static route to the egress interface of IP Network1 tunnel1.

Device3(config)#ip route 192.168.1.0 255.255.255.0 tunnel1

#On Device3, configure the static route to the egress interface of IPv6 Network1 tunnel1

Device3(config)#IPv6 route 3001::/64 tunnel1

#View the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 10.0.0/24 is directly connected, 00:17:12, tunnel1

S 192.168.1.0/24 [1/100000] is directly connected, 00:00:10, tunnel1

C 192.168.100.0/24 is directly connected, 00:00:28, gigabitethernet1

#View the IPv6 route table of Device3.

Device3#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

0 - OSPF, 0E-OSPF External, M - Management

L ::1/128 [0/0] via ::, 6w0d:23:50:28, lo0

- C 10::/64 [0/0] via ::, 00:12:23, tunnel1
- L 10::2/128 [0/0] via ::, 00:12:22, lo0
- 0 2001:1::/64 [110/2] via fe80::508b:fff:fee4:ff6, 00:49:34, gigabitethernet0
- C 2001:2::/64 [0/0] via ::, 00:56:48, gigabitethernet0
- L 2001:2::2/128 [0/0] via ::, 00:56:46, lo0
- S 3001::/64 [1/100000] via ::, 00:00:14, tunnel1
- C 3002::/64 [0/0] via ::, 00:56:02, gigabitethernet2
- L 3002::1/128 [0/0]
 - via ::, 00:56:01, lo0

Note:

The viewing method of Device1 is the same as that of Device3, and the viewing • process is omitted.

IPIP

10. IPIP

10.1. Overview

The IPIP (IPv4 over IPv4) tunnel is one of the tunnel technologies. Similar to the GRE (Generic Routing Encapsulation) tunnel, the start and end of the IPIP tunnel are manually configured. It serves a virtual PTP link and provides a transmission tunnel for the encapsulated packet. The start and end of the tunnel encapsulate and decapsulated the data packet. The IPIP tunnel encapsulates only the IPv4 data packets and enables the encapsulated data packets to be transmitted over other IPv4 network.

- IPIP encapsulation
- When the IP data packet is transmitted over the IPIP tunnel, the tunnel adds an IP packet header. In the IP packet header, the protocol number is set to 4, the source IP address is set to the source IP address of the tunnel, and the destination IP address is set to the destination IP address of the tunnel.
- IPIP packet structure

IP Payload: indicates the IP packet payload before the packet entering the tunnel. It is a valid payload of the tunnel packet.

IP header: indicates the IP packet heeder before the packet entering the tunnel.

Outer IP header: indicates the encapsulated outer IP packet header. It is a transmission tool which enables the IP packet to be transmitted over another IP network.

• IPIP packet forwarding

After the packet is encapsulated at the start of the IPIP tunnel, a routing is selected for the packet based on the encapsulated destination IP address and then the packet is sent out from the corresponding network interface. The intermediate equipment forwards the packet as the common IP packet until the packet reaches the end of the tunnel.

• IPIP decapsulation

Contrary to the encapsulation process, in the decapsulation process, the end of the tunnel first analyzes the outer IP header when it receives the packet. If the destination IP address is the IP address of the end of the tunnel, check the protocol field of the IP packet header. If the protocol field is 4, transmit the packet to the IPIP tunnel for handling. The tunnel removes the outer IP header of the packet and chooses a routing for the packet based on the destination IP address of the decapsulated packet. The subsequent handling is performed based on the routing result.

10.2. IPIP Function Configuration

Table 10-1 IPIP function list

Configuration Task	
Configure the IPIP tunnel	Configure the IPIP tunnel

10.2.1. Configure IPIP Tunnel

Configuration Condition

Before configuring the IPIP tunnel, first complete the following tasks:

- Configure the interface IP address, enabling that the adjacent nodes on the network layer are reachable.
- Create the tunnel interface and configure the basic parameters. For details, refer to the Tunnel Interface Configuration Manual.
- Configure any unicast routing protocol, enabling the routing to the both ends of the tunnel is reachable.

Configure IPIP Tunnel

Table 10-2 Configure the IPIP tunnel

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the tunnel interface configuration mode	interface tunnel tunnel- number	-
Configure the tunnel interface IP address	ip address <i>ip-address</i> { <i>mask</i> <i>mask-length</i> }	Mandatory By default, the IP address on the tunnel interface is not configured.
Configure the tunnel interface mode as IPv4 over IPv4	tunnel mode ipip	Mandatory By default, the tunnel interface mode is GRE over IPv4.

ī	Ы	Р
. 1	ГΙ	г

www.qtech.ru

Step	Command	Description
Configure the source IP address or the interface name for the tunnel interface	tunnel source { <i>ip-address</i> <i>interface-name</i> }	Mandatory By default, the source IP address and the interface name are not configured for the tunnel interface.
Configure the destination IP address or the host name for the tunnel interface	tunnel destination { <i>ip-address</i> }	Mandatory By default, the destination IP address is not configured for the tunnel interface.

Note:

- The start and end of the tunnel must be configured with the source IP address and the destination IP address. The IP address at the start and end of the tunnel are complementary source IP address and destination IP address for each other.
- When configuring the tunnel source IP address, the source IP address of the tunnel adopts the master IP address of the source IP address if the interface mode is used.
- The start and end of the tunnel must be configured with the same tunnel mode. Otherwise, the tunnel transmission fails.
- Two or more tunnels with the same tunnel mode, source IP address, and destination IP address cannot be configured on the same device.

10.2.2. IPIP Monitoring and Maintaining

Table 10-3 The IPIP monitoring and maintaining

Command	Description
show tunnel [tunnel-id]	Display the configuration information of all tunnels and the specified tunnel

10.3. IPIP Typical Configuration Example

10.3.1. Configure IPIP Basic Function

Network Requirements

- IP Network1 and IP Network2 are two private networks for Device1 and Device3, respectively.
- IP Network1 communicates with IP Network2 through the IPIP tunnel between Device1 and Device3.

IPIP

www.qtech.ru

Configuration Steps

- Step 1: Configure the IP addresses for all interfaces. (Omitted)
- Step 2: Configure the OSPF.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal

Device2(config)#router ospf 100

Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#exit

#Configure Device3.

Device3#configure terminal

Device3(config)#router ospf 100

Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device3(config-ospf)#exit

#View the routing table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

0 1.0.0.0/24 [110/65536] via 2.0.0.1, 00:18:40, gigabitethernet0

IPIP

- C 2.0.0.0/24 is directly connected, 00:22:27, gigabitethernet0
- C 192.168.100.0/24 is directly connected, 00:00:28, gigabitethernet1

Note:

 Device1 and Device2 are viewed in the same way as Device3. The viewing process is omitted.

Step 3: Configure the IPIP tunnel.

#Configure the IPIP tunnel, tunnel1 on Device1 with source IP address as 1.0.0.1, destination IP address as 2.0.0.2, and the IP address as 10.0.0.1.

Device1(config)#interface tunnel 1 Device1(config-if-tunnel1)#tunnel mode ipip Device1(config-if-tunnel1)#tunnel source 1.0.0.1 Device1(config-if-tunnel1)#tunnel destination 2.0.0.2 Device1(config-if-tunnel1)#ip address 10.0.0.1 255.255.255.0 Device1(config-if-tunnel1)#exit

#Configure the IPIP tunnel, tunnel1 on Device3 with source IP address as 2.0.0.2, destination IP address as 1.0.0.1, and the IP address as 10.0.0.2.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel mode ipip

Device3(config-if-tunnel1)#tunnel source 2.0.0.2

Device3(config-if-tunnel1)#tunnel destination 1.0.0.1

Device3(config-if-tunnel1)#ip address 10.0.0.2 255.255.255.0

Device3(config-if-tunnel1)#exit

#View the IPIP tunnel information of Device3.

Device3#show tunnel 1

Tunnel 1:

Tunnel mode is ipip

Source ipv4 address is 2.0.0.2(Source ipv4 address is up on source interface gigabitethernet0)

Destination ipv4 address is 1.0.0.1

Tunnel state is up

Encapsulation vrf is global(0x0)

TTL(time-to-live) is 255

TOS(type of service) is not set

total(1)

Note:

• Device1 is viewed in the same way as Device3. The viewing process is omitted.

Руководство по настройке QSR-1920, QSR-2920, QSR-3920

www.qtech.ru

 When the tunnel does not exist in the same network segment, devices at the both ends of the tunnel are configured with a static routing to the peer end. And the outbound interface is the tunnel interface.

Step 4: Configure the static route.

#On Device1, configure the static route to the egress interface tunnel1 of IP Network2.

Device1(config)#ip route 192.168.100.0 255.255.255.0 tunnel1

#On Device3, configure the static route to the egress interface tunnel1 of IP Network1.

Device3(config)#ip route 192.168.1.0 255.255.255.0 tunnel1

#View the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- 0 1.0.0.0/24 [110/65536] via 2.0.0.1, 00:43:30, gigabitethernet0
- C 2.0.0.0/24 is directly connected, 00:47:17, gigabitethernet0
- C 10.0.0.0/24 is directly connected, 00:17:12, tunnel1
- S 192.168.1.0/24 [1/100000] is directly connected, 00:00:10, tunnel1
- C 192.168.100.0/24 is directly connected, 00:00:28, gigabitethernet1

Note:

• Device1 is viewed in the same way as Device3. The viewing process is omitted.

11. TRANSITION TUNNEL

11.1. Overview

The transition tunnel (IPv6 over IPv4) technology provides a way to transfer the IPv6 data with the existing IPv4 routing system: the IPv6 packet is encapsulated in the IPv4 packet as unstructured data and transmitted through the IPv4 network. According to the different setup modes, the transitional tunnels can be divided into manual tunnels and automatic tunnels. The transition tunnel technology skillfully utilizes the existing IPv4 network, its significance lies in providing a way to enable IPv6 nodes to communicate during the transition period, but it cannot solve the intercommunication problem between IPv6 nodes and IPv4 nodes. Transition tunnels are divided into manual type and automatic type. The corresponding relationship between the types and the modes is as follows:

	Table 11-1	Transition	tunnel	mode
--	------------	------------	--------	------

Tunnel Type	Tunnel Mode	Tunnel Source/Destination Address	Tunnel Interface Address
Manual tunnel	IPv6 over IPv4 manual tunnel	The source/destination address is the manual configured IPv4 address	IPv6 address
Auto tunnel	IPv4 compatible IPv6 auto tunnel	The source address is the manual configured IPv4 address, and the destination address does	IPv4 compatible IPv6 address, its format: ::a.b.c.d/96
	6to4 tunnel	not need to be configured.	6to4 address, the format is: 2002:a.b.c.d::/48
	ISATAP tunnel		ISATAP address, the format is: Prefix:0:5EFE:a.b.c.d/64

• IPv6 over IPv4 manual tunnel

This kind of tunnel is established manually. The terminal address of the tunnel is determined by the configuration. It is not necessary to assign special IPv6 addresses to the nodes. It is suitable for the IPv6 nodes that often communicate.

• IPv4 compatible with IPv6 auto tunnel

IPv4 compatible IPv6 auto tunnel is a point-to-multipoint tunnel. A special IPv6 address is used at both ends of the tunnel. Its format is: a.b.c.d/96, in which a.b.c.d is the IPv4 address. In the process of tunnel encapsulation, the embedded IPv4 address is automatically used as the end of the tunnel, which makes the establishment of the tunnel very convenient. However, due to the fact that the IPv4 compatible IPv6 address still depends on the IPv4 address in the

TRANSITION TUNNEL

application, this limitation can not be changed. Therefore, IETF has abandoned this kind of address in the new standard, and this kind of tunnel will be phased out.

• 6to4 tunnel

The 6to4 tunnel is a point-to-multipoint tunnel. Special IPv6 addresses are required at both ends of the tunnel in the format of 2002:a.b.c.d:/48, in which 2002 represents a fixed IPv6 address prefix and a.b.c.d represents the unique 32-bit IPv4 address corresponding to the 6to4 tunnel. This embedded IPv4 address is automatically used as the end point of the tunnel in the process of tunnel encapsulation, which makes the establishment of the tunnel very convenient. Therefore, the nodes using the 6to4 mechanism must have at least one unique IPv4 address in the world. This mechanism is suitable for the intercommunication between the nodes running IPv6. Since the first 48 bits in the IPv6 address prefix of 6to4 have been determined by the fixed number plus the IPv4 address, the remaining 16 bits subnet number can be defined by the user himself, which makes it more flexible to use the IPv4 network to realize the interconnection of the IPv6 network. 6to4 overcomes the limitation of IPv4 compatible IPv6 automatic tunnel.

• ISATAP tunnel

ISATAP (Intra-Site Automatic Tunnel Addressing Protocol) tunnels are point-to-multipoint automatic tunnels. Special IPv6 addresses are required at both ends of the tunnel in the format of Prefix: 0:5EFE: a.b.c.d/64, where Prefix represents any valid IPv6 unicast address prefix, and a.b.c.d represents 32-bit IPv4 address (not required to be globally unique). The embedded IPv4 address is automatically used as the end point of the tunnel during the tunnel encapsulation, so this kind of tunnel is also built automatically.

• Transition tunnel encapsulation

When IPv6 packets are sent through transitional tunnels, an IP header is added to the tunnel header, the protocol number in the IP header is 41, the source address in the IP header is set to the source address of the tunnel, and the destination address in the IP header is set according to the type of the tunnel: if it is a manual tunnel, it is set as the configured tunnel destination address, and if it is an automatic tunnel, it is set as the IPv4 address embedded in the IPv6 address.

• The structure of the transition tunnel packet

IPv6 Packet Payload: The payload of the IPv6 packet before entering the tunnel, which serves as the valid payload of the tunnel packet.

IPv6 Header: The header of the IPv6 packet before entering the tunnel.

IPv4 Header: The encapsulated outer IPv4 header, which is the transmission tool of the IPv6 packet across the IPv4 network.

• The forwarding of the transition tunnel packet

After the packet is encapsulated at the beginning of the transition tunnel, select the route according to the encapsulated destination address, and then, send the packet from the corresponding network interface. The intermediate device forwards it as an ordinary IP packet until the packet reaches the end of the tunnel.

• The encapsulation/de-capsulation of the transition tunnel packet

TRANSITION TUNNEL

....

The de-capsulation process and the encapsulation process are opposite. The tunnel end first analyzes the IPv4 header after receiving the packet. If the destination address is its own address, check the protocol field of the IP header. If the protocol field is 41, hand over the packet to the transition tunnel for processing. After the tunnel removes the IPv4 header of the packet, select the route according to the destination address of the packet after de-capsulation, and perform the subsequent processing according to the result of the route selection.

11.2. Transition Tunnel Function Configuration

Table 11-2 Transition tunnel function configuration list

Configuration task	
Configure IPv6 over IPv4 manual tunnel	Configure IPv6 over IPv4 manual tunnel
Configure the IPv4 compatible IPv6 auto tunnel	Configure the IPv4 compatible IPv6 auto tunnel
Configure the 6to4 tunnel	Configure the 6to4 tunnel
Configure the ISATAP tunnel	Configure the ISATAP tunnel

Note:

• For the configuration commands of the transition tunnel, refer to the chapter of IP Tunnel in the configuration manual.

11.2.1. Configure the IPv6 over IPv4 Manual Tunnel

Configuration Conditions

Before configuring the IPv6 over IPv4 manual tunnel, complete the following tasks:

- Configure the IP address of the physical interface, making the neighboring nodes reachable at the network layer
- Create one tunnel interface, and configure the basic parameters (refer to the configuration manual of the tunnel interface)
- Configure any unicast routing protocol, making the route at the two ends of the tunnel reachable

TRANSITION TUNNEL

www.qtech.ru

Configure IPv6 over IPv4 Manual Tunnel

Table 11-3 Configure IPv6 over IPv4 manual tunnel

Step		Command	Description
Enter the gl configuratio	lobal on mode	configure terminal	-
Enter the tu configuration	innel on mode	interface tunnel tunnel- number	-
Configure the tunnel interface address	Configure IPv6 global unicast address or anycast address or the local address of the site or auto get address	ipv6 address { ipv6- address/prefix-length [anycast eui-64] autoconfig }	Mandatory By default, do not configure the IPv6 address on the tunnel interface.
	Configure the local address of the IPv6 link	ipv6 address ipv6- address link-local	Optional By default, after enabling the IPv6 on the interface, automatically generate the local address of the link.
Configure the interface mover IPv4 n	he tunnel ode as the IPv6 nanual tunnel	tunnel mode ipv6ip	Mandatory By default, the tunnel interface mode is GRE over IPv4.
Configure to address or the tunnel in	he source interface name of nterface	tunnel source { ip- address interface-name }	Mandatory By default, do not configure the source address or interface name on the tunnel interface.

www.m	tech ru
mm.q	cecili.ru

Step	Command	Description
Configure the destination address or host name of the tunnel interface	tunnel destination { <i>ip-address</i> <i>hostname</i> }	Mandatory By default, do not configure the destination address or host name on the tunnel interface.

Note:

- The source address and destination address must be configured at both ends of the tunnel, and the addresses of the two ends are mutually the source address and destination address.
- If adopting the interface mode when configuring the tunnel source, the source address of the tunnel is the master address of the source interface.
- The two ends of the tunnel should be configured as the same tunnel mode. Otherwise, transmitting via the tunnel fails.
- On one device, you cannot configure multiple tunnels whose tunnel mode, source address, and destination address are all the same.

11.2.2. Configure IPv4 Compatible IPv6 Auto Tunnel

Configuration Conditions

Before configuring the IPv4 over IPv6 manual tunnel, complete the following tasks:

- Configure the IP address of the physical interface, making the neighboring nodes reachable at the network layer
- Create one tunnel interface, and configure the basic parameters (refer to the configuration manual of the tunnel interface)
- Configure any unicast routing protocol, making the route at the two ends of the tunnel reachable

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Configure IPv4 Compatible IPv6 Auto Tunnel

Table 11-4 Configure IPv4 compatible IPv6 auto tunnel

Step		Command	Description
Enter the gl configuratio	lobal on mode	configure terminal	-
Enter the tu configuration	innel on mode	interface tunnel tunnel- number	-
Configure the tunnel interface address	Configure IPv6 global unicast address or anycast address or the local address of the site or auto get address	ipv6 address { ipv6- address/prefix-length [anycast eui-64] autoconfig }	Mandatory By default, do not configure the IPv6 address on the tunnel interface.
	Configure the local address of the IPv6 link	ipv6 address <i>ipv6-</i> address link-local	Optional By default, after enabling the IPv6 on the interface, automatically generate the local address of the link.
Configure the interface manual compatible	he tunnel ode as the IPv4 IPv6 auto tunnel	tunnel mode ipv6ip auto- tunnel	Mandatory By default, the mode of the tunnel interface is GRE over IPv4.
Configure to address or the tunnel in	he source interface name of nterface	tunnel source { ip- address interface-name }	Mandatory By default, do not configure the source address and interface name on the tunnel interface.

Note:

- IPv4 compatible IPv6 auto tunnel does not need to be configured with the destination address. When encapsulating the tunnel, the used destination address is the embedded IPv4 address auto got from IPv4 compatible IPv6 address.
- If adopting the interface mode when configuring the tunnel source, the source address of the tunnel is the master address of the source interface.
- The two ends of the tunnel should be configured as the same tunnel mode. Otherwise, transmitting via the tunnel fails.
- On one device, you can only configure one IPv4 compatible IPv6 auto tunnel.

11.2.3. Configure the 6to4 Tunnel

Configuration Conditions

Before configuring the 6to4 tunnel, complete the following tasks:

- Configure the IP address of the physical interface, making the neighboring nodes reachable at the network layer
- Create one tunnel interface, and configure the basic parameters (refer to the configuration manual of the tunnel interface)
- Configure any unicast routing protocol, making the route at the two ends of the tunnel reachable

Configure the 6to4 Tunnel

Table 11-5 Configure the 6to4 tunnel

Step		Command	Description
Enter the g configuratio	lobal on mode	configure terminal	-
Enter the tu configuration	innel on mode	interface tunnel tunnel- number	-
Configure the tunnel interface address	Configure IPv6 global unicast address or anycast address or the local address of the site or auto get address	ipv6 address { <i>ipv6-</i> address/prefix-length [anycast eui-64] autoconfig }	Mandatory By default, do not configure the IPv6 address on the tunnel interface.

www.d	tech.ru

Step		Command	Description
Configure the tunnel interface address	Configure the local address of the IPv6 link	ipv6 address <i>ipv6-</i> address link-local	Optional By default, after enabling IPv6 on the interface, automatically generate the local address of the link.
Configure tl interface mo tunnel	ne tunnel ode as 6to4	tunnel mode ipv6ip 6to4	Mandatory By default, the tunnel interface mode is GRE over IPv4.
Configure the address or the tunnel in	ne source interface name of nterface	tunnel source { ip- address interface-name }	Mandatory By default, do not configure the source address or interface name on the tunnel interface.

Note:

- It is not necessary to configure the destination address for the 6to4 tunnel. The destination address used during tunnel encapsulation is automatically got from the imbedded IPv4 address in the 6to4 tunnel IPv6 address.
- If adopting the interface mode when configuring the tunnel source, the source address of the tunnel is the master address of the source interface.
- The two ends of the tunnel should be configured as the same tunnel mode. Otherwise, transmitting via the tunnel fails.
- On one device, you can only configure one 6to4 tunnel.

11.2.4. Configure the ISATAP Tunnel

Configuration Conditions

Before configuring the ISATAP tunnel, complete the following tasks:

- Configure the IP address of the physical interface, making the neighboring nodes reachable at the network layer
- Create one tunnel interface, and configure the basic parameters (refer to the configuration manual of the tunnel interface)
- Configure any unicast routing protocol, making the route at the two ends of the tunnel reachable

www.qtech.ru

Configure the ISATAP Tunnel

Table 11-6 Configure the ISATAP tunnel

Step		Command	Description
Enter the g configuration	lobal on mode	configure terminal	-
Enter the to configurate	unnel on mode	interface tunnel tunnel- number	-
Configure the tunnel interface address	Configure IPv6 global unicast address or anycast address or the local address of the site or auto get address	ipv6 address { <i>ipv6-</i> address/prefix-length [anycast eui-64] autoconfig }	Mandatory By default, do not configure the IPv6 address on the tunnel interface.
	Configure the local address of the IPv6 link	ipv6 address <i>ipv6-</i> address link-local	Optional By default, after enabling IPv6 on the interface, auto generate the local address of the link.
Configure t interface m compatible tunnel	the tunnel node as the IPv4 e IPv6 auto	tunnel mode ipv6ip isatap	Mandatory By default, the tunnel interface mode is GRE over IPv4.
Configure address or of the tunn	the source interface name el interface	tunnel source { <i>ip-address</i> <i>interface-name</i> }	Mandatory By default, do not configure the source address or interface name on the tunnel interface.

www.qtech.ru

Note:

- It is not necessary to configure the destination address for the 6to4 tunnel. The destination address used during tunnel encapsulation is automatically got from the imbedded IPv4 address in the 6to4 tunnel IPv6 address.
- If adopting the interface mode when configuring the tunnel source, the source address of the tunnel is the master address of the source interface.
- The two ends of the tunnel should be configured as the same tunnel mode. Otherwise, transmitting via the tunnel fails.
- On one device, you cannot configure multiple ISATAP tunnels with the same source address at the same time.

11.2.5. Monitoring and Maintaining of Transition Tunnel

Table 11-7 Monitoring and maintaining of the transition tunnel

Command	Description
show tunnel [tunnel-id]	Displays the configuration information of all tunnels or a specified tunnel.

11.3. Typical Configuration Examples of Transition Tunnel

11.3.1. Configure Basic Functions of IPv6 over IPv4 Manual Tunnel

Network Requirements

- IPv6 Network1 and IPv6 Network2 are the private IPv6 network of Device1 and Device3 respectively.
- IPv6 Network1 and IPv6 Network2 communicate via the IPv6 over IPv4 manual tunnel between Device1 and Device3.

Figure 11-1 Networking for Configuring the basic functions of IPv6 over IPv4 manual tunnel

Configuration Steps

- Step 1: Configure the IP address of the interface (omitted).
- **Step 2:** Configure OSPF, making Device1, Device2, and Device3 communicate with each other.

#Configure Device1. Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#exit #Configure Device2. Device2#configure terminal Device2(config)#router ospf 100 Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#exit #Configure Device3. Device3#configure terminal Device3(config)#router ospf 100 Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#exit #Query the route table of Device3. Device3#show ip route Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M -Management D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS Gateway of last resort is not set 0 1.0.0.0/24 [110/65536] via 2.0.0.1, 00:18:40, gigabitethernet0 C 2.0.0.0/24 is directly connected, 00:22:27, gigabitethernet0

Note:

• The querying methods of Device1 and Device2 are the same as that of Device3, so the querying process is omitted.

Step 3: Configure the IPv6 over IPv4 manual tunnel.

#On Device1, configure IPv6 over IPv4 manual tunnel tunnel1, the source address is 1.0.0.1, the destination address is 2.0.0.2, and the IPv6 address is 10::1.

Device1(config)#interface tunnel 1 Device1(config-if-tunnel1)#tunnel mode ipv6ip Device1(config-if-tunnel1)#tunnel source 1.0.0.1 Device1(config-if-tunnel1)#tunnel destination 2.0.0.2 Device1(config-if-tunnel1)#ipv6 address 10::1/64

www.gtech.ru

Device1(config-if-tunnel1)#exit

#On Device3, configure IPv6 over IPv4 manual tunnel tunnel1, the source address is 2.0.0.2, the destination address is 1.0.0.1, and the IPv6 address is 10::2.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel mode ipv6ip

Device3(config-if-tunnel1)#tunnel source 2.0.0.2

Device3(config-if-tunnel1)#tunnel destination 1.0.0.1

Device3(config-if-tunnel1)#ipv6 address 10::2/64

Device3(config-if-tunnel1)#exit

#Query the IPv6 over IPv4 manual tunnel information of Device3.

Device3#show tunnel 1

Tunnel 1:

Tunnel mode is ipv6ip

Source ipv4 address is 2.0.0.2(Source ipv4 address is up on source interface gigabitethernet0)

Destination ipv4 address is 1.0.0.1

Tunnel state is up

Encapsulation vrf is global(0x0)

TTL(time-to-live) is 255

TOS(type of service) is not set

total(1)

Note:

- The querying method of Device1 is the same as that of Device3, so the querying process is omitted.
- When the tunnel is not in the same network segment, it is necessary to configure the static route to the peer tunnel on the devices at both ends of the tunnel, and the output interface is the tunnel interface.

Step 4: Configure the static route.

#On Device1, configure the static route to IPv6 Network2 with the egress interface tunnel1.

Device1(config)#ipv6 route 3002::/64 tunnel1

#On Device3, configure the static route to IPv6 Network1 with the egress interface tunnel1.

Device3(config)#ipv6 route 3001::/64 tunnel1

#Query the IPv6 route table of Device3.

Device3#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

www.qtech.ru

0 - 0SPF, 0E-0SPF External, M - Management

L ::1/128 [0/0]

via ::, 1w6d:20:35:50, lo0

C 10::/64 [0/0]

via ::, 00:03:31, tunnel1

L 10::2/128 [0/0]

via ::, 00:03:29, lo0

S 3001::/64 [1/100000]

via ::, 00:00:01, tunnel1

C 3002::/64 [0/0]

via ::, 00:00:06, gigabitethernet1

L 3002::1/128 [0/0]

via ::, 00:00:04, lo0

Note:

• The querying method of Device1 is the same as that of Device3, so the querying process is omitted.

11.3.2. Configure Basic Functions of IPv4 Compatible IPv6 Auto Tunnel

Network Requirements

- Device1 and Device2 have IPv4 and IPv6 dual protocol stack, and they communicate with each other through IPv4 network.
- An IPv4 compatible IPv6 automatic tunnel is established between Device1 and Device2, through which Device1 and Device2 communicate with each other.

Network Topology

Figure 11-2 Networking of configuring the basic functions of IPv4 compatible IPv6 auto tunnel

Configuration Steps

Step 1: Configure the IP address of the interface (omitted).

Step 2: Configure the IPv4 compatible IPv6 auto tunnel.

#On Device1, configure the IPv4 compatible IPv6 auto tunnel tunnel1, and the source address is 1.0.0.1.

Device1#configure terminal

Device1(config)#interface tunnel 1

Device1(config-if-tunnel1)#tunnel mode ipv6ip auto-tunnel Device1(config-if-tunnel1)#tunnel source 1.0.0.1 Device1(config-if-tunnel1)#exit

#On Device2, configure IPv4 compatible IPv6 auto tunnel (tunnel1), and the source address is 2.0.0.2.

Device2#configure terminal Device2(config)#interface tunnel 1 Device2(config-if-tunnel1)#tunnel mode ipv6ip auto-tunnel Device2(config-if-tunnel1)#tunnel source 2.0.0.2 Device2(config-if-tunnel1)#exit

#View the interface information of Device2 tunnel1.

Device2#show ipv6 interface tunnel1

tunnel1 is up

VRF: global

IPv6 is enable, link-local address is fe80::0201:7aff:fe5e:d029

Global unicast address(es):

::0200:0002, subnet is ::/96

Joined group address(es):

ff02::0001:ff00:0002

ff02::0001:ff00:0

ff02::0002

ff02::0001

- ff02::0001:ff5e:d029
- ND control flags: 0x1
- MTU is 1480 bytes

ICMP redirects are enabled

ICMP unreachables are enabled

- ND DAD is enabled, number of DAD attempts: 1
- ND reachable time is 30000 milliseconds
- ND advertised reachable time is 0 (unspecified)
- ND advertised retransmit interval is 0 (unspecified)

You can see that the interface of Device2 tunnel1 automatically generates IPv6 address::0200:0002.

Note:

• IPv4 compatible IPv6 auto tunnel generates IPv4 compatible IPv6 address according to tunnel source address, and Qtech devices display it in hexadecimal format.

#View the IPv6 route table of Device2.

Device2#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

0 - 0SPF, 0E-0SPF External, M - Management

C ::/96 [0/0]

via ::, 00:06:00, tunnel1

L ::1/128 [0/0]

via ::, 1w6d:20:35:50, lo0

L ::200:2/128 [0/0]

via ::, 00:05:59, lo0

#View the IPv4 compatible IPv6 auto tunnel information of Device2.

Device2#show tunnel 1

Tunnel 1:

Tunnel mode is ipv6ip auto-tunnel

Source ipv4 address is 2.0.0.2(Source ipv4 address is up on source interface gigabitethernet0)

Tunnel state is up

Encapsulation vrf is global(0x0)

TTL(time-to-live) is 255

TOS(type of service) is not set

total(1)

Note:

• The querying method of Device1 is the same as that of Device2, so the querying process is omitted.

Step 3: Check the result.

#On Device2, ping the IPv6 address of Device1 tunnel1 ::0100:0001.

Device2#ping ::0100:0001

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to ::100:1 , timeout is 2 seconds: !!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 0/3/16 ms.

#Device2 can ping the IPv6 address of Device1 tunnel1 :0100:0001.

....

11.3.3. Configure the Basic Functions of the 6to4 Tunnel

Network Requirements

- IPv6 Network1 and IPv6 Network2 are the private IPv6 network of Device1 and Device3 respectively.
- PC1 in IPv6 Network1 and PC2 in IPv6 Network2 communicate via the 6to4 tunnel between Device1 and Device3.

Network Topology

Figure 11-3 Networking for Configuring the basic functions of the 6to4 tunnel

Configuration Steps

- Step 1: Configure the IP address of the interface (omitted).
- **Step 2:** Configure OSPF, making Device1, Device2, and Device3 communicate with each other.

#Configure Device1.

Device1#configure terminal

Device1(config)#router ospf 100

Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal

Device2(config)#router ospf 100

Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#exit

#Configure Device3.

Device3#configure terminal

Device3(config)#router ospf 100

www.qtech.ru

Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#exit

#Query the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

0 1.0.0.0/24 [110/65536] via 2.0.0.1, 00:18:40, gigabitethernet0

C 2.0.0.0/24 is directly connected, 00:22:27, gigabitethernet0

Note:

• The querying methods of Device1 and Device2 are the same as that of Device3, so the querying process is omitted.

Step 3: Configure the 6to4 tunnel.

#On Device1, configure the 6to4 tunnel (tunnel1), the source address is 1.0.0.1, and the IPv6 address is 2002:100:1::1.

Device1(config)#interface tunnel 1

Device1(config-if-tunnel1)#tunnel mode ipv6ip 6to4

Device1(config-if-tunnel1)#tunnel source 1.0.0.1

Device1(config-if-tunnel1)#ipv6 address 2002:100:1::1/64

Device1(config-if-tunnel1)#exit

#On Device3, configure the 6to4 tunnel (tunnel1), the source address is 2.0.0.2, and the IPv6 address is 2002:200:2::1.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel mode ipv6ip 6to4

Device3(config-if-tunnel1)#tunnel source 2.0.0.2

Device3(config-if-tunnel1)#ipv6 address 2002:200:2::1/64

Device3(config-if-tunnel1)#exit

#Query the 6to4 tunnel information of Device3.

Device3#show iptl kernel

IP tunnel kernel information:

IP Tunnel Interface 1 (0x10001b3):

Tunnel mode is ipv6ip 6to4

Tunnel state is up

Destination address is Unknown family

www.qtech.ru

Source address is 2.0.0.2 Source interface is vlan2 (0x4000299) Time To Live (TTL) is 255 Type Of Service (TOS) is not set VRF is global (0x0) Source interface VRF is global (0x0) Internal flags is 0x30000

total(1)

Note:

- The querying method of Device1 is the same as that of Device3, so the querying process is omitted.
- When the tunnel is not in the same network segment, it is necessary to configure the static routing to the peer tunnel on the devices at both ends of the tunnel, and the output interface is the tunnel interface.

Step 4: Configure the static route.

#On Device1, configure the static route to the segment 2002::/16 with the egress interface (tunnel1).

Device1(config)#ipv6 route 2002::/16 tunnel1

#On Device3, configure the static route to the segment 2002::/16 with the egress interface (tunnel1).

Device3(config)#ipv6 route 2002::/16 tunnel1

#Query the IPv6 route table of Device3.

Device3#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

0 - OSPF, 0E-OSPF External, M - Management

L ::1/128 [0/0]

via ::, 6w1d:02:11:13, lo0

S 2002::/16 [1/100000]

via ::, 00:10:31, tunnel1

- C 2002:200:2::/64 [0/0] via ::, 00:12:51, tunnel1
- L 2002:200:2::1/128 [0/0] via ::, 00:12:49, lo0
- C 2002:200:2:1::/64 [0/0]

via ::, 00:12:15, gigabitethernet1

L 2002:200:2:1::1/128 [0/0] via ::, 00:12:13, lo0

Note:

- The querying method of Device1 is the same as that of Device3, so the querying process is omitted.
- Step 5: Check the result.

```
#On PC1, ping the PC2 address 2002:200:2:1::2.
```

C:\>ping6 2002:200:2:1::2 -s 2002:0100:0001:1::2

Pinging 2002:200:2:1::2 with 32 bytes of data:

Reply from 2002:200:2:1::2: time<1ms Reply from 2002:200:2:1::2: time<1ms Reply from 2002:200:2:1::2: time<1ms Reply from 2002:200:2:1::2: time<1ms

Ping statistics for 2002:200:2:1::2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

#PC1 can ping PC2 address 2002:200:2:1::2.

11.3.4. Configure 6to4 Tunnel Relay

Network Requirements

- Device1 is 6to4 relay device.
- IPv6 Network1 and IPv6 Network2 are the private IPv6 network of Device1 and Device3 respectively.
- PC1 in IPv6 Network1 and PC2 in IPv6 Network2 communicate via the 6to4 tunnel between Device1 and Device3.

Network Topology

Figure 11-4 Networking of configuring the 6to4 tunnel relay

Configuration Steps

- **Step 1:** Configure the IP address of the interface (omitted).
- **Step 2:** Configure OSPF, making Device1, Device2, and Device3 communicate with each other.

#Configure Device1.

Device1#configure terminal

Device1(config)#router ospf 100

Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device1(config-ospf)#exit

#Configure Device2.

Device2#configure terminal

Device2(config)#router ospf 100

Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#exit

#Configure Device3.

Device3#configure terminal

Device3(config)#router ospf 100

Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0

Device3(config-ospf)#exit

#View the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- 0 1.0.0.0/24 [110/65536] via 2.0.0.1, 00:18:40, gigabitethernet0
- C 2.0.0.0/24 is directly connected, 00:22:27, gigabitethernet0

Note:

• The querying methods of Device1 and Device2 are the same as that of Device3, so the querying process is omitted.

Step 3: Configure the 6to4 tunnel.

#On Device1, configure the 6to4 tunnel (tunnel1), the source address is 1.0.0.1, and IPv6 address is 2002:100:1::1.

Device1(config)#interface tunnel 1 Device1(config-if-tunnel1)#tunnel mode ipv6ip 6to4 Device1(config-if-tunnel1)#tunnel source 1.0.0.1 Device1(config-if-tunnel1)#ipv6 address 2002:100:1::1/64 Device1(config-if-tunnel1)#exit

#On Device3, configure the 6to4 tunnel (tunnel1), the source address is 2.0.0.2, and IPv6 address is 2002:200:2::1.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel mode ipv6ip 6to4

Device3(config-if-tunnel1)#tunnel source 2.0.0.2

Device3(config-if-tunnel1)#ipv6 address 2002:200:2::1/64

Device3(config-if-tunnel1)#exit

#View the 6to4 tunnel information of Device3.

Device3#show tunnel 1

Tunnel 1:

Tunnel mode is ipv6ip 6to4

Source ipv4 address is 2.0.0.2(Source ipv4 address is up on source interface gigabitethernet0)

Tunnel state is up

Encapsulation vrf is global(0x0)

TTL(time-to-live) is 255

TOS(type of service) is not set

total(1)

www.qtech.ru

Note:

- The viewing method of Device1 is the same as that of Device3, and the viewing process is omitted.
- When the tunnel is not in the same network segment, the static route to the peer end tunnel needs to be configured on the devices at both ends of the tunnel, and the egress interface is the tunnel interface.

Step 4: Configure the static route.

#On Device1, configure the static route to the egress interface tunnel1 of the segment 2002::/16.

Device1(config)#IPv6 route 2002::/16 tunnel1

#On Device3, configure the static route to the egress interface tunnel1 of the segment 2002::/16, and configure the static route to the gateway 2002:100:1::1 of the segment 3001::/64.

Device3(config)#IPv6 route 2002::/16 tunnel1

Device3(config)#IPv6 route 3001::/64 2002:100:1::1

#View the lpv6 route table of Device3.

Device3#show IPv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

- U Per-user Static route
- 0 OSPF, 0E-OSPF External, M Management
- L ::1/128 [0/0]

via ::, 6w1d:02:11:13, lo0

S 2002::/16 [1/100000]

via ::, 00:10:31, tunnel1

- C 2002:200:2::/64 [0/0] via ::, 00:12:51, tunnel1
- L 2002:200:2::1/128 [0/0] via ::, 00:12:49, lo0
- C 2002:200:2:1::/64 [0/0] via ::, 00:12:15, gigabitethernet1
- L 2002:200:2:1::1/128 [0/0] via ::, 00:12:13, lo0
- S 3001::/64 [1/100000] via 2002:100:1::1, 00:00:53, tunnel1

Note:

• The querying method of Device1 is the same as that of Device3, so the querying process is omitted.

Step 4: Configure the static route.

#On PC2, ping the address of PC1 3001::2.

www.qtech.ru

••••

C:\>ping6 3001::2 -s 2002:0200:0002:1::2

Pinging 3001::2 with 32 bytes of data:

Reply from 3001::2: time<1ms Reply from 3001::2: time<1ms Reply from 3001::2: time<1ms Reply from 3001::2: time<1ms

Ping statistics for 3001::2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

#PC2 can ping the address 3001::2 of PC1.

11.3.5. Configure Basic Functions of ISATAP Tunnel

Network Requirements

- Device and PC2 communicate with each other via the IPv4 network.
- PC2 is the ISATAP host, setting up the ISATAP tunnel with Device.
- PC1 in IPv6 Network and PC2 in IP Network perform the IPv6 communication via the ISATAP tunnel.

Network Topology

Figure 11-5 Networking for Configuring the basic functions of the ISATAP tunnel

Configuration Steps

Step 1: Configure the IP address of the interface (omitted).

Step 2: On Device, configure the ISATAP tunnel.

#On Device, configure the ISATAP tunnel (tunnel1), the source address is 1.0.0.1, and the IPv6 address is 2001::5efe:100:1.

Device#configure terminal

Device(config)#interface tunnel 1 Device(config-if-tunnel1)#tunnel mode ipv6ip isatap Device(config-if-tunnel1)#tunnel source 1.0.0.1 Device(config-if-tunnel1)#ipv6 address 2001::5efe:100:1/64 Device(config-if-tunnel1)#exit #Query the IPv6 route table of Device.

> Device#show ipv6 route Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS U - Per-user Static route 0 - 0SPF, 0E-0SPF External, M - Management

- L ::1/128 [0/0] via ::, 6d:05:16:46, lo0
- C 2001::/64 [0/0] via ::, 00:07:56, tunnel1
- L 2001::5efe:100:1/128 [0/0] via ::, 00:07:54, lo0
- C 3001::/64 [0/0] via ::, 02:42:37, gigabitethernet0
- L 3001::1/128 [0/0] via ::, 02:42:36, lo0

#Query the ISATAP tunnel information of Device.

Device#show iptl kernel

IP tunnel kernel information:

IP Tunnel Interface 1 (0x1000212):

Tunnel mode is ipv6ip isatap

Tunnel state is up

Destination address is Unknown family

Source address is 1.0.0.1

Source interface is vlan1 (0x4000213)

Time To Live (TTL) is 255

Type Of Service (TOS) is not set

VRF is global (0x0)

Source interface VRF is global (0x0)

Internal flags is 0x30000

total(1)

Step 3: On Device, disable the RA response suppression function of Tunnel1.

#On Device, disable the RA response suppression function of Tunnel1.

.Device(config)#interface tunnel 1 Device(config-if-tunnel1)#no ipv6 nd suppress-ra response Device(config-if-tunnel1)#exit

Step 4: Configure the ISATAP host PC2.

#On the host, the configuration of the ISATAP tunnel varies with the operation system. This text takes the Windows XP operation system as an example to describe. On PC2, install the IPv6 protocol.

C:\>ipv6 install

#Usually, after Windows XP is installed with the IPv6 protocol successfully, IPv6 interface 2 is the ISATAP interface. On PC2, query the information of IPv6 interface 2.

C:\>ipv6 if 2

Interface 2: Automatic Tunneling Pseudo-Interface

Guid {48FCE3FC-EC30-E50E-F1A7-71172AEEE3AE}

does not use Neighbor Discovery

does not use Router Discovery

routing preference 1

EUI-64 embedded IPv4 address: 0.0.0.0

router link-layer address: 0.0.0.0

preferred link-local fe80::5efe:3.1.2.1, life infinite

link MTU 1280 (true link MTU 65515)

current hop limit 128

reachable time 42500ms (base 30000ms)

www.qtech.ru

retransmission interval 1000ms

DAD transmits 0

default site prefix length 48

The IPv6 interface 2 of PC2 automatically generates the ISATAP format link-local address fe80::5efe:3.1.2.1, and do not get the address prefix.

#On the IPv6 interface 2 of PC2, configure the destination address of the ISATAP tunnel as 1.0.0.1.

C:\>ipv6 rlu 2 1.0.0.1

#On PC2, query the information of IPv6 interface 2.

C:\>ipv6 if 2

Interface 2: Automatic Tunneling Pseudo-Interface

Guid {48FCE3FC-EC30-E50E-F1A7-71172AEEE3AE}

does not use Neighbor Discovery

uses Router Discovery

routing preference 1

EUI-64 embedded IPv4 address: 3.1.2.1

router link-layer address: 1.0.0.1

preferred global 2001::5efe:3.1.2.1, life 29d23h59m46s/6d23h59m46s (public)

preferred link-local fe80::5efe:3.1.2.1, life infinite

link MTU 1500 (true link MTU 65515)

current hop limit 255

reachable time 42500ms (base 30000ms)

retransmission interval 1000ms

www.qtech.ru

DAD transmits 0

default site prefix length 48

The IPv6 interface 2 of PC2 gets the address prefix 2001::/64, and generates the global unicast address 2001::5efe:3.1.2.1.

Step 5: Check the result.

#On PC1, ping the address of PC2 IPv6 interface 2 2001::5efe:3.1.2.1.

C:\>ping 2001::5efe:3.1.2.1

Pinging 2001::5efe:3.1.2.1 with 32 bytes of data:

Reply from 2001::5efe:3.1.2.1: time<1ms Reply from 2001::5efe:3.1.2.1: time<1ms Reply from 2001::5efe:3.1.2.1 :time<1ms Reply from 2001::5efe:3.1.2.1: time<1ms

Ping statistics for 2001::5efe:3.1.2.1: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms #PC1 can ping the address of PC2 IPv6 interface2 2001::5efe:3.1.2.1.

12. IPV6 TUNNEL

12.1. Overview

IPv6 tunnel (Generic Packet Tunneling in IPv6) is one of tunnel technologies. The starting and ending points of the tunnel need to be manually configured. It is a virtual point-to-point connection. It provides a transmission channel for encapsulated packets. The two ends of the tunnel encapsulate and de-capsulate the packet respectively. The IPv6 tunnel can encapsulate IPv4 and IPv6 packets, so that these encapsulated packets can be transmitted in another IPv6 network.

• IPv6 tunnel encapsulation

When the IPv4 or IPv6 packets are sent through the IPv6 tunnel, an IPv6 packet header is added to the header, the Next Header field in the IPv6 packet header is set to 4 or 41, the source address in the IPv6 packet header is set to the source address of the tunnel, and the destination address in the IPv6 packet header is set as the destination address of the tunnel.

• The structure of the IPv6 tunnel packet

Original Packet Payload: The payload of the packet before entering the tunnel, which serves as the valid payload of the tunnel packet.

Original Header: The header of the packet before entering the tunnel, such as IPv4 or IPv6 header

IPv6 Header: The encapsulated outer IPv6 packet header, which is the transmission tool of the original packet across the IPv6 network.

• The forwarding of the IPv6 tunnel packet

After the packet is encapsulated at the beginning of the IPv6 tunnel, select the route according to the encapsulated destination address, and then, send the packet from the corresponding network interface. The intermediate device forwards it as an ordinary IPv6 packet until the packet reaches the end of the tunnel.

• The encapsulation/de-capsulation of the IPv6 tunnel packet

The de-capsulation process and the encapsulation process are opposite. The tunnel end first analyzes the IPv6 header after receiving the packet. If the destination address is its own address, check the Next Header field of the IPv6 header. If the Next Header field is 4 or 41, hand over the packet to the IPv6 tunnel for processing. After the tunnel removes the IPv6 header of the packet, select the route according to the packet type and destination address of the packet after de-capsulation, and perform the subsequent processing according to the result of the route selection.

....

12.2. IPv6 Tunnel Function Configuration

Table 12-1 IPv6 tunnel function configuration list

Configuration task	
Configure the IPv6 tunnel	Configure the IPv6 tunnel

12.2.1. Configure an IPv6 Tunnel

Configuration Conditions

Before configuring the IPv6 tunnel, complete the following tasks:

- Configure the IPv6 address of the physical interface, making the neighboring nodes reachable at the network layer.
- Create one tunnel interface, and configure the basic parameters (refer to the configuration manual of the tunnel interface).
- Configure any unicast routing protocol, making the route at the two ends of the tunnel reachable.

Configure an IPv6 Tunnel

Table 12-2 Configure an IPv6 tunnel

Step		Command	Description
Enter the g	lobal configuration	configure terminal	-
Enter the tu mode	innel configuration	interface tunnel tunnel- number	-
Configure the tunnel interface address	Configure the IPv4 unicast address	ip address <i>i</i> p-address { mask mask-length }	Either By default, do not configure the address
	Configure IPv6 global unicast address or anycast address or the local address of the site or auto get address	ipv6 address { ipv6- address/prefix-length [anycast eui-64] autoconfig }	on the tunnel interface.

www.qtech.ru

Step		Command	Description
	Configure the local address of the IPv6 link	ipv6 address <i>ipv6-</i> address link-local	Optional By default, after the interface enables IPv6, automatically generate the local address of the link.
Configure the mode as the	ne tunnel interface e IPv6 tunnel	tunnel mode ipv6	Mandatory By default, the tunnel interface mode is GRE over IPv4.
Configure th or interface interface	ne source address of the tunnel	tunnel source { <i>ipv6-</i> <i>address</i> <i>interface-name</i> }	Mandatory By default, do not configure the source address or interface name on the tunnel interface.
Configure th address or tunnel inter	ne destination host name of the face	tunnel destination { <i>ipv6-address</i> <i>hostname</i> }	Mandatory By default, do not configure the destination address or host name on the tunnel interface.

Note:

- The source address and destination address must be configured at both ends of the tunnel, and the addresses of the two ends are mutually the source address and destination address.
- If adopting the interface mode when configuring the tunnel source, the source address of the tunnel is the IPv6 address of the source interface.
- The two ends of the tunnel should be configured as the same tunnel mode. Otherwise, transmitting via the tunnel fails.
- On one device, you cannot configure multiple tunnels whose tunnel mode, source address, and destination address are all the same.

12.2.2. IPv6 Tunnel Monitoring and Maintaining

Table 12-3 IPv6 tunnel monitoring and maintaining

Command	Description
show tunnel [tunnel-id]	Display the configuration information of all tunnels or the specified tunnel

12.3. Typical Configuration Example of IPv6 Tunnel

12.3.1. Configure Basic Functions of IPv6 Tunnel

Network Requirements

- IP Network1 and IP Network2 are the private IP network of Device1 and Device3 respectively.
- IPv6 Network1 and IPv6 Network2 communicate via the IPv6 over IPv4 manual tunnel between Device1 and Device3.
- IP Network1 and IP Network2 communicate via the IPv6 tunnel between Device1 and Device3.
- IPv6 Network1 and IPv6 Network2 communicate via the IPv6 tunnel between Device1 and Device3.

Figure 12-1 Networking for Configuring the basic functions of the IPv6 tunnel

Configuration Steps

- Step 1: Configure the IP address of the interface (omitted).
- **Step 2:** Configure OSPFv3, making Device, Device2, and Device3 communicate with each other.

#Configure Device1.

Device1#configure terminal Device1(config)#ipv6 router ospf 100 Device1(config-ospf6)#router-id 1.1.75.1

Device1(config-ospf6)#exit Device1(config)#interface gigabitethernet1 Device1(config-if-gigabitethernet1)#ipv6 router ospf tag 100 area 0 Device1(config-if-gigabitethernet1)#exit

#Configure Device2.

Device2#configure terminal Device2(config)#ipv6 router ospf 100 Device2(config-ospf6)#router-id 1.2.75.1 Device2(config-ospf6)#exit Device2(config)#interface gigabitethernet0 Device2(config-if-gigabitethernet0)#ipv6 router ospf tag 100 area 0 Device2(config-if-gigabitethernet0)#exit Device2(config)#interface gigabitethernet1 Device2(config)#interface gigabitethernet1 Device2(config-if-gigabitethernet1)#ipv6 router ospf tag 100 area 0 Device2(config-if-gigabitethernet1)#ipv6 router ospf tag 100 area 0

#Configure Device3.

Device3#configure terminal

Device3(config)#ipv6 router ospf 100

Device3(config-ospf6)#router-id 1.1.73.1

Device3(config-ospf6)#exit

Device3(config)#interface gigabitethernet0

Device3(config-if-gigabitethernet0)#ipv6 router ospf tag 100 area 0

Device3(config-if-gigabitethernet0)#exit

#Query the IPv6 route table of Device3.

Device3#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

0 - OSPF, 0E-OSPF External, M - Management

L ::1/128 [0/0]

via ::, 6w0d:23:09:31, lo0

- 0 2001:1::/64 [110/2] via fe80::508b:fff:fee4:ff6, 00:08:37, gigabitethernet0
- C 2001:2::/64 [0/0] via ::, 00:15:51, gigabitethernet0
- L 2001:2::2/128 [0/0] via ::, 00:15:50, lo0

- C 3002::/64 [0/0] via ::, 00:15:06, gigabitethernet2
- L 3002::1/128 [0/0] via ::, 00:15:04, lo0

Note:

• The querying methods of Device1 and Device2 are the same as that of Device3, so the querying process is omitted.

Step 3: Configure the IPv6 tunnel.

#On Device1, configure the IPv6 tunnel (tunnel1), the source address is 2001:1::1, destination address is 2001:2::2, IP address is 10.0.0.1, and IPv6 address is 10::1.

Device1(config)#interface tunnel 1

Device1(config-if-tunnel1)#tunnel mode ipv6

Device1(config-if-tunnel1)#tunnel source 2001:1::1

Device1(config-if-tunnel1)#tunnel destination 2001:2::2

Device1(config-if-tunnel1)#ip address 10.0.0.1 255.255.255.0

Device1(config-if-tunnel1)#ipv6 address 10::1/64

Device1(config-if-tunnel1)#exit

#On Device3, configure the IPv6 tunnel (tunnel1), the source address is 2001:2::2, destination address is 2001:1::1, IP address is 10.0.0.2, and IPv6 address is 10::2.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel mode ipv6

Device3(config-if-tunnel1)#tunnel source 2001:2::2

Device3(config-if-tunnel1)#tunnel destination 2001:1::1

Device3(config-if-tunnel1)#ip address 10.0.0.2 255.255.255.0

Device3(config-if-tunnel1)#ipv6 address 10::2/64

Device3(config-if-tunnel1)#exit

#Query the IPv6 tunnel information of Device3.

Device3#show tunnel 1

Tunnel 1:

Tunnel mode is ipv6

Gre checksum validation is disabled

Gre key is not set

Source ipv6 address is 2001:2::2 (Source ipv6 address is up on source interface gigabitethernet0)

Destination ipv6 address is 2001:1::1

Tunnel state is up

Encapsulation vrf is global(0x0) TTL(time-to-live) is 255 TOS(type of service) is not set total(1)

Note:

- The querying method of Device1 is the same as that of Device3, so the querying process is omitted.
- When the tunnel is not in the same network segment, it is necessary to configure the static route to the peer tunnel on the devices at both ends of the tunnel, and the output interface is the tunnel interface.

Step 4: Configure the static route.

#On Device1, configure the static route to IP Network2 with the egress interface tunnel1.

Device1(config)#ip route 192.168.100.0 255.255.255.0 tunnel1

#On Device1, configure the static route to IPv6 Network2 with the egress interface tunnel1.

Device1(config)#ipv6 route 3002::/64 tunnel1

#On Device3, configure the static route to IP Network1 with the egress interface tunnel1.

Device3(config)#ip route 192.168.1.0 255.255.255.0 tunnel1

#On Device3, configure the static route to IPv6 Network1 with the egress interface tunnel1.

Device3(config)# ipv6 route 3001::/64 tunnel1

#Query the route table of Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 10.0.0/24 is directly connected, 00:17:12, tunnel1

S 192.168.1.0/24 [1/100000] is directly connected, 00:00:10, tunnel1

C 192.168.100.0/24 is directly connected, 00:00:28, gigabitethernet1

#Query the IPv6 route table of Device3.

Device3#show ipv6 route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

0 - 0SPF, 0E-0SPF External, M - Management

- L ::1/128 [0/0] via ::, 6w0d:23:50:28, lo0
- C 10::/64 [0/0] via ::, 00:12:23, tunnel1
- L 10::2/128 [0/0] via ::, 00:12:22, lo0
- 0 2001:1::/64 [110/2] via fe80::508b:fff:fee4:ff6, 00:49:34, gigabitethernet0
- C 2001:2::/64 [0/0] via ::, 00:56:48, gigabitethernet0
- L 2001:2::2/128 [0/0] via ::, 00:56:46, lo0
- S 3001::/64 [1/100000] via ::, 00:00:14, tunnel1
- C 3002::/64 [0/0] via ::, 00:56:02, gigabitethernet2
- L 3002::1/128 [0/0] via ::, 00:56:01, lo0

Note:

The querying method of Device1 is the same as that of Device3, so the querying
process is omitted.

13. DVPN TUNNEL

13.1. Overview of DVPN Tunnel

DVPN is the abbreviation of Dymatic Vitual Private Network (DVPN). It is a non-public technology to solve the complex configuration of traditional tunnel technology, which is inconvenient to respond to the changes of network topology and branch address. DVPN uses the idea of centralized control, and a central node completes the online, authentication and public-private network address management of branch nodes. With the help of the tunnel established between nodes, the private network routing information is transmitted, and then the whole network interworking is realized.

In the network of DVPN tunnel, devices have the following roles, among which Hub and Spoke are called Client in the network:

- Hub——The gateway device of the enterprise headquarters
- Spoke——The gateway device of the enterprise branch
- Server—The server is responsible for receiving, managing and maintaining the information of DVPN nodes and responding to queries from clients (only in UDP tunnels).

The DVPN tunnels are divided to the MGRE tunnel and UDP tunnel.

MGRE tunnel

MGRE (Multipoint Generic Routing Encapsulation) is a dynamic VPN Technology based on NHRP (NextHop resolution protocol). MGRE is a point-to-multipoint GRE tunnel technology. Packet encapsulation and decapsulation are the same as GRE tunnel. Please refer to the relevant chapter of GRE tunnel in configuration manual for detailed introduction. Unlike GRE tunnel, only the tunnel source address needs to be specified, but the destination address of tunnel is not required. MGRE tunnel relies on the NHRP protocol, which can dynamically learn the addresses of other nodes. Hub maintains the mapping table entries of the tunnel address and public network address. Spoke will register its own address information with Hub, and Hub and multiple spooks will establish permanent tunnel. When Spoke needs to communicate with other spooks, Spoke will obtain the addresses of other Spokes from Hub, so as to establish the tunnel between Spoke and Spoke.

UDP tunnel

UDP tunnel is a tunnel technology which uses UDP protocol as encapsulation protocol and transmits other transport protocols in the network through IP Transport Protocol. The UDP tunnel is a point to multipoint tunnel technology. It is the dynamic VPN technology to solve the problem of complex configuration, inconvenient response to network topology changes and branch address changes. At the same time, the UDP tunnel technology provides identity authentication, control packet encryption protection and data packet encryption protection, and realizes the safe transmission of VPN internal data on the public network. The network environment of UDP tunnel adopts the client/server model. All the clinet node information (hub and spoke) is registered on the server, and the client's own information is saved on the server. Therefore, the server is responsible for collecting, managing and maintaining the client's information, and the client can obtain other client's information through the server. Thus, an independent tunnel is established between clients for communication. In the network, the spoke and hub will register with the server, and the server will establish an information table of all clients for management and maintenance. Once a client successfully registers with the server, the server will send all hub information to the spoke, and the spoke will send a tunnel establishment request to the hub to establish a permanent tunnel, Then, the spoke will obtain

www.qtech.ru

the address of the spoke to be communicated from the server, so as to establish a tunnel between the spoke and the spoke.

13.2. DVPN Tunnel Function ConfigurationTable 13-1 DVPN tunnel function configuration list

Configuration Task			
Configure the MGRE tunnel	Configure the MGRE tunnel		
Configure the UDP tunnel	Configure the UDP tunnel		

13.2.1. Configure MGRE Tunnel

Configuration Conditions

Before configuring the MGRE tunnel, it is necessary to complete the following tasks:

- Configure the IP address of the interface, so that the network layer of the adjacent nodes can reach.
- Create a tunnel interface and configure basic parameters (refer to tunnel interface configuration manual).
- Configure any unicast routing protocol or static route to make both ends of the tunnel reachable.

Configure MGRE Tunnel

Table 13-2 Configure the MGRE tunnel

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the Tunnel interface configuration mode	interface tunnel tunnel- number	-
Configure the Tunnel interface address	ip address <i>i</i> p-address { mask mask-length }	Mandatory By default, the address is not configured on the Tunnel interface.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Configure the Tunnel interface mode as MGRE	tunnel mode dvpn mgre	Mandatory By default, the Tunnel interface mode is GRE over IPv4.
Configure the source address or interface name of the Tunnel interface	tunnel source { <i>ip-address</i> <i>interface-name</i> }	Mandatory By default, do not configure the source address or interface name on the Tunnel interface.
Configure the checksum function of the Tunnel interface	tunnel checksum	Optional By default, do not configure the checksum function on the Tunnel interface. It is not required to configure the checksum function at both sides of the tunnel at the same time.
Configure the keyword of the Tunnel interface	tunnel key key-number	Optional By default, do not configure keywords on the tunnel interface. The keywords at both ends of the tunnel must be set consistently. Otherwise, the transmission through the tunnel will fail.
Configure the IPSEC protection function of the Tunnel interface	crypto-profile profile-name	Optional By default, do not configure the IPSEC protection function on the Tunnel interface.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Configure the pre-share key of the Tunnel interface	dvpn authentication key {0 <i>string</i> 7 <i>cipher-string</i> }	Optional By default, no preshared key is configured on the tunnel interface The pre shared key of the spoke and the hub must be set the same. Otherwise, the spoke cannot be registered successfully
Configure the aging time of the MGRE entry	dvpn nhrp-entry holdtime seconds	Optional By default, do not configure the aging time of the MGRE entry on the Tunnel interface.
Configure the interval of sending the registration request packet	dvpn registration interval seconds	Optional By default, do not configure the interval of sending the registration request packet on the Tunnel interface.
Configure the interval of re-transmitting the client request packet	dvpn retry interval time- interval	Optional By default, do not configure the interval of re-transmitting the client request packet on the Tunnel interface.
Configure the slient time of the client connection timeout	dvpn dumb time-interval	Optional By default, do not configure the slient time of the client connection timeout on the Tunnel interface.

www.qtech.ru

Step	Command	Description
Configure the Hub-Entry address mapping entry	dvpn nhrp-entry protocol- address { public-address } [register]	Mandatory By default, do not configure the Hub-Entry address mapping entry on the Tunnel interface.
Turn on the switch of printing the security log information of hub or spoke registration failure, save the log and view it through show logging security-data	tunnel logging security-data dvpn-mgre { register-fail register-ok }	Optional By default, do not enable the printing command.

Note:

- The source address must be configured at both ends of the tunnel, and there is no need to configure the destination address of the tunnel.
- When configuring the tunnel source, if the interface mode is adopted, the source address of the tunnel is the primary address of the source interface.
- At most two mGRE tunnels can be configured on the same device, and the tunnel sources cannot be the same.
- At most two Hub-Entries (with register in the command line of the configuration table item) are configured on the spoke side.
- Up to 2048 spokes are supported. If the number of spokes on Hub exceeds the upper limit, the registration of spokes will fail.

13.2.2. Configure UDP Tunnel

Configuration Conditions

Before configuring the UDP tunnel, it is necessary to complete the following tasks:

- Configure the IP address of the interface, so that the network layer of the adjacent nodes can reach.
- Create a tunnel interface and configure basic parameters (refer to Tunnel interface configuration manual).
- Configure any unicast routing protocol or static route to make both ends of the tunnel reachable.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Configure UDP Tunnel

Table 13-3 Configure the UDP tunnel

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the Tunnel interface configuration mode	interface tunnel tunnel- number	-
Configure the Tunnel interface address	ip address <i>ip-address</i> { <i>mask</i> <i>mask-length</i> }	Mandatory By default, do not configure the address on the Tunnel interface.
Configure the Tunnel interface mode as UDP	tunnel mode dvpn udp	Mandatory By default, the mode of the Tunnel interface is GRE over IPv4.
Configure the source address or interface name of the Tunnel interface	tunnel source { <i>ip-address</i> <i>interface-name</i> }	Mandatory By default, do not configure the source address or interface name on the Tunnel interface.
Configure the client identity of the Tunnel interface	dvpn client { Hub Spoke }	Mandatory By default, do not configure the client identity on the Tunnel interface.
Configure the IP address of the DVPN server on the Tunnel interface	dvpn { primary secondary} server {public- address }	Mandatory By default, do not configure the IP address of the DVPN server on the Tunnel interface.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Configure the idle timeout of the Spoke- Spoke DVPN tunnel on the Tunnel interface	dvpn Spoke-Spoke idle time-interval	Optional By default, do not configure the idle timeout of the Spoke-Spoke DVPN tunnel on the Tunnel interface.
Configur the IPSEC protection function of the Tunnel interface	crypto-profile profile-name	Optional By default, do not configure the IPSEC protection function on the Tunnel interface.
Configure the pre-share key of the Tunnel interface	dvpn authentication key {0 <i>string</i> 7 <i>cipher-string</i> }	Mandatory By default, do not configure the pre-share key on the Tunnel interface. The preshare key of the client and Server should be consistent. Otherwise, the Cclient cannot be registered successfully.
Configure the interval of re-transmitting the client request packet	dvpn retry interval time- interval	Optional By default, do not configure the interval of re- transmitting the client request packet on the Tunnel interface.
Configure the silent time of the client connection timeout	dvpn dumb time-interval	Optional By default, do not configure the silent time of the client connection timeout on the Tunnel interface.

www.qtech.ru

Table 13-4 Configure DVPN Server

Step	Command	Description	
Enter the global configuration mode	configure terminal	-	
Enable the DVPN server	dvpn server enable	Enter the DvpnServer view	
Configure the authentication key word of the DVPN server	authentication-key { 0 string 7 cipher-string }	Mandatory By default, the DVPN server is not configured with the authentication key word. The key words of the Client and Server should be consistent. Otherwise, client cannot be registered successfully.	
Configure the encryption algorithm of the DVPN server	encryption-algorithm {3des-cbc aes-cbc-128 aes-cbc-192 aes-cbc- 256 des-cbc SM1 SM4 }	Optional By default, all configurable encryption algorithms are supported on the primary and standby servers, and the priority order is DES-CBC, 3DES-CBC, AES-CBC-128, AES-CBC-192, AES-CBC- 256, SM1, and SM4.	
Configure the authentication algorithm of the DVPN server	authentication-algorithm { SM3 MD5 sha-1 sha- 256 HMAC-MD5 HMAC- SHA1 }	Mandatory By default, all configurable authentication algorithms are supported on the DVPN primary and standby servers. The priority order is MD5, SHA-1, SHA-256, SM3, HMAC-MD5, and HMAC- SHA1.	

www.qtech.ru

Step	Command	Description
Configure the interval of sending the keepalive packet between Server and Client	dvpn keepalive interval seconds	Mandatory By default, do not configure the source address or interface name on the Tunnel interface.

Note:

- The source address must be configured at both ends of the tunnel, and there is no need to configure the destination address of the tunnel.
- When configuring the tunnel source, if the interface mode is adopted, the source address of the tunnel is the primary address of the source interface.
- At most two UDP tunnels can be configured on the same device.
- The pre-share keys should be configured on the primary and standby servers, and the pre shared keys configured on the client and server must be the same. Otherwise, the registration cannot be successful, and the configuration algorithms supported on the primary and standby servers are the same.
- Each client can only be configured with two servers (one primary and one standby). When the primary server is offline, the client automatically switches to the standby server for communication. If the primary server is not configured, the standby server cannot be configured.
- Up to 64 spokes are supported and controlled by DVPN server. If the number of Spokes on the server exceeds the upper limit, the registration of spokes will fail. Support up to 2 servers, primary server and standby server.

13.2.3. DVPN Tunnel Monitoring and Maintaining

Table 13-5 MGRE tunnel monitoring and maintaining

Command	Description
<pre>show tunnel [tunnel-id] [slot slot-num]</pre>	Display the tunnel information
<pre>show dvpn mgre entry { tunnel tunnel- id }[slot slot-num]</pre>	Display all static and dynamic address mapping entries in the specified tunnel
<pre>clear { tunnel tunnel-id } dvpn mgre entry [tunnel-addr all]</pre>	Clear the peer entry of the tunnel interface

www.qtech.ru

Command	Description
<pre>show tunnel [tunnel-id] [slot slot-num]</pre>	Display the tunnel information
show dvpn udp client fsm	Display the status machine information of all DVPN tunnels in the UDP mode
<pre>show dvpn udp entry { tunnel tunnel-id }[slot slot-num]</pre>	Display all IPv4 DVPN tunnel information of the specified tunnel in the UDP mode
show dvpn udp server address-map	Display the IPv4 private network address mapping information of the DVPN client registered to the DVPN server
show dvpn udp server fsm[protocol- address]	Display the client information of the specified private network address

Note:

• *slot-num* indicates displaying the tunnel status information on the specified board card.

13.3. DVPN Tunnel Typical Configuration Example

13.3.1. Configure MGRE Basic Functions

Network Requirements

- The IP networks connected with Device1, Device2 and Device3 are the corresponding private IP networks.
- IP network1 and IP network2 communicate through the DVPN MGRE tunnel between Device1 and Device2.
- IP network1 and IP network3 communicate through the DVPN MGRE tunnel between Device1 and Device3.
- IP network2 and IP network3 communicate through the DVPN MGRE tunnel between Device2 and Device3.

Network Topology

Figure 13-1Networking of configuring DVPN MGRE basic functions

Configuration Steps

Step 1: Configure the IP address of the physical interface. (omitted)

#Configure Device1. Configure loopback port as the source address of the tunnel.

Device1#configure terminal

Device1(config)#interface loopback0

Device1(config-if-loopback0)#ip address 192.168.1.1 255.255.255.255

Device1(config-if-loopback0)#exit

#Configure Device2. Configure the loopback port as the source address of the tunnel.

Device2#configure terminal

Device2(config)#interface loopback0

Device2(config-if-loopback0)#ip address 192.168.1.2 255.255.255.255

Device2(config-if-loopback0)#exit

#Configure Device3. Configure the loopback port as the source address of the tunnel.

Device3#configure terminal

Device3(config)#interface loopback0

Device3(config-if-loopback0)#ip address 192.168.1.3 255.255.255.255

- Device3(config-if-loopback0)#exit
- Step 2: Configure OSPF, making the route between Device1, Device2 and Device3 reachable.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device1(config-ospf)# network 192.168.1.1 0.0.0.0 area 0

DVPN TUNN	EL www.qtech.ru
	Device1(config-ospf)#exit
#Configure	Device2.
	Device2#configure terminal
	Device2(config)#router ospf 100
	Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0
	Device2(config-ospf)#network 3.0.0.0 0.0.0.255 area 0
	Device2(config-ospf)#network 192.168.1.2 0.0.0.0 area 0
	Device2(config-ospf)#exit
#Configure	Device3.
	Device3#configure terminal
	Device3(config)#router ospf 100
	Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0
	Device3(config-ospf)#network 3.0.0.0 0.0.0.255 area 0
	Device3(config-ospf)# network 192.168.1.3 0.0.0.0 area 0
	Device3(config-ospf)#exit
#View the ro	pute table of Device3.
	Device3#show ip route
	Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS
	U - Per-user Static route
	0 - OSPF, 0E-OSPF External, M - Management, E - IRMP, EX - IRMP external
	0 1.0.0.0/24 [110/2] via 2.0.0.1, 05:21:40, gigabitethernet2
	[110/2] via 3.0.0.2, 05:28:42, gigabitethernet0
	C 2.0.0.0/24 is directly connected, 06:07:27, gigabitethernet2
	L 2.0.0.3/32 is directly connected, 06:07:27, gigabitethernet2
	C 3.0.0.0/24 is directly connected, 18:52:48, gigabitethernet0
	L 3.0.0.3/32 is directly connected, 18:52:48, gigabitethernet0
	C 103.0.0/24 is directly connected, 18:52:48, gigabitethernet1
	L 103.0.0.3/32 is directly connected, 18:52:48, gigabitethernet1
	LC 192.168.1.3/32 is directly connected, 05:13:45, loopback0
	0 192.168.1.1/32 [110/2] via 2.0.0.1, 05:28:42, gigabitethernet2
	0 192.168.1.2/32 [110/2] via 3.0.0.2, 05:21:40, gigabitethernet0

- Note:
 - The querying methods of Device1 and Device2 are the same as that of Device3, so the querying process is omitted.
- **Step 3:** Configure the MGRE mode of the DVPN tunnel.

#On Device1, configure the DVPN tunnel (tunnel1) as the MGRE mode, source address is loopback0, tunnel address is 188.0.0.1, and register to Device3.

Device1(config)#interface tunnel 1

Device1(config-if-tunnel1)#tunnel mode dvpn mgre

Device1(config-if-tunnel1)#tunnel source loopback0

Device1(config-if-tunnel1)#dvpn nhrp-entry 188.0.0.3 192.168.1.3 register

Device1(config-if-tunnel1)#ip address 188.0.0.1 255.255.255.0

Device1(config-if-tunnel1)#exit

#On Device2, configure the DVPN tunnel (tunnel1) as the MGRE mode, source address is loopback0, tunnel address is 188.0.0.2, and register to Device3.

Device2(config)#interface tunnel 1 Device2(config-if-tunnel1)#tunnel mode dvpn mgre Device2(config-if-tunnel1)#tunnel source loopback0 Device2(config-if-tunnel1)#dvpn nhrp-entry 188.0.0.3 192.168.1.3 register Device2(config-if-tunnel1)#ip address 188.0.0.2 255.255.255.0 Device2(config-if-tunnel1)#exit

#On Device3, configure the DVPN tunnel (tunnel1) as the MGRE mode, source address is loopback0, and tunnel address is 188.0.0.3.

Device3(config)#interface tunnel 1 Device3(config-if-tunnel1)#tunnel mode dvpn mgre Device3(config-if-tunnel1)#tunnel source loopback0 Device3(config-if-tunnel1)#ip address 188.0.0.3 255.255.255.0 Device3(config-if-tunnel1)#exit

Note:

- Device1 and Device2 acts as spoke to initiate registration to Device3 as hub.
- A DVPN MGRE tunnel is established between devices. The public network and private network of the DVPN tunnel need to be routed through OSPF.
- **Step 4:** Configure OSPF, making the public network and private network routes of the DVPN tunn reachable.

#Configure Device1.

Device1(config)#interface tunnel 1 Device1(config-if-tunnel1)#ip ospf network point-to-multipoint Device1(config-if-tunnel1)#exit Device1(config)#router ospf 101 Device1(config-ospf)#network 101.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 188.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#exit

www.qtech.ru

#Configure Device2.

Device2(config)#interface tunnel 1 Device2(config-if-tunnel1)#ip ospf network point-to-multipoint Device2(config-if-tunnel1)#exit Device2(config)#router ospf 101 Device2(config-ospf)#network 102.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#network 188.0.0.0 0.0.0.255 area 0 Device2(config-ospf)#exit

#Configure Device3.

Device3(config)#interface tunnel 1 Device3(config-if-tunnel1)#ip ospf network point-to-multipoint Device3(config-if-tunnel1)#exit Device3(config)#router ospf 101 Device3(config-ospf)#network 103.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#network 188.0.0.0 0.0.0.255 area 0 Device3(config-ospf)#network 188.0.0.0 0.0.0.255 area 0

#View the route table of Device3.

Device3#show ip route

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

0 - 0SPF, 0E-0SPF External, M - Management, E - IRMP, EX - IRMP external

0 1.0.0.0/24 [110/2] via 2.0.0.1, 05:21:40, gigabitethernet2 [110/2] via 3.0.0.2, 05:28:42, gigabitethernet0

C 2.0.0.0/24 is directly connected, 06:07:27, gigabitethernet2

L 2.0.0.3/32 is directly connected, 06:07:27, gigabitethernet2

C 3.0.0.0/24 is directly connected, 18:52:48, gigabitethernet0

L 3.0.0.3/32 is directly connected, 18:52:48, gigabitethernet0

- 0 101.0.0.0/24 [110/1001] via 188.0.0.1, 07:04:55, tunnel1
- 0 102.0.0.0/24 [110/1001] via 188.0.0.2, 07:04:55, tunnel1
- C 188.0.0.0/24 is directly connected, 07:01:21, tunnel1
- 0 188.0.0.1/32 [110/1000] via 188.0.0.1, 07:00:13, tunnel1
- L 188.0.0.3/32 is directly connected, 07:01:21, tunnel1
- 0 188.0.0.2/32 [110/1000] via 188.0.0.2, 06:57:33, tunnel1
- C 103.0.0/24 is directly connected, 18:52:48, gigabitethernet1
- L 103.0.0.3/32 is directly connected, 18:52:48, gigabitethernet1

- LC 192.168.1.3/32 is directly connected, 05:13:45, loopback0
- 0 192.168.1.1/32 [110/2] via 2.0.0.1, 05:28:42, gigabitethernet2
- 0 192.168.1.2/32 [110/2] via 3.0.0.2, 05:21:40, gigabitethernet0

Note:

- The querying methods of Device1 and Device2 are the same as that of Device3, so the process is omitted.
- Step 5: Check the result.

#On Device1, view the static mapping entry.

Device1#show dvpn mgre entry tunnel 1

Private addre	ss Public ad	ldress	Туре	Created time	Expire time
188.0.0.3	192.168.1.3	static	06:30:3	9	

#On Device2, view the static mapping entry.

Device2#show dvpn mgre entry tunnel 1

Private address Public address Type Created time Expire time

188.0.0.3 192.168.1.3 static 06:29:28 --

#On Device3, view the static mapping entry.

Device3#show dvpn mgre entry tunnel 1						
Private addres	s Public ac	ldress	Туре	Created	l time	Expire time
188.0.0.1	192.168.1.1	hub-dy	namic	06:30:50	01:59	9:11
188.0.0.2	192.168.1.2	hub-d	ynamic	06:33:24	01:5	6:37

#The packet forwarding between IP networks is normal, and the packet is protected by mGRE mode of DVPN tunnel.

13.3.2. Configure UDP Basic Functions

Network Requirements

- The IP networks connected with Device1, Device2 and Device3 are the corresponding private IP networks.
- IP network1 and IP network2 communicate through the DVPN UDP tunnel between Device1 and Device2.
- IP network1 and IP network3 communicate through the DVPN UDP tunnel between Device1 and Device3.
- IP network2 and IP network3 communicate through the DVPN UDP tunnel between Device2 and Device3.

Network Topology

Figure 13-2 Networking of configuring DVPN UDP basic functions

Configuration Steps

Step 1: Configure the IP address of the physical interface. (omitted)

#Configure Device1. Configure loopback port as the source address of the tunnel.

- Device1#configure terminal
- Device1(config)#interface loopback0
- Device1(config-if-loopback0)#ip address 192.168.1.1 255.255.255.255
- Device1(config-if-loopback0)#exit

#Configure Device2. Configure loopback port as the source address of the tunnel.

- Device2#configure terminal
- Device2(config)# interface loopback0
- Device2(config-if-loopback0)#ip address 192.168.1.2 255.255.255.255
- Device2(config-if-loopback0)#exit

#Configure Device3. Configure loopback port as the source address of the tunnel.

- Device3#configure terminal
- Device3(config)#interface loopback0
- Device3(config-if-loopback0)#ip address 192.168.1.3 255.255.255
- Device3(config-if-loopback0)#exit
- **Step 2:** Configure OSPF, making the route between Device1, Device2, and Device3 reachable.

#Configure Device1.

Device1#configure terminal Device1(config)#router ospf 100 Device1(config-ospf)#network 1.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 2.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 192.168.1.1 0.0.0.0 area 0

DVPN TUN	NEL www.qtech.ru
	Device1(config-ospf)#exit
#Configure	Device2.
	Device2#configure terminal
	Device2(config)#router ospf 100
	Device2(config-ospf)#network 1.0.0.0 0.0.0.255 area 0
	Device2(config-ospf)#network 3.0.0.0 0.0.0.255 area 0
	Device2(config-ospf)#network 192.168.1.2 0.0.0.0 area 0
	Device2(config-ospf)#exit
#Configure	Device3.
	Device3#configure terminal
	Device3(config)#router ospf 100
	Device3(config-ospf)#network 2.0.0.0 0.0.0.255 area 0
	Device3(config-ospf)#network 3.0.0.0 0.0.0.255 area 0
	Device3(config-ospf)#network 192.168.1.3 0.0.0.0 area 0
	Device3(config-ospf)#exit
#View the	route table of Device3.
	Device3#show ip route
	Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS
	U - Per-user Static route
	0 - 0SPF, 0E-0SPF External, M - Management, E - IRMP, EX - IRMP external
	0 1.0.0.0/24 [110/2] via 2.0.0.1, 05:21:40, gigabitethernet2
	[110/2] via 3.0.0.2, 05:28:42, gigabitethernet0
	C 2.0.0.0/24 is directly connected, 06:07:27, gigabitethernet2
	L 2.0.0.3/32 is directly connected, 06:07:27, gigabitethernet2
	C 3.0.0.0/24 is directly connected, 18:52:48, gigabitethernet0
	L 3.0.0.3/32 is directly connected, 18:52:48, gigabitethernet0
	C 103.0.0.0/24 is directly connected, 18:52:48, gigabitethernet1
	L 103.0.0.3/32 is directly connected, 18:52:48, gigabitethernet1
	LC 192.168.1.3/32 is directly connected, 05:13:45, loopback0

- 0 192.168.1.1/32 [110/2] via 2.0.0.1, 05:28:42, gigabitethernet2
- 0 192.168.1.2/32 [110/2] via 3.0.0.2, 05:21:40, gigabitethernet0

Note:

- The querying methods of Device1 and Device2 are the same as that of Device3, so the process is omitted.
- **Step 3:** On Device3, configure UDP Server.

Device3(config)#dvpn server enable Device3(config-dvpnserver)#authentication-key 0 a Device3(config-dvpnserver)#exit

Step 4: Configure the UDP mode of the DVPN tunnel.

#On Device1, configure the DVPN tunnel (tunnel1) as the UDP mode, source address is loopback0, tunnel address is 188.0.0.1, and Device1 acts as spoke to register to Server.

Device1(config)#interface tunnel 1

Device1(config-if-tunnel1)#tunnel mode dvpn udp

Device1(config-if-tunnel1)#tunnel source loopback0

Device1(config-if-tunnel1)#dvpn primary server 192.168.1.3

Device1(config-if-tunnel1)#ip address 188.0.0.1 255.255.255.0

Device1(config-if-tunnel1)#dvpn authentication key 0 a

Device1(config-if-tunnel1)#dvpn client spoke

Device1(config-if-tunnel1)#exit

#On Device2, configure the DVPN tunnel (tunnel1) as the UDP mode, source address is loopback0, tunnel address is 188.0.0.2, and Device2 acts as spoke to register to Server.

Device2(config)#interface tunnel 1

Device2(config-if-tunnel1)#tunnel mode dvpn udp

Device2(config-if-tunnel1)#tunnel source loopback0

Device2(config-if-tunnel1)#dvpn primary server 192.168.1.3

Device2(config-if-tunnel1)#ip address 188.0.0.2 255.255.255.0

Device2(config-if-tunnel1)#dvpn authentication key 0 a

Device2(config-if-tunnel1)#dvpn client spoke

Device2(config-if-tunnel1)#exit

#On Device3, configure the DVPN tunnel (tunnel1) as the UDP mode, source address is loopback0, tunnel address is 188.0.0.3, and Device3 acts as hub to register to Server.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#tunnel mode dvpn udp

Device3(config-if-tunnel1)#tunnel source loopback0

Device3(config-if-tunnel1)#dvpn primary server 192.168.1.3

Device3(config-if-tunnel1)#ip address 188.0.0.3 255.255.255.0

Device3(config-if-tunnel1)#dvpn authentication key 0 a

Device3(config-if-tunnel1)#dvpn client hub

Device3(config-if-tunnel1)#exit

Note:

• Device3 acts as Server, Device1 and Device2 act as spoke to initiate registration to Server, and Device3 initiates registration to itself as hub.

Руководство по настройке QSR-1920, QSR-2920, QSR-3920

DVPN TUNNEL

www.qtech.ru

- The DVPN UDP tunnel between devices is established, and the public network and private network of the DVPN tunnel need to be routed through OSPF.
- **Step 5:** Configure OSPF, making the public network and private network routes of the DVPN tunnel of all devices reachable.

#Configure Device1.

Device1(config)#interface tunnel 1 Device1(config-if-tunnel1)#ip ospf network point-to-multipoint Device1(config-if-tunnel1)#exit Device1(config)#router ospf 101 Device1(config-ospf)#network 101.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#network 188.0.0.0 0.0.0.255 area 0 Device1(config-ospf)#exit

#Configure Device2.

Device2(config)#interface tunnel 1

Device2(config-if-tunnel1)#ip ospf network point-to-multipoint

Device2(config-if-tunnel1)#exit

Device2(config)#router ospf 102

Device2(config-ospf)#network 102.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#network 188.0.0.0 0.0.0.255 area 0

Device2(config-ospf)#exit

#Configure Device3.

Device3(config)#interface tunnel 1

Device3(config-if-tunnel1)#ip ospf network point-to-multipoint

Device3(config-if-tunnel1)#exit

Device3(config)#router ospf 103

Device3(config-ospf)#network 103.0.0.0 0.0.0.255 area 0

Device3(config-ospf)#network 188.0.0.0 0.0.0.255 area 0

Device3(config-ospf)#exit

#View the route table of Device3.

Device3#show ip route Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS U - Per-user Static route 0 - 0SPF, 0E-0SPF External, M - Management, E - IRMP, EX - IRMP external

0 1.0.0.0/24 [110/2] via 2.0.0.1, 05:21:40, gigabitethernet2 [110/2] via 3.0.0.2, 05:28:42, gigabitethernet0

- C 2.0.0.0/24 is directly connected, 06:07:27, gigabitethernet2
- L 2.0.0.3/32 is directly connected, 06:07:27, gigabitethernet2
- C 3.0.0.0/24 is directly connected, 18:52:48, gigabitethernet0
- L 3.0.0.3/32 is directly connected, 18:52:48, gigabitethernet0
- 0 101.0.0.0/24 [110/1001] via 188.0.0.1, 07:04:55, tunnel1
- 0 102.0.0.0/24 [110/1001] via 188.0.0.2, 07:04:55, tunnel1
- C 188.0.0.0/24 is directly connected, 07:01:21, tunnel1
- 0 188.0.0.1/32 [110/1000] via 188.0.0.1, 07:00:13, tunnel1
- L 188.0.0.3/32 is directly connected, 07:01:21, tunnel1
- 0 188.0.0.2/32 [110/1000] via 188.0.0.2, 06:57:33, tunnel1
- C 103.0.0.0/24 is directly connected, 18:52:48, gigabitethernet1
- L 103.0.0.3/32 is directly connected, 18:52:48, gigabitethernet1
- LC 192.168.1.3/32 is directly connected, 05:13:45, loopback0
- 0 192.168.1.1/32 [110/2] via 2.0.0.1, 05:28:42, gigabitethernet2
- 0 192.168.1.2/32 [110/2] via 3.0.0.2, 05:21:40, gigabitethernet0

Note:

 The querying methods of Device1 and Device2 are the same as that of Device3, so the process is omitted.

Step6: Check the result.

#On Device3, view the server status, hub registration status and tunnel setup.

Device3#show dvpn udp server fsm Server status : Enabled Registered spoke number: 2 Registered hub number : 1

Client type	: Spoke
Current state	: Online
Hold time	: 00:34:24
Client port	: 60001
Client area id	: 0
Client request id	: 3
Client private address	: 188.0.0.1
Client public address	: 192.168.1.1
Client DH group	: 8192 bits DH group
Encryption-algorithm	: AES-CBC-256
Authentication-algorit	thm : SHA-1

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Data encryption-algorithm : AES-CBC-256 Data authentication-algorithm : SHA-1

Client type	: Hub
Current state	: Online
Hold time	: 00:35:38
Client port	: 60001
Client area id	: 0
Client request id	: 3
Client private address	: 188.0.0.3
Client public address	: 192.168.1.3
Client DH group	: 8192 bits DH group
Encryption-algorithm	: AES-CBC-256
Authentication-algori	thm : SHA-1
Data encryption-algor	ithm : AES-CBC-256
Data authentication-a	lgorithm : SHA-1

Client type	: Spoke		
Current state	: Online		
Hold time	: 00:34:51		
Client port	: 60001		
Client area id	: 0		
Client request id	: 3		
Client private address	s : 188.0.0.2		
Client public address	: 192.168.1.2		
Client DH group	: 6144 bits DH group		
Encryption-algorithm	: AES-CBC-256		
Authentication-algori	thm : SHA-1		
Data encryption-algo	rithm : AES-CBC-256		
Data authentication-algorithm : SHA-1			

Device3#show dvpn udp client fsm			
Primary server	: 192.168.1.3		
Interface tunnel	: 1		
Current state	: Online		
Hold time	: 00:37:14		
Key update expire time	e : 23:22:46		

www.qtech.ru

Keepalive interval time	: 300 seconds			
DH group value	: 8192 bits DH group			
Encryption-algorithm	: AES-CBC-256			
Authentication-algorithm	: SHA-1			
Data encryption-algorithm : AES-CBC-256				
Data authentication-algorithm : SHA-1				

Device3#show dvpn udp entry tunnel 1

Private addr	ess F	Public a	ddress	Port	Туре	Sta	te	Expire time	Hold time
188.0.0.1	192.16	58.1.1	60001	H-S	Succes	ss ·		00:37:10	
188.0.0.2	192.1	68.1.2	60001	H-S	Succe	SS		00:36:43	3

#On Device1, view the registration status and tunnel setup information.

Device1#show dvpn udp client fsm

Primary server	: 192.168.1.3			
Interface tunnel	:1			
Current state	: Online			
Hold time :	00:09:13			
Key update expire time	: 23:50:47			
Keepalive interval time	: 300 seconds			
DH group value	: 6144 bits DH group			
Encryption-algorithm	: AES-CBC-256			
Authentication-algorith	m : SHA-1			
Data encryption-algorit	hm : AES-CBC-256			
Data authentication-algorithm : SHA-1				

Device1#show dvpn udp entry tunnel 1 Private address Public address Port Type State Expire time Hold time 188.0.0.3 192.168.1.3 60001 S-H Success -- 00:09:17

#The packets between IP Networks are forwarded normally, and the packets are protected by the UDP mode of the DVPN tunnel.

Note:

• The querying method of Device1 is the same as that of Device2, so the process is omitted.

14. DHCP

14.1. Overview

It is hard to manage a large network. For example, in a network in which IP addresses are manually allocated, IP address conflicts are common. The only way of solving the problem is to dynamically allocate IP addresses to the hosts. The Dynamic Host Configuration Protocol (DHCP) allocates IP address to requesting hosts from an IP address pool. DHCP also provides other information, such as gateway IP and DNS server address. DHCP reduces the workload of the administrator in recording and tracking manually allocated IP addresses.

DHCP is a protocol that is based on UDP broadcast. The process for a DHCP client to obtain an IP address and other configuration information contains four phases.

DISCOVER phase. When the DHCP client accesses the network for the first time, it sends a DHCP DISCOVER packet with the source address 0.0.0.0 and destination address 255.255.255 to the network.

OFFER phase. After the DHCP server receives the DHCP DISCOVER broadcast packet sent by the client, it selects an IP address from the corresponding IP address pool according to the policy, and sends the IP address and other parameters to the client in a DHCP OFFER packet.

REQUEST phase. If the DHCP client receives response messages from multiple DHCP servers on the network, it selects one DHCP OFFER (usually the one that arrives first). Then it sends a DHCP REQUEST packet to the network, telling the entire DHCP server the IP address of which server it will accept.

ACK phase. After the DHCP server receives the DHCP REQUEST packet from the DHCP server, it sends a DHCP ACK message containing the provided IP address and other configuration to the DHCP client, telling the DHCP client that the DHCP client can use the provided IP address.

The IP address that the DHCP server allocates to the DHCP client has a lease. After the lease expires, the server will take back the allocated IP address. When the lease term of the IP address of the DHCP client has passed half time, the DHCP client sends a DHCP REQUEST packet to the DHCP server requesting to update its IP address lease. If the DHCP server allows the DHCP client to use its IP address, the DHCP server responds with a DHCP ACK packet, requesting the DHCP client to update the lease. If the DHCP server does not allow the DHCP client to continue to use the IP address, the DHCP server responds with a DHCP NAK packet.

During dynamic IP address acquisition, request packets are sent in broadcast mode; therefore, DHCP is applied only when the DHCP client and server are in the same subnet. If multiple subnets exist in a network and the hosts of the subnets need to obtain configuration information such as IP address through the DHCP server, the hosts of the subnets communicate with the DHCP server through a DHCP relay to obtain IP addresses and other configuration information.

14.2. DHCP Function Configuration

Table 14-1 DHCP function list

Configuration Tasks				
Configure a DHCP address	Create a DHCP address pool.			
	Bind an IP address to a DHCP host.			
	Configure an IP address range.			
	Configure a domain suffix.			
	Configure the address of the NETBIOS server.			
	Configure a DNS server address.			
	Configure the default route.			
	Configure the lease of an IP address.			
	Configure VRF properties.			
	Configure user-defined options.			
	Configure the address pool of the specified manufacturer			
Configure other parameters of a DHCP server.	Configure the DHCP server			
	Configure the range of reserved IP addresses.			
	Configure DHCP ping detection parameters.			
	Configure DHCP data log function			

www.qtech.ru

Configuration Tasks			
Configure the functions of a DHCP client.	Configure a DHCP client.		
	Configure the manufacturer ID		
	Configure the DHCP routing distance		
	Configure the Option60		
	Configure the DHCP client not to request the default route		
Configure the DHCP relay	Configure the DHCP relay		
	Configure the Option 82 function		
	Configure the source address of the interface DHCP relay packet		
	Configure the address of the DHCP server		

14.2.1. Configure a DHCP Address Pool

Configuration Condition

None

Create a DHCP Address Pool

A DHCP server needs to select and allocate IP addresses and other parameters from a DHCP address pool. Therefore, a DHCP address pool must be created for the DHCP server first.

Table 14-2 Creating a DHCP address pool

Step	Command	Description
Enter the global configuration mode.	configure terminal	-

www.qtech.ru

Step	Command	Description
Create a DHCP address pool and enter the DHCP configuration mode.	ip dhcp pool pool-name [vrf vrf-name]	Mandatory. By default, no DHCP address pool has been created by the system.

Note:

• Address pools fall into three types: Network, and Range, which can be configured respectively through the network, and range commands.

Configure an IP Address Range

On a DHCP server, each DHCP address pool must be configured with an IP address range to allocate IP addresses to DHCP clients.

able 14-3 Configuring an IP address range		
Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCP configuration mode.	<pre>ip dhcp pool pool-name [vrf vrf-name]</pre>	-
Configure the IP address range of the Network type.	network ip-address [network-mask mask-len]	Optional. By default, an IP address range is not configured for an address pool.
Configure an IP address range of the Range type.	range low-ip-addres high- ip-address [network-mask mask-len]	Optional. By default, an IP address range is not configured for an address pool.

Table 14-3 Configuring an IP address range

Note:

- After an IP address range is configured for an address pool by using the **network** or **range** command, if you run the **network** or **range** command again, the new IP address range configuration overwrites the existing configuration.
- Modify the network type of the address pool to the range type (or change the range type of address pool to the network type). If there is an intersection between the newly configured address range and the old configured address range, the command line will prompt the user whether to perform the operation. If so, all address configurations

www.qtech.ru

(static binding, vendor sub pool) and dynamic leases under the address pool will be deleted; If the actual effective range of the newly configured address includes that of the old configuration, the address pool will retain all the address configurations (static binding, vendor sub pool) under the address pool, but will delete the IP range and dynamic lease configured by the vendor sub pool.

Configure a DNS Server Address

On a DHCP server, you can configure the DNS server address respectively for each DHCP address pool. When a DHCP server allocates an IP address for a DHCP client, it also sends the DNS server address to the client.

When the DHCP client starts dynamic domain name resolution, it queries the DNS server.

|--|

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCP configuration mode.	<pre>ip dhcp pool pool-name [vrf vrf-name]</pre>	-
Configure a DNS server address.	dns-server { <i>ip-address</i> &<1-8> autoconfig }	Mandatory. By default, the DNS server address is not configured.

Configure the Default Route

On a DHCP server, you can specify the address of a gateway corresponding to clients for each DHCP address pool. When the server allocates an IP address to a client, it also sends the gateway address to the client.

When a DHCP client accesses a server or host that is not in the network segment, its data is forwarded through the gateway.

....

Table 14-5 Configuring the default route

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCP configuration mode.	<pre>ip dhcp pool pool-name [vrf vrf-name]</pre>	-
Configure the default route.	default-router ip- address&<1-8>	Mandatory. By default, no default route is configured.

Configure the Lease of an IP Address

The IP address that the DHCP server allocates to the DHCP client has a lease. After the lease expires, the server will take back the allocated IP address. If the DHCP client wants to continue to use the IP address, it must have the IP address lease updated.

On the DHCP server, you can configure an IP address lease for each DHCP address pool.

Table 14-6 Configuring the lease of an IP address

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCP configuration mode.	<pre>ip dhcp pool pool-name [vrf vrf-name]</pre>	-
Configure an IP address lease.	lease days [hours [minutes]]	Mandatory. By default, the value of <i>days</i> is 1, the value of <i>hours</i> is 6, and the value of <i>minutes</i> is 0.

Configure IP and MAC Address Binding

The command is used to configure IP and MAC address binding. When the client with specified MAC address requests the DHCP server to assign IP address, the DHCP server will assign its bound IP address. As long as the MAC address of the client remains unchanged (such as changing network card), the IP address obtained by the client from the server is the same every time.

....

Table 14-7 Configure IP and MAC address binding

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCP configuration mode.	ip dhcp pool pool-name [vrf vrf-name]	-
Configure IP and MAC address binding	bind { <i>ip-address mac-</i> <i>address</i> automatic }	Mandatory By default, do not configure the IP, MAC address binding.

Configure User-Defined Options

For some options, RFC does not give specifications; therefore, you can define these options according to the actual requirement.

Table 14-6 Configuring user-defined option	Table 14-8	3 Configuring	user-defined	options
--	------------	---------------	--------------	---------

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCP configuration mode.	<pre>ip dhcp pool pool-name [vrf vrf-name]</pre>	-
Configuring user-defined options.	option option-code { ascii ascii-string hex hex-string ip ip-address&<1-8> }	Mandatory. By default, user-defined options are not configured.

Configure the Address Pool of Specified Manufacturer

When the client requests for the IP address, it may carry the option60, indicating the manufacturer ID. The customer can specify different IP address segments for different manufacturers.

....

Table 14-9 Configure the address pool of the DHCP manufacturer

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCP configuration mode.	<pre>ip dhcp pool pool-name [vrf vrf-name]</pre>	-
Configure the address pool of the manufacturer and enter the DHCP manufacturer address pool configuration mode	vendor-class-identifier vendor_id	By default, do not configure the manufacturer address pool.
Configure the manufacturer address pool range	ip range low-ip-address high-ip-address	By default, do not configure the range.
Configure the option 43 content returned for the specified manufacturer	option 43 { ascii ascii- string hex hex-string ip ip-address&<1-8> }	By default, do not configure.

14.2.2. Configure Other Parameters of a DHCP Server

Configuration Condition

None

Configure DHCP Server

After the interface works in the DHCP server mode, when the interface receives the DHCP request packet from the DHCP client, the DHCP server will assign the IP address and other network parameters to the client.

Table 14-10 Configure the DHCP server

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode	interface interface-name	-

www.qtech.ru

....

Step	Command	Description
Configure the DHCP server function	ip dhcp server	Mandatory By default, do not configure the DHCP server function.

Configure the Range of Reserved IP Addresses

In a DHCP address pool, some IP addresses are reserved for some special devices, and some IP addresses conflict with the IP addresses of other hosts in the network. Therefore, the IP addresses cannot be dynamically allocated.

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the range of reserved IP addresses.	ip dhcp excluded- address <i>low-ip-address</i> [<i>high-ip-address</i>] [vrf <i>vrf-</i> <i>name</i>]	Mandatory. By default, the range of reserved IP addresses is not configured. The IP addresses in the reserved IP address range will not be allocated.

Table 14-11 Configuring the range of reserved IP addresses

Configure DHCP Ping Detection Parameters

To prevent an IP address conflict, before dynamically allocating an IP address to a DHCP client, a DHCP server must detect the IP address. The detection operation is performed through the ping operation. The DHCP server determines whether an IP address conflict exists by checking whether an ICMP response packet is received within the specified time.

Table 14-12 Configuring DHCP ping detection parameters

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure DHCP ping detection parameters.	ip dhcp ping { packets <i>packet-num</i> timeout <i>milliseconds</i> }	Mandatory. By default, the number of ping packets is 1, and the timeout time is 500ms.

Configure DHCP Data Log Function

After the data log function of the DHCP server is enabled, the address pool allocation of the DHCP server will be recorded in the data log.

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the data log function switch of the DHCP server	ip dhcp logging security- data	Mandatory' By defaut, do not enable the data log function.

Table 14-13 Configure the DHCP data log function

14.2.3. Configure the Functions of a DHCP Client

Configuration Condition

None

Configure a DHCP Client

A DHCP client interface obtains an IP address and other parameters through DHCP.

Table 14-14 Configuring a DHCP Client

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-

www.qtech.ru

....

Step	Command	Description
Configure the DHCP client to obtain an IP address.	ip address dhcp [request-ip-address <i>ip-</i> address network-mask]	Mandatory. By default, the DHCP client is not configured to obtain an IP address.

Configure DHCP Routing Distance

In the IP routing table, each protocol has a management distance to control the routing, that is, routing distance. The routing distance is used to decide the routing for the same network segment of different protocols. The routing with a short distance has a high priority.

Table 14-15 Configure the DHCP routing distance

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the DHCP routing distance	ip dhcp route-distance distance	Mandatory By default, the DHCP routing distance is 254.

Configure Option 60

The content of DHCP Option 60 is the manufacturer ID. When the DHCP client requests, it can carry option 60. The server can make the policy for distributing the IP address according to the option.

Table 14-16 Configure the DHCP Option 60 function

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-
Configure the option 60 function	ip dhcp vendor-class- identifier {disable content hex-string}	By default, the DHCP client carries the manufacturer ID, and uses the default manufacturer ID carried by the system.

Configure the DHCP Client Not to Request Default Route

When the DHCP client requests the IP address, request the default route by default. The user can specify the DHCP client not to request the default route, but configure the route by itself.

Table 14-17 Configure the DHCP client not to request the default route

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the DHCP client not to request the default route	ip dhcp router-option disable	Mandatory By default, the DHCP client requests the default route.

14.2.4. Configure the Function of a DHCP Relay

Configuration Condition

None

Configure a DHCP Relay

If multiple subnets exist in a network and the hosts of the subnets need to obtain configuration information such as IP address through the DHCP server, the hosts of the subnets communicate with the DHCP server through a DHCP relay to obtain IP addresses and other configuration information. If the interface works in the DHCP relay mode, when the interface receives the DHCP packet from the DHCP client, it will relay the packet to the configured DHCP server, and the DHCP server will assign the IP address.

....

Table 14-18 Configuring a DHCP relay

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode.	interface interface-name	-
Configure the DHCP relay function.	ip dhcp relay	Mandatory. By default, the DHCP relay function is not configured.

Configure the Option82 Function

The option 82 option, called the relay information option, records the location information of the DHCP client. If the DHCP relay is configured to enable the Option 82 function, and after receiving the request packet sent by the DHCP client to the DHCP server, and the request packet does not have option 82 option, add Option 82 to the request packet and forward it to the DHCP server; If the DHCP relay is configured to support Option 82 function and Option 82 has been carried in the request packet, the next processing will be carried out according to the action configured by the **ip dhcp relay information strategy** command, and then the packet will be forwarded to the server; If the DHCP relay receives the DHCP reply packet with the option 82, the option 82 option will be deleted and forwarded to the DHCP client.

Table 14-19 Configuring the Option82 function

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable DHCP relay to support Option 82	ip dhcp relay information option	Mandatory By default, do not enable DHCP relay to support Option 82.
Configure the processing policy when the DHCP relay receives the request packet with option 82 from the client	ip dhcp relay information strategy { drop keep replace }	Optional The packet with Option 82 uses the replace action.

www.qtech.ru

Step	Command	Description
Configure Option 82 function	<pre>ip dhcp relay information { option remote-id { ascii ascii-string hex hex- string } circuit-id { ascii ascii-string hex hex-string } }</pre>	Mandatory' By default, do not configure the Option 82 function.

Configure the Source Address of the DHCP Relay Packet as the Relay Address

When the DHCP relay sends the packet, the default used source address of the packet is the auto selected address of the system. In some special environments, the DHCP server cannot communicate the address, so the user can configure the DHCP relay to fill in the source address of the packet as the relay address.

Table 14-20 Configure the source address of the DHCP relay packet as the relay address

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the source address of the DHCP relay packet	ip dhcp relay source- address relay-address	Mandatory By default, the source address of the DHCP relay packet is the out interface address of the route to the DHCP server
Enter the interface configuration mode	interface interface-name	-
Configure the source address of the DHCP relay packet	ip dhcp relay source- address ip-address	Mandatory By default, the source address of the DHCP relay packet is the out interface address of the route to the DHCP server.

Note:

• The source address configured by the command **ip dhcp relay source-address** *ip-address* is the interface address of the local device. Meanwhile, the interface address should be in the same vrf as the relay interface. Otherwise, the relay packet cannot be sent.

....

If the command ip dhcp relay source-address ip-address is configured in the interface mode, and the command ip dhcp relay source-address relay-address is configured in the global mode, the priority of the former is higher than that of the latter. The DHCP relay will use the configured *ip-address* to fill in the source address of the packet sent by the DHCP relay to the DHCP server.

Configure DHCP Server Address

When the interface receives the DHCP packet from the DHCP client, it will relay the packet to the configured DHCP server, and the DHCP server will assign the IP address.

Table 14-21 Configure the DHCP server address

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the DHCP server address	ip dhcp relay server - address ip-address	Mandatory By default, do not configure the DHCP server address.

14.2.5. DHCP Monitoring and Maintaining

Table 6-22 DHCP monitoring and maintaining

Command	Description	
<pre>clear ip dhcp pool pool-name { lease [ip-address] conflict [ip-address] }</pre>	Clear the dynamic lease information in the address pool or address information with address conflict	
clear ip dhcp server interface [interface-name] statistics	Clear the key statistics of the packet interaction between DHCP server and client or relay	
clear ip dhcp relay statistics	Clear the statistics on DHCP relay device	

DHCP	
------	--

www.qtech.ru

....

Command	Description	
show ip dhcp server interface <i>interface</i> - <i>name</i> [statistics]	Display the address pool information associated with the specified interface, or display the key information statistics when the DHCP server interacts with the client or relay	
<pre>show ip dhcp pool pool-name { summary ping_list offer_list excluded_list conflict_list lease binding }</pre>	Display the summary information of the specified address pool, the address information being pinged or the sent OFFER packet, the address information of the REQUEST packet waiting for the DHCP client to respond, display the excluded address information under address pool or display the address information of the address conflict under address pool or display the dynamic lease information under address pool or static binding information under the address pool	
<pre>show ip dhcp pool pool-name specific { ip-address ip-address mac-address mac-address }</pre>	Display the information about the IP address or MAC address specified under the address pool	
show show ip dhcp relay [interface interface-name]	Display the packet statistics on DHCP relay devices.	

14.3. DHCP Typical Configuration Example

14.3.1. Configure a DHCP Server to Statically Allocate IP Addresses

Network Requirements

- Device2 acts as a DHCP server to allocate IP addresses, gateway IP addresses, and DNS server IP addresses in a static manner.
- The DHCP server allocates an IP address to PC in MAC binding mode.

••••

Network Topology

DHCP

Figure 14-1 Configuring a DHCP server to statically allocate IP addresses

Configuration Steps

Step 1: Configure IP addresses for interface of Device2. (Omitted)

Device2#configure terminal

Device2(config)#interface gigabitethernet 0

Device2(config-if-gigabitethernet0)#ip address 1.0.0.3 255.255.255.0

Device2(config-if-gigabitethernet0)#exit

Step 2: Configure statically bound address pools and parameters.

#Configure the address pool mac-binding, and allocate an IP address to PC1 in static MAC binding mode.

Device2(config)#ip dhcp pool mac-binding Device2(dhcp-config)#host 1.0.0.11 255.255.255.0 Device2(dhcp-config)#hardware-address 00e0.00c1.013d Device2(dhcp-config)#default-router 1.0.0.1 Device2(dhcp-config)#dns-server 1.0.0.2 Device2(dhcp-config)#exit

#Configure the address pool client-id-binding, and allocate an IP address to PC2 in static client ID binding mode.

Device2(config)#ip dhcp pool client-id-binding Device2(dhcp-config)#host 1.0.0.12 255.255.255.0 Device2(dhcp-config)#client-identifier 0100.e04c.113c.f2 Device2(dhcp-config)#default-router 1.0.0.1 Device2(dhcp-config)#dns-server 1.0.0.2 Device2(dhcp-config)#exit

Step 3: Check the result.

www.qtech.ru

#On Device2, use the command **show ip dhcp server interface gigabitethernet0** to view the associated address pool of the interface.

•					
Device2(config	g)#exit				
Device2#show ip dhcp server interface gigabitethernet0					
OHCP server status information:					
DHCP server is enabled on interface: gigabitethernet0					
Vrf : global					
DHCP server pool information:					
Available dire	ctly-connected po	ol:			
Interface IP	Pool name	Pool Range	Pool utilization		
				·	
1.0.0.3/24	mac-binding	1.0.0.4 - 1.0.0.2	54 0.00%		

#On Device2, use the command **show ip dhcp pool mac-binding binding** to view the binding IP address assigned for PC.

Device2#show ip dhcp pool mac-binding binding

IP Address MAC Address Vendor Id Type Time Left(s)

----- ------ ------

1.0.0.11 00e0.00c1.013d Global Binding NA

#On Device2, use the command **show ip dhcp pool mac-binding lease** to view the address assigned for the PC.

Device#show ip dhcp pool danymic-pool2 lease

IP Address MAC Address Vendor Id Type Time Left(s)

----- ------

1.0.0.11 00e0.00c1.013d Global Lease 107980

Check that the IP address, gateway IP address and DNS server address obtained on PC are correct.

14.3.2. Configure a DHCP Server to Dynamically Allocate IP Addresses

Network Requirements

- Two Ethernet interfaces of Device, gigabitethernet0 and gigabitethernet1, are respectively configured with IP addresses in the 1.0.0.3/24 and 2.0.0.3/24 network segments.
- The DHCP server Device dynamically allocates IP addresses in the 1.0.0.0/24 and 2.0.0.0/24 network segments to the two clients in the directly-connected physical network.
- The IP addresses in network segment 1.0.0.0/24 have a one-day lease, the gateway address is 1.0.0.3, and the DNS server address is 2.0.0.4. The IP addresses in network segment 2.0.0.0/24 have a three-day lease the gateway address is 2.0.0.3, and the DNS server address is 2.0.0.4.
- The first 10 IP addresses in network segments 1.0.0.0/24 are reserved and cannot be allocated.

Network Topology

Figure 14-2 Networking for configuring the DHCP server to dynamically allocate IP addresses

Configuration Steps

Step 1: Configure the IP address of the device interface and make the interface work in the DHCP server mode.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip address 1.0.0.3 255.255.255.0

Device(config-if-gigabitethernet0)#ip dhcp server

Device(config-if-gigabitethernet0)#exit

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip address 2.0.0.3 255.255.255.0

Device(config-if-gigabitethernet1)#ip dhcp server

Device(config-if-gigabitethernet1)#exit

Step 2: On the DHCP server Device, configure two dynamic address pools and their parameters.

#Configure the first 10 IP addresses in the two address pools to be reserved.

Device(config)#ip dhcp excluded-address 1.0.0.1 1.0.0.10

Device(config)#ip dhcp excluded-address 2.0.0.1 2.0.0.10

#Configure address pool dynamic-pool1 and its parameters (including address range, gateway, DNS, address lease).

Device(config)#ip dhcp pool dynamic-pool1

Device(dhcp-config)#network 1.0.0.0 255.255.255.0

Device(dhcp-config)#default-router 1.0.0.3

Device(dhcp-config)#dns-server 2.0.0.4

Device(dhcp-config)#lease 100

Device(dhcp-config)#exit

#Configure address pool dynamic-pool2 and its parameters (including address range, gateway, DNS address, address lease).

Device(config)#ip dhcp pool dynamic-pool2 Device(dhcp-config)#network 2.0.0.0 255.255.255.0 Device(dhcp-config)#default-router 2.0.0.3 Device(dhcp-config)#dns-server 2.0.0.4 Device(dhcp-config)#lease 3 0 0 Device(dhcp-config)#exit

Step 3: Check the result.

#View the information of the associated address pool of the server on Device.

	Device(config)#exit					
	Device#show ip dhcp server interface g0					
	DHCP server status information:					
	DHCP server is enabled on interface: gigabitethernet0					
	Vrf : global					
	DHCP server pool information:					
	Available dired	ctly-connected po	ol:			
	Interface IP	Pool name	Pool Range	Pool utilization		
	1.0.0.3/24	 dynamic-pool1	1.0.0.0 - 1.0.0.255	5 0.00%		
	Device#show	ip dhcp server inte	erface g1			
	DHCP server s	status information	:			
	DHCP server i	s enabled on inter	-face: gigabitethei	rnet1		
	Vrf : global DHCP server pool information:					
	Available directly-connected pool:					
	Interface IP	Pool name	Pool Range	Pool utilization		
	1.0.0.3/24 d	ynamic-pool2	2.0.0.0 - 2.0.0.25	55 0.00%		
#View the I	P address infoi	mation assigned i	for the client on D	evice.		
Device#show ip dhcp pool danymic-pool1 lease						
	IP Address	MAC Address	Vendor Id	Type Time Left(s)		
	1.0.0.11 00	01.7a6a.0268	Global Leas	se 86390		
	Device#show	ip dhcp pool dany	mic-pool2 lease			
	IP Address	MAC Address	Vendor Id	Type Time Left(s)		

2.0.0.11 0001.7a6a.0269 Global 259194 Lease #View the statistics information of the configured IP address pool on Device. Device#show ip dhcp pool dynamic-pool1 summary Pool: dynamic-pool1 Pool Configuration : 1.0.0.0 255.255.255.0 Pool Range :1.0.0.0 1.0.0.255 Pool Utilization : 0.39% VRF : global **DNS Server** : 2.0.0.4 Default Router : 1.0.0.3 Lease Time :1 Days 0 Hours 0 Minutes Free Addresses : 243 Static Bind : 0 Lease Count :1 PingList : 0 OfferList : 0 :0 ConflictList ExcludeList : 12 Device#show ip dhcp pool dynamic-pool2 summary Pool: dynamic-pool2 Pool Configuration : 2.0.0.0 255.255.255.0 Pool Range : 2.0.0.0 2.0.0.255 Pool Utilization : 0.39% VRF : global DNS Server : 2.0.0.4 Default Router : 2.0.0.3 Lease Time : 3 Days 0 Hours 0 Minutes Free Addresses : 243 Static Bind : 0 Lease Count :1 PingList :0 OfferList : 0 ConflictList : 0 ExcludeList : 12 On the DHCP client, view that the IP address is got correctly.

Note:

• The IP addresses in the address pool must be within the network segment range of the interface that provides the service.

14.3.3. Configure a DHCP Relay

Network Requirements

- Device1 is a DHCP server, and Device2 interface enables DHCP relay function.
- The DHCP server provides services for clients of 1.0.0.0/24 network segment, and retains the top 10 IP addresses.
- The DHCP client obtains the IP address through the DHCP relay.

Network Topology

Figure 14-3 Networking for configuring a DHCP relay

Configuration Steps

- Step 1: Configure IP addresses for all interfaces. (Omitted)
- **Step 2:** Configure the IP address pool of Device1 and the reserved IP address, and work in the DHCP server mode.

#Configure the DHCP server.

Device1(config)#interface gigabitethernet 0

Device1(config-if-gigabitethernet0)#ip dhcp server

Device1(config-if-gigabitethernet0)#exit

#Configure IP addresses which are from 1.0.0.1 to 1.0.0.10 not to be allocated.

Device1#configure terminal

Device1(config)#ip dhcp excluded-address 1.0.0.1 1.0.0.10

#Configure IP address pool dynamic-pool for Device1.

Device1(config)#ip dhcp pool dynamic-pool

Device1(dhcp-config)#network 1.0.0.0 255.255.255.0

www.gtech.ru

Device1(dhcp-config)#default-router 1.0.0.1 Device1(dhcp-config)#lease 1 0 0 Device1(dhcp-config)#exit

#Configure a static route to network segment 1.0.0.0/24.

Device1(config)#ip route 1.0.0.0 255.255.255.0 2.0.0.2

Step 3: On the interface gigabitethernet0 of Device2, configure the DHCP server address as 2.0.0.1, and make the interface work in the relay mode.

Device2(config)#interface gigabitethernet 0 Device2(config-if-gigabitethernet0)#ip dhcp relay Device2(config-if-gigabitethernet0)#ip dhcp relay server-addres 2.0.0.1 Device2(config-if-gigabitethernet0)#exit

Step 4: Check the result.

#On Device1, query the IP addresses that have been allocated.

Device1#show ip dhcp pool dynamic-pool lease					
IP Address	MAC Address	Vendor Id	і Туре	Time Left(s)	
1.0.0.11	0001.7a6a.0268	Global	Lease	86387	

Use the **show ip dhcp pool dynamic-pool lease** command to query the IP addresses that have been allocated to clients. The result shows that a client has obtained the IP address 1.0.0.11.

14.3.4. Configure the DHCP Relay to Support Option82

Network Requirements

- On the DHCP relay device, Option82 is enabled.
- For Option82 sub-option Remote ID, 0102030405 is specified.
- The DHCP relay Device2 adds Option82 in a request packet and forwards the request to DHCP server. The DHCP server then allocates IP addresses in the 1.0.0.0/24 network segment to the client.

Network Topology

Figure 14-4 Networking for configuring the DHCP relay to support Option82

Configuration Steps

- Step 1: Configure IP addresses for all interfaces. (Omitted)
- **Step 2:** Configure the DHCP server.
 - Device1# configure terminal Device1(config)#interface gigabitethernet 0 Device1(config-if-gigabitethernet0)#ip dhcp server Device1(config-if-gigabitethernet0)#exit Device1(config)#ip dhcp pool dynamic-pool Device1(dhcp-config)#network 1.0.0.0 255.255.255.0 Device1(dhcp-config)#default-router 1.0.0.1 Device1(dhcp-config)#exit #Configure the static route to the segment 1.0.0.0/24. Device1(config)#ip route 1.0.0.0 255.255.255.0 2.0.0.2
- **Step 3:** Configure the DHCP relay Device2 and Option82 parameters.

#Set the IP address of the relay server to 2.0.0.1.

Device2(config)#interface gigabitethernet 0 Device2(config-if-gigabitethernet0)#ip dhcp relay Device2(config-if-gigabitethernet0)#ip dhcp relay server-address 2.0.0.1 #Enable Option82, and set sub-option Remote-ID to 0102030405.

Device2(config)#ip dhcp relay information option Device2(config)#ip dhcp relay information remote-id hex 0102030405

Step 4 Check the result.

#Query the information about the IP address assigned for the client on Device1.

Device1#show ip dhcp pool danymic-pool1 lease					
IP Address	MAC Address	Vendor Id	Туре	Time Left(s)	
1.0.0.2	0001.7a6a.0268	Global Leas	se 10	7992	

Check the IP address of the 1.0.0.0/24 network segment obtained by the network card on the DHCP client.

By capturing packets on the DHCP server, you can verify that the filling value of option 82 remoteid in the discover packet received by the server is 0102030405

Note:

• After Option82 is enabled, it sub-option Circuit ID is filled with the receiving interface index and the system ID of the relay device.

15. DHCPV6

15.1. Overview

It is hard to manage a large network. For example, in a network in which IPv6 addresses are manually allocated, IPv6 address conflicts are common. The only way of solving the problem is to dynamically allocate IPv6 addresses to the hosts. The Dynamic Host Configuration Protocol (DHCPv6) allocates IPv6 address to requesting hosts from an address pool. DHCPv6 also provides other information, such as DNS server address. DHCPv6 reduces the workload of the administrator in recording and tracking manually allocated IPv6 addresses.

DHCPv6 is a protocol that is based on UDP broadcast. The process for a DHCPv6 client to obtain an IPv6 address and other configuration information contains four phases:

SOLICT phase. When the DHCPv6 client logs into the network for the first time, it sends a DHCP SOLICT packet, whose source address is the linklocal address of the client and destination address is ff02::1:2.

ADVERTISE phase. After the DHCPv6 server receives the DHCP SOLICT broadcast packet sent by the client, it selects an IPv6 address from the corresponding IP address pool according to the policy, and sends the IP address and other parameters to the client in a DHCP ADVERTISE packet.

REQUEST phase. If the DHCP client receives response messages from multiple DHCP servers on the network, it selects one DHCP OFFER (usually the one that arrives first). Then it sends a DHCP REQUEST packet to the network, telling all DHCP servers the IP address of which server it will accept.

REPLY phase. After the DHCPv6 server receives the DHCPv6 REQUEST packet from the DHCPv6 client, it sends a DHCP ACK message containing the provided IPv6 address and other configuration to the DHCPv6 client, telling the DHCPv6 client that the DHCPv6 client can use the provided IPv6 address.

The IPv6 address that the DHCPv6 server allocates to the DHCPv6 client has a lease. After the lease expires, the DHCPv6 server will take back the allocated IPv6 address. When the lease term of the IPv6 address of the DHCPv6 client has passed half time, the DHCPv6 client sends a DHCP ENEW packet to the DHCPv6 server requesting to update its IPv6 address lease. If the DHCPv6 client can continue to use the IPv6 address, the DHCPv6 server responds with a DHCP REPLY packet, requesting the DHCPv6 client to update the lease. If the DHCPv6 DHCPv6 client cannot to continue to use the IPv6 address, the DHCPv6 server does not respond.

During dynamic IPv6 address acquisition, request packets are sent in broadcast mode; therefore, DHCPv6 is applied only when the DHCPv6 client and server are in the same subnet. If multiple subnets exist in a network and the hosts of the subnets need to obtain configuration information such as IPv6 address through the DHCPv6 server, the hosts of the subnets communicate with the DHCPv6 server through a DHCPv6 relay to obtain IPv6 addresses and other configuration.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

15.2. DHCPv6 Function Configuration

Table 15-1 DHCPv6 Function List

Configuration Tasks				
Configure a DHCPv6 address pool	Create a DHCPv6 address pool and specify the VRF attributes			
	Configure an IPv6 address range			
	Configure a DNS server address			
	Configure the lease of an IPv6 address			
	Configure IPv6 to bind with DUID and IAID			
Configure other parameters of a DHCPv6 server	Configure the DHCPv6 server			
	Configure the range of reserved IPv6 addresses			
	Configure DHCPv6 ping detection parameters.			
	Configure the data log function of the DHCPv6 server			
Configure the functions of a DHCPv6 client	Configure a DHCPv6 client			
	Configure the DHCPv6 Option 16 function			
Configure the DHCPv6 relay function	Configure a DHCPv6 relay.			
	Configure the source address of the DHCPv6 relay packet			
	Configure the DHCPv6 server address			
	Configure the DHCPv6 interface-id option			

....

15.2.1. Configure a DHCPv6 Address Pool

Configuration Condition

None

Create a DHCPv6 Address Pool

A DHCPv6 server needs to select and allocate IPv6 addresses and other parameters from a DHCPv6 address pool. Therefore, a DHCPv6 address pool must be created for the DHCPv6 server.

Table 15-2 Creating a DHCPv6 Address Pool

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Create one DHCPv6 address pool and enter the DHCPv6 configuration mode	ipv6 dhcp pool pool- name[vrf vrf-name]	Mandatory By default, the system does not create the DHCPv6 address pool.

Note:

• Address pools fall into two types: Network and Range. The two types of address pools can be configured respectively through the network and range commands.

Configure an IPv6 Address Range

On a DHCPv6 server, each DHCPv6 address pool must be configured with an IPv6 address range to allocate IPv6 addresses to DHCPv6 clients.

Table 15-3 Configuring an IPv6 Address Range

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCPv6 configuration mode	<pre>ipv6 dhcp pool pool-name[vrf vrf-name]</pre>	-
Configure an IPv6 address range for an address pool of the Network type.	network ipv6- address/prefix-length	Optional. By default, an IPv6 address range is not configured for an address pool.

MARADAL C	tooh ru
www.c	lech.ru

Step	Command	Description
Configure an IPv6 address range for an address pool of the Range type.	range low-ipv6-address high-ipv6-address prefix- length	Optional. By default, an IPv6 address range is not configured for an address pool.

Note:

Modify the type of the address pool from network to range (or from range to network). If
the new address range intersects with the old address range, the command line will
prompt the user whether to perform the operation. If yes, it will delete the address
configuration (static binding) and dynamic lease related to the address pool; if the
actual effective range of the new address includes the actual effective range of the old
address, the address pool reserves the relevant address configuration (static binding)
under the address pool. But dynamic leases are deleted.

Configure a DNS Server Address

On a DHCPv6 server, you can configure the DNS server address respectively for each DHCPv6 address pool. When a DHCPv6 server allocates an IPv6 address for a DHCPv6 client, it also sends the DNS server address to the client.

When the DHCPv6 client starts dynamic domain name resolution, it queries the DNS server.

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCPv6 configuration mode	<pre>ipv6 dhcp pool pool- name[vrf vrf-name]</pre>	-
Configure a DNS server address	dns-server { <i>ipv6-</i> address&<1-8> autoconfig }	Mandatory. By default, the DNS server address is not configured.

Table 15-4 Configuring a DNS Server Address

Configure the Lease of an IPv6 Address

The IPv6 address that the DHCPv6 server allocates to the DHCPv6 client has a lease. After the lease expires, the server will take back the allocated IPv6 address. If the DHCPv6 client wants to continue to use the IPv6 address, it must have the IPv6 address lease updated.

On the DHCPv6 server, you can configure an IPv6 address lease for each DHCPv6 address pool.

....

Table 15-5 Configuring the Lease of an IPv6 Address

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCPv6 configuration mode	<pre>ipv6 dhcp pool pool-name[vrf vrf-name]</pre>	-
Configure the lease of the IPv6 address	lease preferred-lifetime preferred-lifetime valid- lifetime valid-lifetime	Mandatory By default, the preferred- lifetime is 604800 (sevent days), and valid-lifetime is 2592000s (30 days).

Configure IPv6 to Bind with DUID, IAID

Configure IPv6 to bind with client DUID and IAID. When specifying the client of DUID and IAID to request for allocating the IPv6 address to the DHCPv6 server, the DHCPv6 server will allocate the IPv6 address it binds to. As long as the DIID and IAID of the client remain unchanged, the IPv6 address acquired by the client from the server is the same every time.

Table 15-6 Configure Ipv6 to bind with DUID, IAID

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the DHCPv6 configuration mode	<pre>ipv6 dhcp pool pool-name[vrf vrf-name]</pre>	-
Configure lpv6 to bind with DUID, IAID	bind <i>ipv6-address</i> duid <i>duid</i> [iaid <i>iaid</i>]	Mandatory By default, do not configure IPv6 to bind with DUID, IAID.

Note:

- The command is valid only for the Range and Network address pools.
- When configuring the static binding of the same duid and iaid, the address pool permits binding five IPv6 addresses.
- When the configured static binding only specifies duid, not specifying iaid, the address pool only permits binding one IPv6 address.

 $\bullet \bullet \bullet \bullet$

15.2.2. Configure Other Parameters of a DHCPv6 Server

Configuration Condition

None

Configure DHCPv6 Server

After configuring the interface to work in the DHCPv6 server mode, the DHCPv6 server will distribute the IPv6 address and other network parameters to the client when the interface receives the DHCPv6 request packet from the DHCPv6 client.

Table 15-7 Configure the DHCPv6 server

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the DHCPv6 server	ipv6 dhcp server	Mandatory By default do not configure the DHCPv6 server.

Configure the Range of Reserved IPv6 Addresses

In a DHCPv6 address pool, some IPv6 addresses are reserved for some special devices, and some IPv6 addresses conflict with the IPv6 addresses of other hosts in the network. Therefore, the IPv6 addresses cannot be dynamically allocated.

....

Table 15-8 Configure the Range of Reserved IPv6 Addresses

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the range of reserved IPv6 addresses.	ipv6 dhcp excluded- address <i>low-ipv6-address</i> [<i>high-ipv6-address</i>] [vrf <i>vrf-name</i>]	Mandatory. By default, the range of reserved IPv6 addresses is not configured. The IPv6 addresses in the reserved IP address range will not be allocated.

Configure DHCPv6 Ping Detection Parameters

To prevent an IPv6 address conflict, before dynamically allocating an IPv6 address to a DHCPv6 client, a DHCPv6 server must detect the IPv6 address. The detection operation is performed through the ping operation. The DHCPv6 server determines whether an IPv6 address conflict exists by checking whether an ICMP echo response packet is received within the specified time.

Table 15-9 Configuring DHCPv6 Ping Detection Parameters

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure DHCPv6 ping detection parameters	ipv6 dhcp ping { packets <i>packet-num</i> timeout <i>milliseconds</i> }	Mandatory. By default, the number of ping packets is 1, and the timeout time is 50 ms.

Configure the Data Log Function of the DHCPv6 Server

After enabling the data log function of the DHCPv6 server, the distribution of the address pool on the DHCPv6 server is recorded in the data log.

. . . .

Table 15-10 Configuring the Data Log Function of the DHCPv6 Server

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable the data log function of the DHCPv6 server	ipv6 dhcp logging security-data	Mandatory By default, do not enable the data log function.

15.2.3. Configure the Functions of a DHCPv6 Client

Configuration Condition

None

Configure a DHCPv6 Client

The interface of the DHCPv6 client obtains an IPv6 address and other parameters through DHCP.

Table 15-11 Configuring a DHCPv6 Client

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the DHCPv6 client to obtain an IPv6 address	ipv6 dhcp client address [rapid-commit]	Mandatory. By default, the DHCPv6 client is not configured to obtain an IPv6 address.
Configure the DHCPv6 client to get the IPv6 prefix	ipv6 dhcp client pd pool- name [rapid-commit]	Mandatory By default, do not configure the DHCPv6 client to get the IPv6 prefix.

Configure DHCPv6 Option 16 Function

The content of DHCPv6 option 16 is the manufacturer ID. During the request process of the DHCPv6 client, option 16 can be carried. The server can customize IPv6 address allocation policy according to this option.

www.	atech.ru	

Table 15-12 Configure DHCPv6 Option 16 function

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the Option 16 function in global mode	ipv6 dhcp client vendor- class-identifier { enable enterprise-number enterprise-number content hex-string }	Mandatory By default, the DHCPv6 client does not carry manufacturer ID.
Enter the interface configuration mode	interface interface-name	-
Configure the Option 16 function in the interface mode	ipv6 dhcp client vendor- class-identifier { enable enterprise-number enterprise-number content hex-string }	Mandatory By default, the DHCPv6 client does not carry the manufacturer ID.

Note:

- When the option16 content and enterprise-number are configured simultaneously in global mode or interface mode, content takes precedence.
- When DHCPv6 client option 16 is configured in both global and interface, the configuration in interface takes precedence.

15.2.4. Configure the Function of a DHCPv6 Relay

Configuration Condition

None

Configure a DHCPv6 Relay

If multiple subnets exist in a network and the hosts of the subnets need to obtain configuration information such as IPv6 address through the DHCPv6 server, the hosts of the subnets communicate with the DHCPv6 server through a DHCPv6 relay to obtain IPv6 addresses and other configuration information. If an interface is configured to work in DHCPv6 relay mode, after the interface receives DHCPv6 packets from a DHCPv6 client, it relays the packet to the specified DHCPv6 server. The DHCPv6 server then allocates an IP address.

....

Table 15-13 Configuring a DHCPv6 Relay

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the DHCPv6 relay function	ipv6 dhcp relay	Mandatory By default, do not configure the DHCPv6 relay function.

Configure Source Address of DHCPv6 Relay

DHCPv6 relays the DHCPv6 client to the source address of the server packet. By default, use the address of the egress interface of the route to the DHCPv6 server. In some special environment, the DHCPv6 server cannot communicate with the address. Therefore, users can configure the source address of the DHCPv6 relay packet to the DHCPv6 server and the LinkAddr field in the packet through the **ipv6 dhcp relay source-address** command.

Table 15-14 Configure the source address of the DHCPv6 relay packet

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the source address of the DHCPv6 relay	ipv6 dhcp relay source- address ipv6-address	Mandatory By default, do not configure the source address of the DHCPv6 relay packet.

Configure the Address of the DHCPv6 Server

When the interface receives the DHCPv6 packet sent by the DHCPv6 client, relay the packet to the configured DHCPv6 server, which distributes the IPv6 address.

Table 15-15 Configure the address of the DHCPv6 server

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the address of the DHCPv6 server	ipv6 dhcp relay server - address ipv6-address	Mandatory By default, do not configure the address of the DHCPv6 server.

Configure DHCPv6 interface-id Option

The command is used to configure the interface-id option supported by DHCPv6 relay.

Table 15-16 Configure DHCPv6 interface-id option

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure DHCPv6 interface-id option	ipv6 dhcp relay interface – id [interface user-define defined-string]	Mandatory By default, do not configure DHCPv6 interface-id option.

Configure DHCPv6 remote-id Option

This command is used to configure the filling mode of the remote ID option supported by DHCPv6 relay.

Table 15-17 Configure DHCPv6 server address

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the DHCPv6 remote-id option	ipv6 dhcp relay remote-id user-define defined-string	Mandatory By default, do not configure the filling mode of remote-id option.

15.2.5. DHCPv6 Monitoring and Maintaining

Table 15-18 DHCPv6 Monitoring and Maintaining

Command	Description
<pre>clear ipv6 dhcp pool pool-name { lease conflict [ipv6-address] }</pre>	Clear the dynamic lease information or conflict address information in the address pool
clear ipv6 dhcp server interface [interface-name] statistics	Clear the key information statistics when the DHCPv6 server interacts packets with the client or relay
clear ipv6 dhcp relay statistics	Clear the statistics information on the DHCPv6 relay device
show ipv6 dhcp server interface interface-name [statistics]	Display the associated address pool information in the specified interface or display the key information statistics when the DHCPv6 server in the specified interface interacts packets with the client or relay

DHC	CPV6
-----	------

www.a	lech ru

Command	Description
<pre>show ipv6 dhcp pool pool-name { summary ping_list offer_list excluded_list conflict_list lease binding }</pre>	Display the summary information of the specified address pool or the address information of the ping check or the information about the address that has sent OFFER packet and is waiting for DHCPv6 client to reply the REQUEST packet or display the exclude address information in the address pool or display the conflict address information in the address pool or display the dynamic lease information in the address pool.
<pre>show ipv6 dhcp pool pool-name specific { ipv6-address ipv6-address duid duid }</pre>	Display the specified ipv6 address or client DUID information in the address pool
show ipv6 dhcp relay [interface interface-name]	Display the packet statistics information on the DHCPv6 relay device

15.3. DHCPv6 Typical Configuration Example

15.3.1. Configure a DHCPv6 Server to Statically Allocate IPv6 Addresses

Network Requirements

- Device2 acts as a DHCPv6 server to allocate IPv6 addresses and DNS server IPv6 addresses in a static manner.
- The DHCPv6 server allocates an IP address to PC1 in DUID binding mode, and allocates an IPv6 address to PC2 in the DUID+IAID binding mode.

Figure 15-1 Configuring a DHCPv6 Server to Statically Allocate IPv6 Addresses

Configuration Steps

Step 1: Configure the IPv6 address of the Device2 interface and the DHCPv6 server.

Device2#configure terminal

Device2(config)#interface gigabitethernet 0

Device2(config-if-gigabitethernet0)#ipv6 address 1::3/64

Device2(config-if-gigabitethernet0)#ipv6 dhcp server

Device2(config-if-gigabitethernet0)#exit

Step 2: Configure the static binding address pool and parameters.

#Configure the address pool binding, and adopt the DUID binding mode to distribute IPv6 address for PC1. Adopt the static DUID+IAID binding mode to distribute the IPv6 address for PC2.

Device2(config)#ipv6 dhcp pool binding

Device2(dhcp6-config)#bind 1::11 duid 000200001613303030313761636635646634

Device2(dhcp6-config)#bind 1::12 duid 000200001613636364383166313037616239 iaid 00010071

Device2(dhcp6-config)#dns-server 1::2 Device2(dhcp6-config)#exit

Step 3: Check the result.

#Check the association of the server interface and address.

Device2#show ipv6 dhcp server interface gigabitethernet 0

DHCPv6 server status information:

DHCP server is enabled on interface: gigabitethernet 0

www.qtech.ru

Vrf: global DHCPv6 server pool information: Available directly-connected pool: Interface IP: 1::1/64 Pool name: binding Range: min: 101:: max: 101::ffff:ffff:ffff:ffff utilization: 0.00% #Check the static binding of the server. Device2#show ipv6 dhcp pool binding binding IPv6 Address Duid laid Time Left(s) Туре _____ 00000000 Binding 1::11 000200001613303030313761636635646634 NA 1..12 000200001613636364383166313037616239 00010071 Binding NΑ #On Device2, guery the IPv6 addresses distributed for PC1 and PC2 via the **show** ipv6 dhcp pool binding lease command. Device2#show ipv6 dhcp pool mac-binding lease Time Left(s) ------IPv6 Address Duid laid Type 1::11 000200001613303030313761636635646634 00000000 Lease 2591974 000200001613636364383166313037616239 1::12 00010071 Lease 2591974

On PC1 and PC2, check whether the got IPv6 addresses, and the IPv6 address of the DNS server are correct.

15.3.2. Configure a DHCPv6 Server to Dynamically Allocate IPv6 Addresses

Network Requirements

- Two Ethernet interfaces of Device, gigabitethernet0 and gigabitethernet 1, are respectively configured with IPv6 addresses 1::3/64 and 2::3/64.
- The DHCPv6 server Device dynamically allocates IPv6 addresses 1::/64 and 2::/64 to the two clients in the directly-connected physical network.
- The addresses in network segment 1::/64 have a one-day lease, the DNS server address is 2::4. The addresses in network segment 2::/64 have a three-day lease the gateway address is 2::3, the DNS server address is 2::4.
- The first 10 IPv6 addresses in network segments 1::/64 and 2::/64 are reserved and cannot be allocated.

Figure 15-2 Configuring a DHCPv6 Server to dynamically Allocate IPv6 Addresses

Configuration Steps

- Step 1: Configure the IPv6 address of the interface (omitted).
- **Step 2:** On the DHCPv6 server Device1, configure two dynamic address pools and their parameters.

#Configure the DHCPv6 server.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet 0)#ipv6 dhcp server

Device(config-if-gigabitethernet 0)#exit

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet 1)#ipv6 dhcp server

Device(config-if-gigabitethernet 1)#exit

#Configure the first 10 IP addresses in the two address pools to be reserved.

Device(config)#ipv6 dhcp excluded-address 1::0 1::9

Device(config)#ipv6 dhcp excluded-address 2::0 2::9

#Configure address pool dynamic-pool1 and its parameters (including address range, DNS address, address lease).

Device(config)#ipv6 dhcp pool dynamic-pool1

Device(dhcp6-config)#network 1::/64

Device(dhcp6-config)#dns-server 2::4

Device(dhcp6-config)#lease preferred-lifetime 86300 valid-lifetime 86400

Device(dhcp6-config)#exit

www.qtech.ru

#Configure address pool dynamic-pool2 and its parameters (including address range, DNS address, address lease). Device(config)#ip DHCPv6 pool dynamic-pool2

Device(dhcp6-config)#network 2::/64

Device(dhcp6-config)#dns-server 2::4

Device(dhcp6-config)#lease preferred-lifetime 259100 valid-lifetime 259200 Device(dhcp6-config)#exit

Step 3: Check the result.

#On Device, query the IPv6 addresses that are allocated to clients.

Device#show ipv6 dhcp pool dynamic-pool1 lease

IPv6 Address Duid laid Type Time Left(s) _____ _____ _ _ _ 1::a 000200001613303030313761636635646634 00000000 Lease 86390 Device2#show ipv6 dhcp pool dynamic-pool2 lease IPv6 Address Duid laid Type Time Left(s) _____ -----_ _ _

2::a 000200001613303030313761636635646634 00000000 Lease 2591974 On the DHCPv6 clients, query whether the IPv6 addresses have been obtained properly.

Caution:

• The IPv6 addresses in the address pool must be within the network segment range of the interface that provides the service.

15.3.3. Configure DHCPv6 Relay

Network Requirements

- Device1 is the DHCPv6 server, and the interface of Device2 enables the DHCPv6 relay function.
- The DHCPv6 server provides the service for the client of the segment 1::/64, and the first ten IPv6 addresses are reserved.
- The DHCPv6 client gets the IPv6 address via DHCPv6 relay.

Network Topology

Figure 15-3 Networking for Configuring a DHCPv6 Relay

Configuration Steps

- Step 1: Configure the IPv6 address of the interface (omitted).
- **Step 2:** Configure an IPv6 address pool for Device 1, and configure the reserved IPv6 addresses.

#Configure IPv6 addresses which are from 1::0 to 1::9 not to be allocated.

Device1(config)#ipv6 dhcp excluded-address 1::0 1::9

#Configure IPv6 address pool dynamic-pool for Device1.

Device1(config)#ipv6 dhcp pool dynamic-pool

Device1(dhcp6-config)#network 1::/64

Device1(dhcp6-config)#lease preferred-lifetime 300 valid-lifetime 600

Device1(dhcp6-config)#exit

#Configure a static route to network segment 1::/64.

Device1(config)#ipv6 route 1::0/64 2::2

Step 3: On the interface gigabitethernet0 of Device2, enable the DHCPv6 relay and configure the address of the DHCPv6 server 2::1. Device2(config)#interface gigabitethernet 0 Device2(config-if-gigabitethernet0)#ipv6 dhcp relay Device2(config-if-gigabitethernet0)#ipv6 dhcp relay server-address 2::1 Device2(config-if-gigabitethernet0)#ipv6 dhcp relay server-address 2::1

Step 4: Check the result.

#On Device1, query the IPv6 addresses that have been allocated.

obtained the IPv6 address 1::0.

DHCPV6							www.qtec	h.ru	••••
	Device	1#show ipv6	dhcp pool dynam	ic-pool lease					
	IPv6 A	ddress	Duid	laid	Туре	Time Let	ft(s)		
									-
	1::0	0002000	0161330303031376	1636635646634	4 C	0000000	Lease	574	
	Use the addres	e show ipve ses that hav	6 dhcp pool dyna ve been allocated	mic-pool lease to clients. The i	e comr result s	nand to qu hows that	ery the IF a client h	Pv6 as	

16. DNS

16.1. Overview

Domain Name System (DNS) is a distributed database that maps domain names and IP addresses. It provides conversion between domain names and IP addresses. With the use of DNS, when users access the Internet, they can use easy-to-memory and meaningful domain names. Then the domain name server in the network resolves the domain names into correct IP addresses. DNS is categorized into static DNS and dynamic DNS.

Static domain name resolution is conducted through a static DNS table. In the static DNS table, domain names and IP addresses are mapped, and some frequently used domain names are added. When a client requests for the IP address of a domain name, the DNS server first searches static DNS table for the corresponding IP address. This improves the efficiency of domain name resolution.

Dynamic domain name resolution is implemented by querying the DNS. A DNS client sends a domain name resolution request to a DNS server. After the DNS server receives the domain name resolution request, it first determines whether the requested domain name is located in its authorized management sub-domain. If yes, it searches the database for the required IP address and then sends the query result to the client. If the domain name is not in the authorized management sub-domain, the DNS server starts a recursive resolution with other DNS server, and then it sends the resolution result to the client. Alternatively, it specifies the address of the next DNS server in the response packet to the DNS client. Then, the client sends another domain name resolution request to the domain name server. This is so called iterative resolution mode.

16.2. DNS Function Configuration

Configuration Tasks	
Configure the DNS cache specification	Configure the maximum specification of the static cache
	Configure the maximum specification of the dynamic cache
Configure the DNS client function.	Configure static domain name resolution.
	Configure dynamic domain name resolution.
Configure the DNS proxy function	Configure the DNS proxy

Table 16-1 DNS function list

www.qtech.ru

Configuration Tasks	
Configure the DNS detection function	Configure the domain name list
	Detect the domain name resolution
Configure the DNS transparent proxy function	Configure DNS front transparent proxy
	Configure the DNS link transparent proxy
Configure the DNS64 function	Configure DNS64

16.2.1. Configure DNS Cache Specification

Configuration Condition

None

Configure DNS Specification

Modify the maximum specification supported by DNS. If the current specification is M, the current number is n; the configured specification is N; There are the following scenarios:

- Static specification, if N > M or n < N < M, the configuration takes effect immediately; If N < n, the configuration failed
- 2. Dynamic specifications, if N > M or n < N < M, the configuration takes effect immediately; If N < n, the configuration takes effect, waiting for dynamic number aging.

Table 16-2 Configure the list of privileged mode authentication methods

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure the maximum specification supported by static DNS cache	dns static max-count number	Optional By default, the static cache supports 64 at most.

www.qtech.ru

....

Step	Command	Description
Configure the maximum specification supported by dynamic DNS cache	dns dynamic max-count number	Optional By default, the dynamic cache supports 10K at most.

16.2.2. Configure the DNS Client Function

Configuration Condition

None

Configure Static Domain Name Resolution

In configuring static domain name resolution, you can configure a domain names to map an IPv4 address.

Table 16-3 Configuring static domain name resolution

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure a domain name to map an IPv4 address.	ip host [vrf vrf-name] domain-name ipv4- address	Mandatory. By default, no domain name and its corresponding IPv4 address is configured.
Configure the corresponding IPv6 address of the static domain name	IPv6 host [vrf vrf-name] domain-name IPv6- address	Mandatory By default, do not configure the domain name or the corresponding IPv6 address.

Configure Dynamic Domain Name Resolution

In configuring dynamic domain name resolution, you need to configure the IP address of a domain name server. Then, domain resolution requests can be sent to the proper domain server for resolution.

Users can pre-configure a domain suffix. Then, when the users use a domain name, they can input only part fields of the domain name, and the system automatically adds pre-configured domain suffix for resolution.

....

Table 16-4 Configuring dynamic domain name resolution

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Configure a domain suffix.	ip domain-name [vrf <i>vrf-</i> <i>name</i>] <i>domain-name</i>	Mandatory. By default, no domain suffix is configured.
Configure a DNS server address.	ip name-server [vrf <i>vrf-</i> <i>name</i>] <i>ip-address</i>	Mandatory. By default, the DNS server address is not configured.

16.2.3. Configure DNS Proxy Function

Configuration Condition

None

Configure DNS Proxy

The DNS proxy does not have the DNS resolution function. It just forwards the resolution request from the DNS client to the DNS server, and forwards the resolution result from the DNS server to the DNS client.

Table 16-5 Configure the DNS proxy

Step	Command	Description
Enter the global configuration mode.	configure terminal	-
Enable the DNS proxy function	dns proxy enable [vrf <i>vrf</i> - name]	Mandatory By default, do not enable the DNS proxy function.
Configure the DNS proxy cache	dns proxy cache [vrf vrf- name]	Optional By default, do not configure the DNS proxy cache function.

www.qtech.ru

Step	Command	Description
Configure the life time of the DNS proxy cache entry	dns proxy ttl <i>ttl-value</i> [vrf <i>vrf-name</i>]	Optional By default, the life time of the DNS proxy cache entry is 1800s.

16.2.4. Configure the DNS Detection Function

Configuration Condition

None

Configure the Domain List

You can add some common domain names to the domain name list by configuring the domain name list. When necessary, directly specify the index of the domain name list.

Table 16-6 Configure the domain name list

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the domain name list and enter the domain name list configuration mode	dns domain-list list-name	Mandatory By default, do not configure the domain name list.
Configure the domain name	domain domain-name	Mandatory By default, the domain name is not configured in the domain name list.

Detect the Domain Name Resolution

You can detect whether the DNS server can resolve the specified domain name correctly by detecting the domain name resolution.

www.qtech.ru

Table 16-7	Detect the	domain	name	resolution
------------	------------	--------	------	------------

Step	Command	Description
Detect the domain name resolution	dns-query [vrf vrf-name] ip-address [name domain- name name-list index] [count packet-num] [timeout time]	Mandatory By default, do not detect the domain name resolution.

16.2.5. Configure DNS Transparent Proxy Function

DNS transparent proxy function can modify the destination address of some DNS request packets to the DNS server address of other ISPs (such as the DNS server address of ISP2). DNS requests are forwarded to different ISPs, and the resolved server address belongs to different ISPs, so the Internet traffic will be forwarded through different ISP links. In this way, one link will not be congested while other links will be idle, and all link resources will be fully utilized.

Configuration Condition

None

Configure DNS Transparent Proxy

Tabke 16-8 Configure the DNS transparent proxy

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the DNS transparent proxy	dns transparent-proxy enable	Mandatory By default, do not enable the DNS transparent proxy.
When the configured transparent proxy rules of front domain name fails, continue to perform the function of link transparent proxy	dns transparent-proxy control enable	Optional By default, when the pre transparent proxy fails, do not continue to perform the function of link transparent proxy.

DNS

Configure DNS Pre Transprent Proxy

After the domain name under the specified domain name list (refer to the configuration of the domain name list in the DNS detection function node) does not act as the DNS transparent proxy, even if the DNS server set by the client needs to act as the DNS transparent proxy, the router will not process the DNS request packet for accessing the domain name, but directly route and forward it.

If the preferred DNS address is specified for the domain name that does not act as DNS proxy (server preferred preferred-dns-address), the device will request the IP corresponding to all the domain names in the domain name list from the preferred DNS server in advance and cache them. The DNS requests corresponding to these domain names will first check the cache entries. If the cache entries exist, they will be sent to the DNS client through DNS response according to the contents of the cache entries; if the cache entries do not exist, forward the DNS request to the DNS server set by the client.

If both the preferred DNS server address and the alternate DNS address are specified (server preferred preferred-dns-address alternate alternate-dns-address), the device will first query the preferred DNS server for the IP addresses corresponding to all domain names in the domain name list. When the preferred DNS server does not respond, query the standby DNS server. The DNS request processing flow corresponding to these domain names is consistent with that when only the preferred DNS server is used.

Note that domain name cache table entries only support 'A' record cache.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the DNS transparent proxy function of the domain name in the specified domain name list	dns transparent-proxy exclude domain- list list-name [server primary preferred- dns-address [secondary alternate-dns- address]]	Mandatory By default, do not perform the DNS transparent proxy for the domain name.

Table 16-9 Configure the DNS pre transparent proxy

Configure DNS Link Tranparent Proxy

When the IP addresses of the preferred DNS server and the standby DNS server are bound at the same time, the DNS transparent proxy function will use the IP address of the preferred DNS server to replace the destination address of the DNS request packet, and then continue to forward the packet. When the state of the preferred DNS server is down, the DNS transparent proxy function will replace the destination address of the DNS request packet with the IP address of the standby DNS server.

	_	-	-	-
www.qtech.ru				

 $\bullet \bullet \bullet \bullet$

Table 16-10 Configure the DNS lin	nk transparent proxy
-----------------------------------	----------------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the DNS server address of the link transparent proxy	dns transparent-proxy server server- address	Mandatory By default, do not perform the link transparent proxy for any DNS server.
Configure the corresponding proxy DNS server address of the bound egress interface	dns server bind interface interface-name primary primary-dns-address [secondary secondary-dns-address]	Mandatory By default, do not configure the corresponding proxy DNS server address of the bound egress interface.

16.2.6. Configure DNS64 Function

Synthesize the A record (IPv4 address) in DNS query information into the AAAA record (IPv6 address), and return the synthesized AAAA record to IPv6 users.

Configuration Condition

None

Configure DNS64

Table 16-11Configure DNS64

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the dns64 function	dns64 enable [vrf vrf-name]	Mandatory By default, do not enable the dns64 function.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Enable the dns cache function	dns proxy cache [vrf vrf-name]	Mandatory By default, do not enable the dns cache function.
Configure the dns64 prefix	dns64 prefix [vrf vrf-name] IPv6-prefix	Optional By default, the dns64 prefix is "64:FF9B::/96".

DNS Monitoring and Maintaining

Table 16-12 DNS monitoring and maintaining

Command	Description
enable	Privileged mode
debug dns {all config event forwarding mpos packet timer}	Open the DNS debug information
show dns domain-list [list-name]	Display the domain name list
show dns proxy client	Displays the DNS client information on the DNS proxy that did not receive the resolution result
show dns proxy config	Display the DNS proxy configuration information
show hosts	Display the domain name resolution table entries
show name-server [vrf vrf-name]	Display the DNS server information

16.3. DNS Typical Configuration Example

16.3.1. Configure Static Domain Name Resolution

Network Requirements

• Device and PC are interconnected, and the route is reachable.

- The host name of PC is host.xxyyzz.com, and the IP address is 1.0.0.2/24.
- On Device, access the host host.xxyyzz.com through static domain name resolution.

Network Topology

Figure 16-1 Networking for Configure Static Domain Name Resolution

Configuration Steps

Step 1: Configure IP addresses for all interfaces. (Omitted)

Step 2: Configure a static domain name.

#On Device, configure the host name host.xxyyzz.com to correspond to IP address 1.0.0.2.

Device#configure terminal Device(config)#ip host host.xxyyzz.com 1.0.0.2

Step 3: Check the result.

#On Device, ping host host.xxyyzz.com. Device obtains the IP address 1.0.0.2 that corresponds to the host name through local domain name resolution.

Device#ping host.xxyyzz.com %Bad IPv6 address or unknown hostname! Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 1.0.0.2 , timeout is 2 seconds: !!!!! Success rate is 100% (5/5). Round-trip min/avg/max = 0/6/16 ms.

Note:

• In pinging a host name, the IPv6 address corresponding to the host name is first resolved, and then the IPv4 address.

16.3.2. Configure Dynamic Domain Name Resolution

Network Requirements

- The IP address of the DNS server is 1.0.0.3/24, the IP address of Device is 1.0.0.1/24, and the IP address of PC is 1.0.0.2/24.
- The DNS server, Device, and PC are interconnected through a LAN, and the route is reachable. On the DNS server, the DNS record of host.xxyyzz.com and 1.0.0.2 exists.
- Device access PC through dynamic resolution of host.xxyyzz.com through the DNS server.

Network Topology

DNS

Figure 16-2 Networking for configure dynamic domain name resolution

Configuration Steps

Step 1: Configure IP addresses for all interfaces. (Omitted)

Step 2: Configure the DNS server.(Omitted)

Step 3: Configure the DNS client.

#Specify a DNS server for the client, and the IP address is 1.0.0.3.

Device#configure terminal Device(config)#ip name-server 1.0.0.3

Step 4: Check the result.

#On Device, ping host host.xxyyzz.com. Device obtains the IP address 1.0.0.2 that corresponds to the host name through the DNS server.

Device#ping host.xxyyzz.com %Bad IPv6 address or unknown hostname!

Press key (ctrl + shift + 6) interrupt it.

Sending 5, 76-byte ICMP Echos to 1.0.0.2 , timeout is 2 seconds:

Success rate is 100% (5/5). Round-trip min/avg/max = 0/6/16 ms.

16.3.3. Configure DNS Proxy

Network Requirements

- The IP address of DNS server is 1.0.0.2/24, and the IP address of PC is 100.0.0.2/24.
- Set the DNS records of host.xxyyzz.com and 100.0.0.1 on the DNS server.
- The DNS server setting of PC is 100.0.0.1.
- Device enables DNS proxy function.

Figure 16-3 Networking of configuring the DNS proxy

Configuration Steps

Step 1: Configure IP addresses for all interfaces. (Omitted)

Step 2: Configure the DNS server.(Omitted)

Step 3: Configure the DNS server address of PC (omitted).

Step 4: Configure the DNS proxy.

#Specify the DNS server for Devie and the IP address is 1.0.0.2.

Device#configure terminal

Device(config)#ip name-server 1.0.0.2

#Enable the DNS proxy and cache function for Device.

Device#configure terminal

Device(config)#dns proxy enable

Device(config)#dns proxy cache

Step 5: Check the result.

#On Device, view whether the DNS proxy function is enabled.

Device#show dns proxy config VRF name Proxy Cache TTL ----- ----- ----global On On 1800(s)

#You can ping the host name host.xxyyzz.com on PC. Check the DNS proxy cache on the device. There is a dynamic DNS cache with the address of 100.0.0.1 corresponding to the domain name host.xxyyzz.com.

Device #show hosts

Static: 0 Dynamic: 1

hostname	inet address/inet6 address		remain(s)	vrf
Host.xxyyzz.com	100.0.0.1	dynamic	3595	global

DNS

www.qtech.ru

Note:

- After enabling the DNS proxy function, listen to the packet of port 53. Forward the DNS request packet to the DNS server. At the same time, it also forwards DNS response packet to the client.
- When the DNS cache is enabled, it can cache the domain IP obtained from the DNS server. When the cache is not enabled, only the DNS packet can be transmitted transparently, but cannot cache the domain IP.

16.3.4. Configure DNS Transparent Proxy

Network Requirements

- The IP address of DNS server is 2.0.0.2/24, that of server is 2.0.0.3/24, and that of PC is 1.0.0.1/24.
- DNS server, PC and server are interconnected through device, and the route is reachable bi-directionally. The DNS records of host.xxyyzz.com and 2.0.0.3 are set on DNS server.
- PC gateway is set to 1.0.0.2, DNS address is set to 2.0.0.1.
- Device enables DNS transparent proxy function.
- PC dynamically resolves host.xxyyzz.com to access the server through the transparent proxy function of Device.

Network Topology

Figure 16-4 Networking of configuring DNS transparent proxy

Configuration Steps

- Step 1: Configure the IP address and default gateway of the interface (omitted).
- **Step 2:** Configure the DNS server (omitted).
- Step 3: Configure the DNS server address of PC (omitted).
- **Step 4:** Configure the DNS transparent proxy.

#Enable the DNS transparent proxy function.

Device#configure terminal

www.qtech.ru

Device(config)#dns transparent-proxy enable

#Configure the DNS domain name list.

Device(config)#dns domain-list 1

Device(config-domain-list)#domain host.xxyyzz.com

#Configure the DNS transparent proxy rules.

Device(config)#dns transparent-proxy exclude domain-list 1 server primary 2.0.0.2

Step 5: Check the result.

DNS

#View the transparent proxy cache entries of Device.

Device#show dns transparent-proxy exclude				
Domain Name	Туре	lp-Address	Ttl	
host.xxyyzz.com	dynamic	2.0.0.3	180	

#View the transparent proxy cache entries on Device.

Device#show dns transparent-proxy exclude		
Domain Name	lp-Address	
host.xxyyzz.com	2.0.0.3	

#On the PC, ping the host name host.xxyyzz.com, and the ping can be connected.

C:\>ping host.xxyyzz.com

Pinging host.xxyyzz.com [2.0.0.3] with 32 bytes of data: Reply from 2.0.0.3: bytes=32 time<1ms TTL=255 Reply from 2.0.0.3: bytes=32 time<1ms TTL=255 Reply from 2.0.0.3: bytes=32 time<1ms TTL=255 Reply from 2.0.0.3: bytes=32 time<1ms TTL=255

Ping statistics for 2.0.0.3: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

Note:

- After the transparent proxy function is enabled, identify the packet with port number 53. After configuring the transparent proxy rule, the device searches the domain name according to the domain name rule, and DNS constructs the response packet to the client according to the search result of the domain name.
- When DNS transparent proxy, DNS link transparent proxy and DNS proxy functions are enabled at the same time, and dns transparent-proxy control enable is enabled, the

DNS

priority order of the three functions is DNS transparent proxy > DNS link transparent proxy > DNS proxy.

16.3.5. Configure DNS Link Transparent Proxy

Network Requirements

- The IP address of DNS Server1 is 2.0.0.2/24, the IP address of DNS server2 is 3.0.0.2/24, the IP address of PC1 is 1.0.0.1/24, and the IP address of PC2 is 1.0.0.2/24.
- The DNS server and PC are connected by Device, and the route is reachable bidirectionally. The DNS records of host.xyyzz.com and 2.0.0.2 are set on DNS Server1, and the DNS records of host.xyyzz.com and 3.0.0.2 are set on DNS server2.
- Both DNS server and PC use Device as gateway router, and the DNS address of PC1 is set to 4.0.0.1, and that of PC2 is set to 5.0.0.1.
- Device enables the DNS link transparent proxy function and sets the route to 4.0.0.0/24 and 5.0.0.0/24 network segments.
- PC1 and PC2 dynamically analyze host.xyzz.com through the link proxy function of Device.

Network Topology

Figure 16-5 Networking of configuring DNS link transparent proxy

Configuration Steps

- Step 1: Configure the IP address and default gateway of the interface (omitted).
- Step 2: Configure the DNS server (omitted).
- Step 3: Configure the DNS server address of PC1 and PC2 (omitted).
- **Step 4:** Configure the DNS link transparent proxy.

#Enable the DNS transparent proxy function.

Device#configure terminal

Device(config)#dns transparent-proxy enable

#Configure the monitoring address, out interface and proxy rules of the DNS transparent proxy.

Device(config)#dns transparent-proxy server 4.0.0.1

Device(config)#dns transparent-proxy server 5.0.0.1

DNS	www.qtech.ru
	Device(config)#dns server bind interface gigabitethernet1 primary 2.0.0.2
	Device(config)#dns server bind interface gigabitethernet2 primary 3.0.0.2
# Configu	re the route.
	Device(config)#ip route 4.0.0.0 255.255.255.0 gigabitethernet1
	Device(config)#ip route 5.0.0.0 255.255.255.0 gigabitethernet2
Step 5:	Check the result.
#On PC1	, ping the host name host.xxyyzz.com, and the ping can be connected.
	C:\>ping host.xxyyzz.com
	Pinging host.xxyyzz.com [2.0.0.2] with 32 bytes of data:
	Reply from 2.0.0.2: bytes=32 time<1ms TTL=255
	Reply from 2.0.0.2: bytes=32 time<1ms TTL=255
	Reply from 2.0.0.2: bytes=32 time<1ms TTL=255
	Reply from 2.0.0.2: bytes=32 time<1ms TTL=255
	Ping statistics for 2.0.0.2:
	Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
	Approximate round trip times in milli-seconds:
	Minimum = 0ms, Maximum = 0ms, Average = 0ms
#On PC2	, ping the host name host.xxyyzz.com, and the ping can be connected.
	C:\>ping host.xxyyzz.com
	Pinging host.xxyyzz.com [3.0.0.2] with 32 bytes of data:
	Reply from 3.0.0.2: bytes=32 time<1ms TTL=255
	Reply from 3.0.0.2: bytes=32 time<1ms TTL=255
	Reply from 3.0.0.2: bytes=32 time<1ms TTL=255
	Reply from 3.0.0.2: bytes=32 time<1ms TTL=255
	Ping statistics for 3.0.0.2:
	Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
	Approximate round trip times in milli-seconds:
	Minimum = 0ms, Maximum = 0ms, Average = 0ms
<u>Note:</u>	

• After the device service is identified, DNS queries the route of the forwarding packet and records the information of the request packet according to the query result and the link transparent proxy, modifies the destination address of the packet and sends it to

DNS

www.qtech.ru

....

the server according to the link transparent proxy rules bound to the out interface of the route; for the response packet, the device is identified as a DNS packet, and the DNS constructs the response packet to the client according to the recorded request packet information.

16.3.6. Configure NAT64-Based DNS64

Network Requirements

- The IP address of the DNS server is 2.0.0.2/24, that of server is 2.0.0.3/24, and that of PC is 1:: 1/96.
- DNS server, Server and PC are interconnected through Device, and Device is used as gateway router.
- The DNS address of the PC is set to 1::2, and the DNS records of host.xxyyzz.com and 2.0.0.3 are set on the DNS server.
- Device enables the DNS64 function and NAT64 function.
- PC dynamically resolves host.xxyyzz.com to access server through the DNS64 function of Device.

Network Topology

Figure 16-6 Networking of configuring DNS64

Configuration Steps

- **Step 1:** Configure the IP address and default gateway of the interface (omitted).
- Step 2: Configure the DNS server (omitted).
- Step 3: Configure the DNS server address of PC (omitted).
- **Step 4:** Enable the DNS proxy function.

Device#configure terminal Device(config)#ip name-server 2.0.0.2 Device(config)#dns proxy enable Device(config)#dns proxy cache

DNS		www.qtech.ru
Step 5:	Enable the DNS64 function.	
	Device(config)#dns64 enable	
	Device(config)#dns64 prefix 1:2:3::/96	
Step 6:	Enable the NAT64 function and configure the nat64 translation rules	6.
	Device(config)#interface gigabitethernet0	
	Device(config-if-gigabitethernet0)#nat64 enable	
	Device(config-if-gigabitethernet0)#exit	
	Device(config)#interface gigabitethernet1	
	Device(config-if-gigabitethernet1)#nat64 enable	
	Device(config-if-gigabitethernet1)#exit	
	Device (config)#IPv6 access-list extended 7001	
	Device (config-v6-list)#permit IPv6 any 1:2:3::/96	
	Device (config-v6-list)#exit	
	Device (config)# nat64 prefix 1:2:3::/96	
	Device (config)#nat64 v6v4 list 7001 interface gigabitethernet1 over	load

Step 7: Check the result.

#On PC, ping the host name host.xxyyzz.com, and the ping can be connected.

C:\>ping host.xxyyzz.com

Pinging host.xxyyzz.com [1:2:3::200:3] with 32 bytes of data: Reply from 1:2:3::200:3: time<1ms Reply from 1:2:3::200:3: time<1ms Reply from 1:2:3::200:3: time<1ms Reply from 1:2:3::200:3: time<1ms

Ping statistics for 1:2:3::200:3: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms

#On Device, view the dynamic domain name information.

Device#show hosts Static: 0 Dynamic: 1

hostname

inet address/inet6 address

type remain(s) vrf

....

DNS				www.qtech.ru	
host.xxyyzz.com	2.0.0.3	dynamic	3384	global	
#On Device, view the NAT64 tran	nslation informa	ation.			
Device# show nat64	translation				
Proto IPv6 se	ource:port	IPv4 sou	rce:port	lifetime	
IPv6 destination	on:port	IPv4 destinatio	n:port		
ICMP [1::1]:1		2.0.0.1:10001	59		
[1:2:3::200:3]:1		2.0.0. 3:10001			

Total:1

Note:

- After the NAT64 function is enabled, if the device receives the AAAA request, it will send the AAAA request to the DNS server. If the request times out or the domain name resolution fails, it will send the AAAA request to the server, and splice the IPv4 address in the response packet into the IPv6 address through the DNS64 prefix, and return it to the client.
- According to the application scenarios of DNS, DNS64 is divided into client DNS64 and proxy DNS64.

17. L2TP

17.1. Overview

VPDN (Virtual Private Dial-up Network) provides connection services for the remote users expecting to connect to the enterprise network through the ISP (Internet Service Provider). The VPDN allows independent protocol domain to enjoy the common visit infrastructure, such as the modem, visiting server, and the ISDN router. The enterprise can purchase or rent the remote access infrastructure from the ISP to enable its remote work team to visit the intranet.

The VPDN uses the Layer 2 Tunneling Protocol, such as Layer 2 Forwarding and Point-to-Point Tunneling Protocol, to enable the ISP or other visiting servers to create a virtual channel to connect the customers' remote sites or remote users of the with the main network of the enterprise.

The network visiting server of the ISP can be dialed by remote users. Frames without any links and transparent bytes are encapsulated using the preceding tunnel protocol, such as the L2TP and are forwarded through the corresponding channels. The main gateway of the customer (enterprise network) receives these L2TP frames, decapsulates the L2TP links, and processes these entered frames for the corresponding interfaces.

L2TP (Layer 2 Tunneling Protocol) is one of the VPDN technologies. The L2TP allows users to dial in the ISP and allows the dialed-in users to incorporate the connections into the enterprise network. This enables the enterprise network to allow the ISP to keep its point at the logical attribute for all the dial-in connections through all logical attribute, such as authenticating the network layer attribute.

The L2TP uses the following two VPDN peer devices to construct a L2TP tunnel: LAC (L2TP Access Concentrator) and LNS (L2TP Network Server). When the user dials in the LAC, the LAC initiates the L2TP tunnel connection with the LNS. The LNS locates at the edge of the enterprise network or behind the firewall of the internal enterprise network.

Before all the sessions between the LAC and LNS are established, the control connection message must be used to establish the tunnel. This tunnel can send the PPP grouping from the LAC to the LNS. Establishing the control connection includes confirming the peer device, L2TP version, sub frame, and channel carrier.

The L2TP uses three message exchanges to establish the control connection. The following figure shows the process of establishing a tunnel.

Figure 17-1 Establish the L2TP

- 1. The LAC sends the SCCRQ (Start Control Connection Request) to the LNS.
- 2. The LNS sends the SCCRP (Start Control Connection Reply) to the LAC.

- 3. The LAC sends the SCCCN (Start Control Connection Connected) to the LNS.
- 4. The LNS sends the ZLB (Zero-Length Body) to the LAC.

After the tunnel is established successfully, an independent L2TP session will be established. The following figure shows the process of creating a session:

Figure 17-2 Establish the L2TP session

- 1. The host initiates the PPP connection with the LAC through the standard analog phone or the ISDN. The LAC receives the connection and establishes the data link layer.
- The LAC checks part hosts, that is, checking whether the user is a VPDN client through the user name. If the user is not a VPDN user, check the user using the user name database provided by the local ISP for other connections. If the identified user name is a VPDN user, the L2TP session will be established subsequently.
- 3. The LAC initiates the L2TP session containing the ICRQ (Incoming Call Request) message.
- 4. The LNS receives the L2TP session containing the ICRP (Incoming Call Reply) message.
- 5. The LAC sends the L2TP session established by the ICCN (Incoming Call Connected).
- 6. The LNS replies to confirm the ZLB (Zero-Length Body) message.
- 7. The LAC forwards the user name and password to the LNS to complete the identification process.
- 8. The LAC forwards all the LCP (Link Control Protocol) negotiation options to the LNS. The LNS will establish a virtual access interface, which is copied from a virtual template. At this time, the user completes the identification of the LNS and all the other LCP negotiation options. If the user cannot perform the identification, the LNS will send a disconnection message to the LAC.
- 9. The data can be forwarded between the LAC and LNS through the L2TP tunnel.

17.2. L2TP Function Configuration

Table 17-1 The L2TP function list

Configuration Task			
Configure the VPDN group	Enable the VPDN		
	Configure the VPDN group of the LAC		
	Configure the VPDN group of the LNS		
Configure the VPDN authentication	Configure the VPDN authentication		
Configure the VPDN group parameter	Configure the keep-alive time of the VPDN tunnel		
	Configure the receive window size of the VPDN tunnel		
Configure the spontaneous tunnel	Configure the L2TP spontaneous tunnel		

17.2.1. Configure the VPDN group

Configuration Condition

None

Enable the VPDN

To configure any VPDN technology, enable the VPDN at first. Then other VPDN commands can be used.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Table 17-2 Enable the VPDN

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the VPDN	vpdn enable	Mandatory By default, the VPDN function is not enabled.

Configure VPDN Group of LAC

The VPDN group is a mechanism, organizing all the VPDN commands related to all the VPDN peer devices into an independent structure. This mechanism specifies the LAC request dial-in or the LNS dial-in. once the VPDN group is configured as a specific L2TP device, you cannot change the configuration.

If the VPDN group is configured as the request dial-in mode, the VPDN group is identified as the LAC L2TP device.

Table 17-3 Configure the VPDN group of the LAC

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the VPDN	vpdn enable	Mandatory By default, the VPDN function is not enabled.
Create the VPDN group and enter the VPDN configuration mode	vpdn-group group-name	Mandatory By default, the VPDN group is not created.
Configure permitting the VPDN request dial-in and enter the VPDN request dial-in configuration mode	request-dialin	Mandatory By default, the request dial-in is not configured for the VPDN group. The VPDN group is identifies as the LAC.

1 2TD	

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Configure the VPDN group application protocol type	protocol l2tp	Mandatory By default, the application protocol is not configured for the VPDN group. The application VPDN protocol is specified for the VPDN group. Currently, only the L2TP protocol is supported.
Configure the VPDN group domain name	domain domain-name	Mandatory By default, the domain name is not configured for the VPDN group. When the user dials in the LAC, the LAC needs to send user data to the specified LNS. That is, use the domain name to map the user to the LNS.
Return to the VPDN configuration mode	exit	-
Configure the IPv4 destination IP address of the L2TP tunnel	initiate-to ip <i>ip-address</i>	Mandatory for IPv4 tunnel By default, the IP v4 destination address of the L2TP tunnel is not configured for the VPDN group.
Configure the IPV6 destination address of the L2TP tunnel	initiate-to ipv6 <i>ipv6-</i> address	Mandatory for IPv6 tunnel By default, the VPDN group does not configure the IPv6 destination address of the L2TP tunnel.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Step	Command	Description
Configure the LAC name	local name host-name	Optional By default, the LAC name is not configured.

Configure the VPDN group of the LNS

If the VPDN group is configured as the accept dial-in mode, the VPDN group is identified as the LNS L2TP device.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enable the VPDN	vpdn enable	Mandatory By default, the VPDN function is not enabled.
Create the VPDN group and enter the VPDN configuration mode	vpdn-group group-name	Mandatory By default, the VPDN group is not configured.
Configure permitting VPDN accept dial-in and enter the VPDN accept dial-in configuration mode	accept-dialin	Mandatory By default, the accept dial- in is not configured for the VPDN group. The VPDN group is identified as the LNS.

1 2	тο
노	IГ

www.qtech.ru

Step	Command	Description
Configure the VPDN group application protocol type	protocol l2tp	Mandatory By default, the VPDN application protocol is not configured for the VPDN group. The application VPDN protocol is specified in the VPDN group. Currently, only the L2TP protocol is supported.
Configure the VPDN group virtual template interface	virtual-temple virtual- temple-number	Mandatory By default, the virtual template interface is not configured for the VPDN group. The L2TP packet is the PPP packet with extra data header. If the data header is removed, the PPP packet must take effect. Therefore, an interface can parse the PPP data is required, that is, the virtual interface.
Return to the VPDN configuration mode	exit	-
Configure the LNS peer end name	terminate-from hostname lac-hostname	Optional By default, the LNS peer device name is not configured for the VPDN group.
Configure the LNS name	local name host-name	Optional By default, the LNS name is not configured.

....

17.2.2. Configure VPDN Authentication

Configuration Condition

Before configuring the VPDN authentication function, first complete the following task:

• The corresponding VPDN group is created.

Configure VPDN Authentication

The L2TP uses a simple and configurable CHAP (Challenge Handshake Authentication Protocol) in the control connection establishment process. If the LAC or the LNS needs to be authenticated, then the AVP (Attribute Value Pairs) in the SCCRQ or SCCRP control packet contains the challenge message. Any party receives such SCCRQ or SCCRP must send the SCCRP or SCCCN control packet to response. If the response does not match the peer device expectation, the tunnel is not allowed to be established correctly.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Create the VPDN group and enter the VPDN configuration mode	vpdn-group group-name	Mandatory By default, the VPDN group is not created.
Enable the VPDN authentication function	I2tp tunnel authentication	Mandatory By default, the authentication function foe the VPDN is enabled.
Configure the VPDN identification password	I2tp tunnel password [0] password	Mandatory By default, the authentication password for the VPDN is not configured.

17.2.3. Configure VPDN Group Parameter

Configuration Condition

Before configuring the VPDN authentication function, first complete the following task:

• The corresponding VPDN group is created.

Configure Keep-alive Time of VPDN Tunnel

After the L2TP tunnel is established successfully, to detect whether the peer device can communicate normally, the L2TP device sends the keep-alive packet periodically to confirm the connectivity of the peer device.

....

Table 17-6 Configure the keep-alive time of the VPDN tunnel

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Create the VPDN group and enter the VPDN configuration mode	vpdn-group group-name	Mandatory By default, the VPDN group is not created.
Configure the keep-alive time of the VPDN tunnel	l2tp tunnel hello time- value	Mandatory By default, the VPDN tunnel keep-alive time is 60s. After the L2TP tunnel is created, the packet is sent periodically to check whether the tunnel can communicate normally.

Configure VPDN Tunnel Connection Status Detection

The command is used to configure the packets passing the tunnel to detect the connectivity of the tunnel. Once the local tunnel can receive the data, it is considered that the tunnel can communicate normally and does not actively send the tunnel keepalive packet.

The **no l2tp tunnel predictive** command is used to prohibit the detection of tunnel connectivity through packets.

By default, it can detect the connectivity of the tunnel through packets.

Table 17-7 Configure VPDN tunnel connection status detection

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Create the VPDN group and enter the VPDN configuration mode	vpdn-group group-name	Mandatory By default, the VPDN group is not created.

www.qtech.ru

....

Step	Command	Description
Configure VPDN tunnel connection status detection	I2tp tunnel predictive	Mandatory By default, enable the connection status detection function of the VPDN tunnel.

Configure PPP LCP Negotiation Action in VPDN Tunnel Forced Mode

In forced mode, LAC will carry AVP and other information to LNS through ICCN. After analysis, LNS will compare the LCP information carried with the PPP configuration of LNS. If it does not match, it will renegotiate. If it matches, it will directly negotiate the authentication and IPCP stage.

Icp renegotiation always: LCP renegotiation always occurs.

lcp renegotiation on-mismatch: when LCP parameters do not match and are inconsistent, LCP renegotiation is performed.

The no lcp renegotiation command is used to cancel the LCP renegotiation function

By default, renegotiation is not performed.

Table 17-8 Configure the PPP LCP negotiation action in the VPDN tunnel forced mode

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Create the VPDN group and enter the VPDN configuration mode	vpdn-group group-name	Mandatory By default, the VPDN group is not created.
Enable the PPP LCP forced re-negotiation in the VPDN tunnel forced mode	Icp renegotiation always	Optional By default, PPP LCP forced renegotiation is not enabled in VPDN tunnel forced mode
Enable re-negotiation when PPP LCP does not match in the VPDN tunnel forced mode	Icp renegotiation on- mismatch	Optional By default, do not enable re-negotiation when PPP LCP does not match in the VPDN tunnel forced mode

....

Configure Receive and Send Window Size of VPDN Tunnel

The control packets in the L2TP tunnel and session establishment of the L2TP use the queue mechanism to ensure the packet sequence. The user can specify the capacity of the maximum cached control packets in the VPDN group.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Create the VPDN group and enter the VPDN configuration mode	vpdn-group group-name	Mandatory By default, the VPDN group is not configured.
Configure the receive window size of the VPDN tunnel	I2tp tunnel receive- window window-size	Mandatory By default, the VPDN tunnel receive window size is 60 packets.
Configure the sending window size of the VPDN tunnel	I2tp tunnel send-window window-size	Mandatory By default, the sending window size of the VPDN tunnel is 60 packets.

Table 17-9 Configure the receive and send window size of the VPDN tunnel

17.2.4. Configure Spontaneous Tunnel

The L2TP tunnel establishment is initiated by the PPP dialing client. Generally, the PPP dialing client is separated from the LAC. In the spontaneous L2TP tunnel mode, the PPP dialing client and the LAC are in the same device.

The spontaneous tunnel is enabled in the following three steps:

- Create the pseudo-wire template and specify the data encapsulation type as L2TPv2.
- Create the virtual PPP interface and configure the PPP dialing authentication user name and password.
- Associate the pseudo-wire template to trigger the tunnel establishment on the virtual PPP interface.

Configuration Condition

None

Configure the L2TP spontaneous tunnel

Table 17-10 Configure the L2TP spontaneous tunnel

L2TP

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Create the pseudo-wire template and enter the pseudo-wire template configuration mode	pseudowire-class class- name	Mandatory By default, the pseudo- wire types are not created. For the detailed commands, refer to the L2TPv3 command manual.
Configure the encapsulation data type	encapsulation l2tpv2	Mandatory By default, the encapsulation type for the pseudo-wire template is L2TPv3. The data type for the encapsulation pseudo-wire template is L2TP.
Associate the interface of the source IPv4 address	ip local interface <i>interface-name</i>	Mandatory for IPv4 By default, do not configure the source IPv4 source address of the pseudo wire template.
Associate the interface of the source IPv6 address	ipv6 local interface <i>interface-name ipv6- address</i>	Mandatory for IPv6 By default, do not configure the source IPv6 source address of the pseudo wire template.
Return to the global configuration mode	exit	-
Create the virtual PPP dialing interface	interface virtual-ppp unit- number	Mandatory By default, the virtual PPP interface is not configured.

L2TP

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Configure the encapsulation PPP type of the virtual PPP interface	encapsulation ppp	Mandatory By default, the encapsulation type of the virtual PPP interface is PPP.
Configure the PPP authentication name and password	ppp pap sent-username username@domain.com password 0 password	Mandatory By default, the PPP authentication user name and password are not configured for the virtual PPP interface.
Configure the IP address parameter	ip address { <i>ip-address</i> negotiated }	Mandatory By default, the IP address parameter is not configured for the virtual PPP interface.
Configure associating the pseudo wire template	pseudowire [<i>ipv4-address/</i> IPv6-address] vc-id pw- class pw-class-name	Mandatory By default, the virtual PPP interface is not configured to associate the pseudo- wire template.

17.2.5. L2TP Monitoring and Maintaining

Table 17-11 The L2TP monitoring and maintaining

Command	Description
clear vpdn l2tp [session session-id tunnel tunnel-id]	Clear all sessions and tunnels and the specified tunnels and sessions or sessions corresponding to the user name
<pre>show vpdn [detail [tunnel tunnel-id session session-id]]</pre>	Display the information related to the VPDN tunnel and session

17.3. L2TP Typical Example Configuration

17.3.1. Configure L2TP Forced Mode Combining PPPoE

Network Requirements

- Device1 acts as the PPPoE client, Device2 as the PPPoE server and LAC, and Device3 as the LNS.
- The routing between Device2 and Device3 is reachable.
- Device1 dials in Device2 through the PPPoE. The L2TP tunnel connection is triggered to be established between Device2 and Device3, realizing the communication between Device1 and Device3.

Network Topology

Figure 17-3 Networking of configuring the forced L2TP tunnel mode combining the PPPoE

Configuration Steps

Step 1: Configure the IP addresses for all interfaces. (Omitted)

Step 2: Configure PPPoE client.

#Configure Device1.

Configure the dialing type to be triggered.

Device1#configure terminal

Device1(config)#dialer-list 1 protocol ip permit

Create the dialer0 interface and configure the dialing-related information.

Device1(config)#interface dialer0

Device1(config-if-dialer0)#ip address negotiated

www.qtech.ru

Device1(config-if-dialer0)#ppp pap sent-username admin@cctv.com password 0 admin

Device1(config-if-dialer0)#dialer in-band

Device1(config-if-dialer0)#dialer pool 1

Device1(config-if-dialer0)#dialer-group 1

Device1(config-if-dialer0)#exit

Add interface gigabitethernet0 to the dial pool 1.

Device1(config)#interface gigabitethernet0

Device1(config-if-gigabitethernet0)#pppoe-client dial-pool-number 1

Device1(config-if-gigabitethernet0)#exit

Add a default routing with the outbound interface as dialer0.

Device1(config)#ip route 0.0.0.0 0.0.0.0 dialer0

Step 3: Configure Device2 as the PPPoE server and the LAC.

#Configure Device2.

Configure the PPPoE server. Create virtual-template0 and encapsulation the PPP protocol Enable the PAP authentication mode.

Device2#configure terminal Device2(config)#interface virtual-template 0 Device2(config-if-virtual-template0)#encapsulation ppp Device2(config-if-virtual-template0)#ppp authentication pap Device2(config-if-virtual-template0)#exit

Enable the VPDN. Create the VPDN group PPPoE and configure it as the accept dial-in request mode, using the PPPoE protocol and virtual-template0.

Device2(config)#vpdn enable

Device2(config)#vpdn-group pppoe

Device2(config-vpdn)#accept-dialin

Device2(config-vpdn-acc-in)#protocol pppoe

Device2(config-vpdn-acc-in)#virtual-template 0

Device2(config-vpdn-acc-in)#exit

Device2(config-vpdn)#exit

Enable the PPPoE server on the gigabitethernet0 interface.

Device2(config)#interface gigabitethernet0

Device2(config-if-gigabitethernet0)#pppoe enable

Device2(config-if-gigabitethernet0)#exit

www.qtech.ru

. . . .

Configure the LAC. Create the VPDN group LAC and configure it as the dial-in request mode. Configure the L2TP protocol and configure the domain name as cctv.com. Specify the IP address of the LNS at the other end of the tunnel as. Configure the local device name as lac and configure the shared key of the LAC and LNS as admin.

Device2(config)#vpdn-group lac Device2(config-vpdn)#request-dialin Device2(config-vpdn-req-in)#protocol l2tp Device2(config-vpdn-req-in)#domain cctv.com Device2(config-vpdn-req-in)#exit Device2(config-vpdn)#initiate-to ip 172.16.1.2 Device2(config-vpdn)#local name lac Device2(config-vpdn)#l2tp tunnel password 0 admin Device2(config-vpdn)#exit

Step 4: Configure the LNS.

#Configure Device3.

Configure the user name and password.

Device3#configure terminal

Device3(config)#local-user admin@cctv.com class network

Device3(config-user-network-admin@cctv.com)#service-type ppp

Device3(config-user-network-admin@cctv.com)#password 0 admin

Device3(config-user-network-admin@cctv.com)#exit

Create the local IP address pool, l2tp-pool ranging from 172.16.1.3 to 172.16.1.10.

Device3(config)#ip local pool l2tp-pool 172.16.1.3 172.16.1.10

Create virtual-template0 and encapsulation PPP protocol. Use the IP address of the interface Loopback0.the IP address is allocated to the PPPoE client from the IP address pool l2tp-pool.

Device3(config)#interface virtual-template 0

Device3(config-if-virtual-template0)#encapsulation ppp

Device3(config-if-virtual-template0)#peer default ip address pool l2tp-pool

Device3(config-if-virtual-template0)#ppp authentication pap

Device3(config-if-virtual-template0)#ip unnumbered loopback0

Device3(config-if-virtual-template0)#exit

Enable the VPDN. Create the VPDN group Ins and configure it as the accept dial-in request mode, using the application L2TP protocol and virtual-template0. Only the L2TP connection request named lac is accepted. Configure the shared key of the LAC and LNS as admin.

Device3(config)#vpdn enable

Device3(config)#vpdn-group lns

Device3(config-vpdn)#accept-dialin

Device3(config-vpdn-acc-in)#protocol l2tp Device3(config-vpdn-acc-in)#virtual-template 0 Device3(config-vpdn-acc-in)#exit Device3(config-vpdn)#local name lns Device3(config-vpdn)#terminate-from hostname lac Device3(config-vpdn)#l2tp tunnel password 0 admin Device3(config-vpdn)#exit

Note:

- The shared key of the LAC and LNS must be consistent. Otherwise, the L2TP tunnel cannot be established successfully.
- Step 5: Check the result.

#View the PPPoE session information on Device1.

Device1#show pppoe session information

PPPoE Session Information:(Max Sessions=1024) UID SID RemMAC 0-Intf state C/S ActiveTime LocMAC Local-IP Peer-IP --- ---- -------------5 5 0001.7ade.1819 0001.7adf.8d1b gigabitethernet0 UP C 00:00:40 172.16.1.4 11.0.0.1 There are 1 PPPoE sessions up #View the dialer0 interface information on Device1. Device1#show interface dialer0 dialer0: line protocol is up Flags: (0x1c008071) POINT-TO-POINT MULTICAST ARP RUNNING Type: PPP Internet address: 172.16.1.4/32 **Destination Internet address: 0.0.0.0** Metric: 0, MTU: 1492, BW: 56 Kbps, DLY: 20000 usec, VRF: global Reliability 255/255, Txload 1/255, Rxload 1/255 Last clearing of "show interface" counters never input peak rate 243 bits/sec, 0 hour 3 minutes 45 seconds ago output peak rate 288 bits/sec, 0 hour 3 minutes 45 seconds ago 5 minutes input rate 0 bit/sec, 0 packet/sec 5 minutes output rate 0 bit/sec, 0 packet/sec

	_	_	_	_
www.qtech.ru				

16 packets received; 16 packets sent

0 multicast packets received

0 multicast packets sent

0 input errors; 0 output errors

O collisions; O dropped

It can be observed that the dialer0 interface dialing succeeds and the negotiated IP address as 172.16.1.4.

#View the global routing table on Device1.

Device1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

S 0.0.0.0/0 [1/178571] is directly connected, 00:00:39, dialer0

C 12.1.1.0/24 is directly connected, 00:14:51, gigabitethernet0

C 11.0.0.1/32 is directly connected, 00:00:39, dialer0

C 172.16.1.4/32 is directly connected, 00:00:39, dialer0

#View the L2TP information on Device2.

Device2#show vpdn detail L2TP MaxTun 1000, MaxSes 1000: tunnel free num: 999 TUNNELS: LOCAL-ID REM-ID LOCAL-NAME REM-NAME **VPDN-GROUP** PORT SES-CNT STATE REM-ADDR 15 45 lac lns lac 1701 1 **ESTABLISHED** 172.16.1.2 session free num: 999 SESSIONS: LOCAL-ID REM-ID TUN-ID IF-NAME SYSTEMID IMSI/CALLING-NUM STATE 30 37 virtual-access0 15 _____ _____ **ESTABLISHED**

L2tp total Tunnel and Session Information. Tunnel 1 Session 1

It can be observed that theL2TP tunnel is established successfully between Device2 and Device3.

#View the L2TP information on Device3.

L2T	P
-----	---

www.qtech.ru

Device3#show vpdn detail

L2TP MaxT	L2TP MaxTun 1000, MaxSes1000:								
tunnel free	num: 99	79							
TUNNELS	:								
LOCAL-ID I SES-CNT S	REM-ID STATE	LOCAL-N REM-A	IAME F DDR	EM-NAME	VPD	N-G	ROUP	PORT	
45 15 172.16.1.1	lns	I	ас	lns	1701	1	ESTABL	ISHED.	
session fr	ee num:	999							
SESSIONS	5:								
LOCAL-ID NUM STAT	REM-ID FE	TUN-ID	IF-NAME	SYST	EMID		IMSI/CAL	LING-	
37 30 ESTABLISH	45 IED	vir	ual-access)					

L2TP total Tunnel and Session Information. Tunnel 1 Session 1

It can be observed that the L2TP tunnel is established between Device2 and Device3. #View the global routing table on Device3.

Device3#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

C 172.16.1.0/24 is directly connected, 00:11:40, gigabitethernet0

- C 11.0.0.1/32 is directly connected, 03:12:05, loopback0
- C 172.16.1.4/32 is directly connected, 00:00:47, virtual-access0

#The interface IP address of virtual-template0 on Device3 can be pinged through on Device1.

Device1#ping 11.0.0.1

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 11.0.0.1 , timeout is 2 seconds: !!!!! Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

17.3.2. Configure L2TP Forced Mode Combining 4G Private Network

Network Requirements

- Device1 acts as the 4G client, the LAC acts as the operator device, and Device2 acts as the LNS and connects to the ISP. Network-Center is the data center.
- Device1 dials in the operator through 4G. The LAC of the operator builds the L2TP connection with Device2. The communication between the 4G device and the data center is realized.

Network Topology

	171	N at ward in a	of conf	~ · · · · · · · · · ·	the LOTD	faraadmaada	a a makinin a	1ha 10	n min coto no otra mic
FIGURE	1/-4	NEIWORKING	α com	α	INP I ZIP	TOLCEO MODE	comminina	IDP 4(-	Drivate network
iguio		1 totworking	01 00111	guing		101000 111000	oomoning		private notwork

Device	Interface	IP Address	Device	Interface	IP Address
Device2	Gi0	30.1.1.1/24	Device2	Loopback0	172.16.10.1/32
	Gi2	130.255.142.29/24			

Configuration Steps

- Step 1: Configure the IP addresses for all interfaces. (Omitted)
- Step 2: Configure the 4G interface.

Device1#configure terminal

Device1(config)#interface fastcellular1/0

Device1(config)#dialer config apn cdmptx.sc

Device1(config-if-fastcellular1/0)#dialer config username test@jsyh.vpdn.sc password 0 admin

Device1(config-if-fastcellular1/0)#dialer config authtype pap

Device1(config-if-fastcellular1/0)#dialer config ipfamily ipv4

Device1(config-if-fastcellular1/0)#dialer mode auto

Device1(config-if-fastcellular1/0)#ip address dhcp

Device1(config-if-fastcellular1/0)#exit

Note:

- The APN name used on Device1 is provided by the operator.
- The 4G private network can be accessed through APN and domain name. The specific way is decided by the operator. The domain name is used for access in this case.

....

Step 3: Configure Device2 as AAA client.

#Configure Device2.

Configure the authentication and authorization list name as L2TP, and configure the address, authentication port, statistics port and radius server password of radius server (Refer to relevant chapter AAA of configuration manual).

Device2#configure terminal Device2(config)#aaa server group radius l2tp Device2(config-sg-radius-l2tp)# server 130.255.12.31 auth-port 1812 key l2tp Device2(config-sg-radius-l2tp)# exit Device2(config)#domain l2tp Device2(config-isp-l2tpv2)# aaa authentication ppp radius-group l2tp Device2(config-isp-l2tpv2)# aaa authorization ppp radius-group l2tp Device2(config-isp-l2tpv2)# aaa accounting ppp start-stop radius-group l2tp Device2(config-isp-l2tpv2)# exit

Step 4: Configure LNS.

#Configure Device2.

Configure the virtual template (virtual-template0), and use the AAA authentication and authorization list as I2tp.

Device2(config)#interface virtual-template 0

Device2(config-if-virtual-template0)#encapsulation ppp

Device2(config-if-virtual-template0)#peer default ip address 172.16.20.2

Device2(config-if-virtual-template0)#ppp authentication chap l2tp

Device2(config-if-virtual-template0)#ip unnumber loopback0

Device2(config-if-virtual-template0)#exit

Enable VPDN, create a VPDN group Ins, and configure it to accept dial-in request mode, apply L2TP protocol, and borrow virtual template0. Configure the shared key of LAC and LNS as admin.

Device2(config)#vpdn enable

Device2(config)#vpdn-group lns

Device2(config-vpdn)#accept-dialin

Device2(config-vpdn-acc-in)#protocol l2tp

Device2(config-vpdn-acc-in)#virtual-template 0

Device2(config-vpdn-acc-in)#exit

Device2(config-vpdn)#local name lns

Device2(config-vpdn)#l2tp tunnel password 0 admin

Device2(config-vpdn)#exit

www.qtech.ru

Note:

• If LAC does not need authentication, execute the **no l2tp tunnel authentication** command on LNS to disable authentication.

Step 5: Check the result.

#View the fastcellular 1/0 interface information of Device1.

Device1#show interface fastcellular 1/0 Fastcellular1/0: line protocol is up Flags: (0xc208063) BROADCAST MULTICAST ARP RUNNING Type: ETHERNET_CSMACD Internet address: 172.16.10.6/30 Broadcast address: 172.16.245.251 Metric: 0, MTU: 1500, BW: 100000 Kbps, DLY: 100 usec, VRF: global Reliability 255/255, Txload 1/255, Rxload 1/255 Ethernet address is 0001.7ab8.d858 Last clearing of "show interface" counters never input peak rate 596 bits/sec, 1 hour 58 minutes 8 seconds ago output peak rate 715 bits/sec, 1 hour 58 minutes 8 seconds ago 5 minutes input rate 0 bit/sec, 0 packet/sec 5 minutes output rate 0 bit/sec, 0 packet/sec 618 packets received; 1807 packets sent 4 multicast packets received 29 multicast packets sent 0 input errors; 0 output errors 0 collisions; 0 dropped Unknown protocol 0 Rate: auto Duplex: auto rxframes 618, rx bytes 52160, rx arps 21 txframes 1807, tx bytes 308654, tx arps 25 rx errors 0, tx errors 0

You can see that the 4G interface dialed successfully, and the negotiated IP address is 172.16.10.6.

#On Device2, view the L2TP information.

Device2#show vpdn detail L2TP MaxTun 1000, MaxSes 1000: tunnel free num: 999 TUNNELS:

L2TP					www.qtech.ru	
	LOCAL-ID REM-ID SES-CNT STATE	LOCAL-NAME REM-ADDR	REM-NAME	VPDN-G	ROUP POR	Т
	21 63 lns 119.6.10.116	GGSNCD01	lns	1701 1	ESTABLISHE	ס
	session free num: SESSIONS:	11999				
	LOCAL-ID REM-ID NUM STATE	TUN-ID IF-NAME	SYSTE	MID	IMSI/CALLING	-
	79 4236 21 ESTABLISHED	virtual-access2				-

L2tp total Tunnel and Session Information. Tunnel 1 Session 1

You can see that the L2TP tunnel is set up between the operator LAC and Device2 successfully.

#On Device1, you can ping the virtual-template0 interface address of Device2.

Device1#ping 172.16.20.1

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 172.16.20.1, timeout is 2 seconds: !!!!! Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

17.3.3. Configure L2TP Spontaneous Mode Combining 4G Public Network

Network Requirements

- Device1 acts as the 4G client, Device1 as the LAC, and Device2 as the LNS. The LNS can visit the public network. Network-Center is the data center.
- Device1 dials in the operator through 4G. After connecting with Device2, Device1 builds the L2TP connection with Device2, realizing the communication between 4G client and Network-Center.

Network Topology

Figure 17-5 Networking of configuring the L2TP spontaneous mode combining the 4G public network

Tec	h ru	
 LCC.		

Device	Interface	IP Address	Device	Interface	IP Address
Device2	Gi0	171.217.50.205/24	Device2	Loopback0	100.0.0.1/32

Configuration Steps

- **Step 1:** Configure the IP addresses for all interfaces. (Omitted)
- **Step 2:** Configure the auto dialing of the 4G interface.

Device1#configure terminal

Device1(config)#interface fastcellular1

Device1(config-if-fastcellular1)#dialer config authtype pap

Device1(config-if-fastcellular1)#dialer config ipfamily ipv4

Device1(config-if-fastcellular1)#dialer mode auto

Device1(config-if-fastcellular1)#ip address dhcp

Device1(config-if-fastcellular1)#exit

#Configure the one route to Device2, pointing to 4G interface.

Device1(config)#ip route 171.217.50.205 255.255.255.255 fastcellular1

#Check the 4G interface information of Device1.

Device1#show interface fastcellular 1

Fastcellular1:

line protocol is up Flags: (0xc208063) BROADCAST MULTICAST ARP RUNNING Type: ETHERNET_CSMACD Internet address: 10.159.125.38/30 Broadcast address: 10.159.245.251 Metric: 0, MTU: 1500, BW: 100000 Kbps, DLY: 100 usec, VRF: global Reliability 255/255, Txload 1/255, Rxload 1/255 Ethernet address is 0001.7ab8.d858 Last clearing of "show interface" counters never input peak rate 596 bits/sec, 1 hour 58 minutes 8 seconds ago output peak rate 715 bits/sec, 1 hour 58 minutes 8 seconds ago 5 minutes input rate 0 bit/sec, 0 packet/sec 5 minutes output rate 0 bit/sec, 0 packet/sec 618 packets received; 1807 packets sent 4 multicast packets received

- 29 multicast packets sent
- 0 input errors; 0 output errors

0 collisions; 0 dropped
Unknown protocol 0
Rate: auto Duplex: auto
rxframes 618, rx bytes 52160, rx arps 21
txframes 1807, tx bytes 308654, tx arps 25
rx errors 0, tx errors 0
You can see that the 4G interface dials successfully and the negotiated IP address is 10.159.125.38.
#On Device1, view the global route table.
Device1#show ip route
Codes: C - connected, S - static, R - RIP, 0 - 0SPF, 0E-0SPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

S 171.217.50.205/32 [1/26041] is directly connected, 00:02:19, fastcellular1

C 10.159.125.38/32 is directly connected, 00:02:19, fastcellular1

C 172.22.209.210/32 is directly connected, 00:02:19, fastcellular1

#On Device1, you can ping the public network address of Device2.

Device1#ping 171.217.50.205

Press key (ctrl + shift + 6) interrupt it.

Sending 5, 76-byte ICMP Echos to 171.217.50.205 , timeout is 2 seconds:

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

Step 3: Configure LAC abd client.

#Configure Device1.

Configure the pseudo wire template name as l2tp-1, the encapsulation protocol type as l2tpv2, the key as admin, the local name as lac, and borrow fast cellular 1.

Device1(config)#pseudowire-class l2tp-1

Device1(config-pw-class)#encapsulation l2tpv2

Device1(config-pw-class)#password 0 admin

Device1(config-pw-class)#hostname lac

Device1(config-pw-class)#ip local interface fastcellular1

Device1(config-pw-class)#exit

www.qtech.ru

Configure the virtual PPP interface virtual-ppp0, encapsulate the PPP protocol, and use the PAP authentication method to send the user name as admin and password as admin; Use pseudo wire template l2tp-1 to establish L2TP tunnel with Device2.

Device1(config)#interface virtual-ppp0

Device1(config-if-virtual-ppp0)#encapsulation ppp

Device1(config-if-virtual-ppp0)#ip address negotiated

Device1(config-if-virtual-ppp0)#ppp pap sent-username admin password 0 admin

Device1(config-if-virtual-ppp0)#pseudowire 171.217.50.205 1 pw-class l2tp-1

Device1(config-if-virtual-ppp0)#exit

Configure the default route out interface as virtual-ppp0.

Device1(config)#ip route 0.0.0.0 0.0.0.0 virtual-ppp0

Step 4: Configure the LNS device.

#Configure Device2.

Configure the PPP-authenticated user name as admin and password as admin.

Device2#configure terminal

Device2(config)#local-user admin class network

Device2(config-user-network-admin)#service-type ppp

Device2(config-user-network-admin)#password 0 admin

Device2(config-user-network-admin)#exit

Configure virtual-template 0 and use the PAP authentication mode.

Device2(config)#interface virtual-template 0

Device2(config-if-virtual-template0)#encapsulation ppp

Device2(config-if-virtual-template0)#ip unnumber loopback0

Device2(config-if-virtual-template0)#peer default ip address 100.0.0.2

Device2(config-if-virtual-template0)#ppp authentication pap

Device2(config-if-virtual-template0)#exit

Enable the VPDN. Create the VPDN group Ins and configure it as the accept dial-in request mode. Use the application L2TP protocol and virtual-template0. Configure the shared key between the LAC and LNS as admin.

Device2(config)#vpdn enable Device2(config)#vpdn-group lns Device2(config-vpdn)#accept-dialin Device2(config-vpdn-acc-in)#protocol l2tp Device2(config-vpdn-acc-in)#virtual-template 0 Device2(config-vpdn-acc-in)#exit Device2(config-vpdn)#local name lns Device2(config-vpdn)#l2tp tunnel password 0 admin Device2(config-vpdn)#exit

L2TP					www.qtech.ru	
Step 5:	Check the result.					
#View the	information of interfa	ice virtual-ppp0 on I	Device1.			
	Device1#show inter	rface virtual-ppp 0				
	virtual-ppp0:					
	line protocol is u	dn				
	Flags: (0x80080	f1) POINT-TO-POINT	MULTICAST RU	NNING		
	Type: PPP					
	Internet address	s: 100.0.0.2/24				
	Destination Inte	rnet address: 100.0.	0.1			
	Metric: 0, MTU: 1	500, BW: 64 Kbps, D)LY: 20000 usec,	VRF: global		
	Reliability 255/2	55, Txload 1/255, Rx	load 1/255			
	Last clearing of	"show interface" co	ounters never			
	input peak rate	649 bits/sec, 0 hou	r 1 minute 11 sec	onds ago		
	output peak rate	e 649 bits/sec, 0 ho	ur 1 minute 11 se	conds ago		
	5 minutes input	rate 0 bit/sec, 0 pa	cket/sec			
	5 minutes outpu	t rate 0 bit/sec, 0 p	acket/sec			
	59 packets rece	ived; 64 packets sei	nt			
	0 multicast pack	ets received				
	0 multicast pack	kets sent				
	0 input errors; 0	output errors				
	0 collisions; 0 dr	opped				
	LCP:0PENED					
	IPCP:0PENED					
	encap-type: sin	nply PPP				
#View the	L2TP information on	Device1.				
	Device1#show vpdr	n detail				
	L2TP MaxTun1000,	MaxSes1000:				
	tunnel free num: 9	99				
	TUNNELS:					
	LOCAL-ID REM-ID SES-CNT STATE	LOCAL-NAME REM-ADDR	REM-NAME	VPDN-GR	OUP POR	Г
	1 33 lac 171.217.50.205	lns		1701 1	ESTABLISHED)
	session free num:	999				
	SESSIONS:					
	LOCAL-ID REM-ID NUM STATE	TUN-ID IF-NAME	SYSTE	MID	IMSI/CALLING	-

L2TP						••••	
	81 ESTA	66 Ablishe	1 ED	virtual-ppp0			-

L2TP total Tunnel and Session Information. Tunnel 1 Session 1

It can be observed that the L2TP tunnel between Device1 and Device2 is successfully established.

#The IP address of the interface virtual-template0 on Device2 can be pinged through on Device1.

Device1#ping 100.0.0.1

Press key (ctrl + shift + 6) interrupt it.

Sending 5, 76-byte ICMP Echos to 100.0.0.1 , timeout is 2 seconds:

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

17.3.4. Configure Android Terminal Establishing L2TP over IPSec Connection on Public Network

Network Requirements

- Android is the Android terminal, Device is the LNS, and Network-Center is the data center. The IPSec is established between Android and Device through the public network address. And then the L2TP connection is established. The IPSec transmission mode is used to protect the L2TP data communication between Android and Device.
- The L2TP tunnel is established between Android and Device, realizing the communication between Android and data center.

Network Topology

Figure 17-6 Networking of configuring Android establishing the L2TP over IPSec on the public network

Configuration Steps

Step 1: Configure Android.

Choose **Settings** > **WLAN** on Android, as shown in the following figure.

2TP			www.qtech.ru
	14:41 🕏 🔯	ତ 중 패배 · / () 81%	
	Se	ettings	
	NETWORK		
	SIM cards &	mobile networks	
	WLAN	Hunt_Internet >	
	Bluetooth	Off >	
	More	>	
	 Notifications 	>	
	Wallpaper	>	
	Themes	>	
	A System font	Default >	

Enter the Wireless and network settng interface and click VPN, as shown in the following figure.

Tout aire

c \

4:42 🥏 圆	⑦ 奈
< More	
Airplane mode	
VPN	>
Tethering & portable	hotspot >
Wireless display Connect to a display using	> WLAN

Enter the VPN interface and click Add VPN, as shown in the following figure.

Enter the Add VPN interface and click Add VPN L2TP/IPsec PSK, as shown in the following figure.

14:44 🕏 🙆	⑦ 奈 ::::: ⁴⁶ / _{1×} ≠ ● 81%
Cancel	Add VPN OK
Name	
TYPE	
L2TP/IPSec PSK	>
Server address	
L2TP secret	(not used)
IPSec identifier	(not used)
IPSec pre-shared key	
Show advanced op	otions

Enter the Add VPN L2TP/IPsec PSK" interface, and configure the VPN name, VPN server, and IPSec pre-shared key, as shown in the following figure.

		www.qtech.ru
14:45 🕏 箇	⊙ 🛜 🛲 4g ≠ 👝 8	11%
Cancel	Add VPN OK	3
Name	а	
TYPE		
L2TP/IPSec	PSK >	
Server addre	ss 221.10.5.205	
L2TP secre	t (not used)	
IPSec identifi	er (not used)	
IPSec pre-share	d key •••••	
Show advar	iced options	

Save the preceding configurations and set the password, as shown in the following figure.

14:47 🌍 🖾	⑦ 奈 :::: ^{4G} / _{1×} ≠ ○ 81%
< VPN	
VPN	
a L2TP/IPSec VPN with pre	-shared keys
Conne	ect to a
Username	
Password	
Save account info	rmation
Cancel	Connect

After the password is successfully set, click the preceding configured network on the **VPN** interface to connect to the VPN, as shown in the following figure.

L2TP			www.qtec	h.ru
	14:47 € ⊠ < VPN	⑦ 奈 ـــــ₩ ⁴ % ≠ ● 81%		
	VPN			
	CONFIGURATION			
	a Disconnected			

Step 2: Configure the LNS device.

#Configure Device.

Configure the IP address of the interface gigabitethernet0 connecting to the public network.

Device#configure terminal

Device(config)#interface gigabitethernet0

Device(config-if-gigabitethernet0)#ip address 221.10.5.205 255.255.255.0

Device(config-if-gigabitethernet0)#exit

Configure the PPP-authenticated user name as admin and password as admin.

Device(config)#local-user admin class network

Device(config-user-network-admin)#service-type ppp

Device(config-user-network-admin)#password 0 admin

Device(config-user-network-admin)#exit

Configure the loopback interface loopback0.

Device(config)#interface loopback0

Device(config-if-loopback0)#ip address 172.16.30.1 255.255.255.255

Device(config-if-loopback0)#exit

Create virtual-template0 and encapsulation the PPP protocol. Use the CHAP authentication mode and Loopback0.

Device(config)#interface virtual-template 0

Device(config-if-virtual-template0)#encapsulation ppp Device(config-if-virtual-template0)#peer default ip address 2.2.2.2 Device(config-if-virtual-template0)#ppp authentication chap Device(config-if-virtual-template0)#ppp mtu adaptive proxy Device(config-if-virtual-template0)#ip unnumber loopback0 Device(config-if-virtual-template0)#exit

Enable the VPDN. Create the VPDN group Ins and configure it as the accept dial-in request mode. Use the application L2TP protocol and virtual-template0. Disable the L2TP authentication.

Device(config)#vpdn enable Device(config)#vpdn-group lns Device(config-vpdn)#accept-dialin Device(config-vpdn-acc-in)#protocol l2tp Device(config-vpdn-acc-in)#virtual-template 0 Device(config-vpdn-acc-in)#exit Device(config-vpdn)#local name lns Device(config-vpdn)#local name lns Device(config-vpdn)#terminate-from hostname anonymous Device(config-vpdn)#terminate-from hostname anonymous

Step 3: Configure the IPSec. (For details, refer to the IPSec chapter in the configuration manual.

#Configure Device.

Configure the preshared key on Device with the key as 123, permitting all peer ends using the key.

Device(config)#crypto ike key 123 any

Configure the IKE proposal android on Device. Configure the encryption algorithm 3DES and authentication algorithm MD5.

Device(config)#crypto ike proposal android

Device(config-ike-prop)#encryption 3des

Device(config-ike-prop)#integrity md5

Device(config-ike-prop)#group group2

Device(config-ike-prop)#exit

Configure the IPSec proposal android on Device. Configure the ESP security protocol, encryption algorithm 3DES, and authentication algorithm SHA1.

Device(config)#crypto ipsec proposal android

Device(config-ipsec-prop)#esp 3des sha1

Device(config-ipsec-prop)#mode transport

Device(config-ipsec-prop)#exit

Configure the tunnel android on Device. Use the IP address 221.10.5.205 as the local end IP address of the tunnel and the IP address of the tunnel as any. Configure the authentication mode as pre-shared key authentication. The IKE proposal uses android and IPSec uses android.

Device(config)#crypto tunnel android

Device(config-tunnel)#local address 221.10.5.205

Device(config-tunnel)#peer any

Device(config-tunnel)#set authentication preshared

Device(config-tunnel)#set ike proposal android

Device(config-tunnel)#set ipsec proposal android

Device(config-tunnel)#exit

Configure the security policy pad on Device to protect the IP communication from the host 221.10.5.205 to any network. Associate the tunnel android.

Device(config)#crypto policy pad Device(config-policy)#flow host 221.10.5.205 any udp 1701 any tunnel android bypass Device(config-policy)#exit

• At last of the configuration, a routing to Android needs to be configured.

Step 4: Check the result.

Configure Android and build the L2TP connection.

Enter the VPN established in step 1 and enter the user name and password. Click **OK**. It can be viewed that the connecting is displayed under the VPN name. After the connection succeeds, **the connected** is displayed, as shown in the following figure.

L2TP			www.qtech	.ru
	14:51 🥌 🖾 < VPN	[™] ?		
	VPN			
	CONFIGURATION			
	a Connecting	\bigcirc		

#View the IPSec information on Device.

Device#show crypto ike sa

sa-id	negotiation-state	localaddr	peeraddr	peer-identity
9409	STATE_QUICK_R2	221.10.5.205	119.4.252.213	10.231.253.187

74U8 STATE_MAIN_R3 ZZ1.10.5.ZU5 119.4.Z5Z.Z13 10.Z31.Z53.	408	STATE_MAIN_R3	221.10.5.205	119.4.252.213	10.231.253.18
---	-----	---------------	--------------	---------------	---------------

Device#show crypto ipsec sa

policy name : pad

f (src, dst, protocol, src port, dst port) : 221.10.5.205/32 0.0.0.0/0 udp 1701 any policy name : subflow-1610612776, the parent policy name : pad

f (src, dst, protocol, src port, dst port) : 221.10.5.205/32 119.4.252.213/32 udp 1701 any

local tunnel endpoint : 221.10.5.205 remote tunnel endpoint : 119.4.252.213

the pairs of ESP ipsec sa : id : 9409, algorithm : 3DES HMAC-SHA1-96

inbound esp ipsec sa : spi : 0x4cb51778(1286936440) crypto context : 0x1dc0a620 current input 256 packets, 23 kbytes

encapsulation mode : UDP-Encapsulation-Transport

replay protection : ON

remaining lifetime (seconds/kbytes) : 27985/4294967271

uptime is 0 hour 13 minute 35 second

L2TP					www.qtech.ru	••••
ou	tbound esp i	psec sa : spi : 0x556	d8d9(89577689)	crypto context	: 0x1bfb9d40	
	current outp	ut 216 packets, 24 kb	ytes			
	encapsulatic	on mode : UDP-Encap	sulation-Transp	ort		
	replay prote	ction : ON				
	remaining lif	etime (seconds/kbyt	es) : 27985/4294	967270		
	uptime is 0 ł	nour 13 minute 35 sec	cond			
total	sa and sa gr	oup is 1				
#View the L2TP	information of	on Device.				
Devi	ce#show vpc	In detail				
L2tp	MaxTun 1000), MaxSes 1000:				
tunr	el free num:	999				
TUN	INELS:					
LOC/ SES-	AL-ID REM-II ∙CNT STATE	D LOCAL-NAME REM-ADDR	REM-NAME	VPDN-GROU	JP PORT	
94 119.4	18578 lns .252.213	anonymous	lns	42719 1 I	ESTABLISHED	
ses	sion free nun	n: 999				
SES	SIONS:					
LOC/ NUM	L-ID REM-II STATE	D TUN-ID IF-NAME	E SYSTE	MID IN	ISI/CALLING-	
28 ESTA	51669 9 \BLISHED	4 virtual-access	51			

L2TP total Tunnel and Session Information. Tunnel 1 Session 1

It can be observed that the L2TP tunnel between Android and Device is successfully established.

17.3.5. Configure Android Terminal Establishing L2TP over IPSec Connection on Private Network

Network Requirements

- Android is the Android terminal, LAC is the operator device, Device is the LNS, and Network-Center is the data center. The IPSec is established between Android and Device through the private network IP address. And then the L2TP connection is established. The IPSec transmission mode is used to protect the L2TP data communication between Android and Device.
- The L2TP tunnel is established between Android and Device, realizing the communication between Android and Network-Center.

Network Topology

L2TP

Figure 17-7 Networking of configuring Android establishing the L2TP over IPSec on the private network

Configuration Steps

Step 1: Configure Android.

Because of the dialing in the private network, the terminals of some operators need to change the ANP required for dialing the private network.

On the **Settings** interface on Android, click **VPN**, as shown in the following figure.

Enter the **SIM card settings** interface and click **Access Point Name (APN)**, as shown in the following figure.

www.qtech.ru

EDIT SIM INFO	
SIM card name China Telecom	>
SIM card number Not set	>
CELLULAR NETWORK	
System select Change the CDMA roaming mode	>
Access Point Names	>
Preferred network type	>

On the **Edit access point** interface, set APN, user name, and password, as shown in the following figure.

14:55 🦻 🕘	⑦ 奈 ::::! ⁴⁶ / _{1×} ≠ ● 82%
< Edit access point	
APN ctnet	>
Proxy Not set	>
Port Not set	>
Username ctnet@mycdma.cn	>
Password	>
Server Not set	>
MMSC Not set	>
MMS proxy Not set	>
MMS port	>
More)

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

www.qtech.ru

L2TP

www.qtech.ru

After the modification, choose the APN for access (G here). Then the terminal will initiate the connection.

Note:

 In this case, the private network of Rostelecomis used. Therefore, the APN for Android needs to be set.

Step 2: Configure the LNS information on Device.

#Configure Device.

Configure the IP address of gigabitethernet0 connecting to the public network.

Device#configure terminal

Device(config)#interface gigabitethernet0

Device(config-if-gigabitethernet0)#ip address 221.10.5.205 255.255.255.0

Device(config-if-gigabitethernet0)#exit

Configure the PPP-authenticated user name as admin and password as admin. Configure the VPDN user name and password consistent with Android.

Device(config)#local-user admin class network

Device(config-user-network-admin)#service-type ppp

Device(config-user-network-admin)#password 0 admin

Device(config-user-network-admin)#exit

Device(config)#

Device(config)#local-user admin@cctv.vpdn.sc class network

Device(config-user-network-admin@cctv.vpdn.sc)#service-type ppp

Device(config-user-network-admin@cctv.vpdn.sc)#password 0 admin

Device(config-user-network-admin@cctv.vpdn.sc)#exit

Configure the loopback interfaces loopback0 and loopback1.

Device(config)#interface loopback0

Device(config-if-loopback0)#ip address 172.16.10.1 255.255.255.255

Device(config-if-loopback0)#exit

Device(config)#interface loopback1

Device(config-if-loopback1)#ip address 172.16.30.1 255.255.255.255

Device(config-if-loopback1)#exit

Create virtual-template0, encapsulation PPP protocol. Use the CHAP authentication mode and use Loopback0.

Device(config)#interface virtual-template 0

Device(config-if-virtual-template0)#encapsulation ppp

Device(config-if-virtual-template0)#peer default ip address 1.1.1.1

Device(config-if-virtual-template0)#ppp authentication chap

Device(config-if-virtual-template0)#ppp mtu adaptive proxy

Device(config-if-virtual-template0)#ip unnumber loopback0

Device(config-if-virtual-template0)#exit

Create virtual-template1 and encapsulation PPP protocol. Use the CHAP authentication mode and Loopback1.

Device(config)#interface virtual-template 1

Device(config-if-virtual-template1)#encapsulation ppp

Device(config-if-virtual-template1)#peer default ip address 22.22.22.22

Device(config-if-virtual-template1)#ppp authentication chap

Device(config-if-virtual-template1)#ppp mtu adaptive proxy

Device(config-if-virtual-template1)#ip unnumber loopback1

Device(config-if-virtual-template1)#exit

Enable the VPDN. Create the VPDN group Ins0 and configure it as the accept dial-in request mode. Use the application PPP protocol and virtual-template0. Disable the L2TP authentication. This VPDN group is used for the first time dialing in the private network.

Device(config)#vpdn enable Device(config)#vpdn-group lns0 Device(config-vpdn)#accept-dialin Device(config-vpdn-acc-in)#protocol l2tp Device(config-vpdn-acc-in)#virtual-template 0 Device(config-vpdn-acc-in)#exit Device(config-vpdn)#local name lns Device(config-vpdn)#local name lns Device(config-vpdn)#local name lns Device(config-vpdn)#local name lns Device(config-vpdn)#local name lns

Create the VPDN group lns1 and configure it as the accept dial-in request mode. Use the application L2TP protocol and virtual-template1. Disable the L2TP authentication. This VPDN group is used for anonymous terminal dialing.

Device(config)#vpdn-group lns1 Device(config-vpdn)# accept-dialin Device(config-vpdn-acc-in)#protocol l2tp Device(config-vpdn-acc-in)#virtual-template 1 Device(config-vpdn-acc-in)#exit Device(config-vpdn)#local name lns1 Device(config-vpdn)#terminate-from hostname anonymous Device(config-vpdn)#no l2tp tunnel authentication Device(config-vpdn)#lcp renegotiation on-mismatch Device(config-vpdn)#exit

Step 3: Configure the IPSec. (For details, see the IPSec chapter in the configuration manual.)

#Configure Device.

Configure the pre-shared key on Device with the key as 123, permitting all peer ends to use the key.

Device(config)#crypto ike key 123 any

Configure the IKE proposal pas on Device, using the encryption algorithm 3DES and authentication algorithm MD5.

Device(config)#crypto ike proposal pad Device(config-ike-prop)#encryption 3des Device(config-ike-prop)#integrity md5 Device(config-ike-prop)#group group2

Device(config-ike-prop)#exit

Configure the IPSec proposal pad on Device. Use the ESP security protocol and encryption algorithm 3DES and authentication algorithm SHA1.

Device(config)#crypto ipsec proposal pad Device(config-ipsec-prop)#esp 3des sha1

Device(config-ipsec-prop)#mode transport

Device(config-ipsec-prop)#exit

Configure the tunnel android on Device. Use the IP address 172.16.10.1 as the local end IP address of the tunnel. Configure the peer end IP address of the tunnel as any and the authentication mode as pre-shared key authentication. The IKE proposal uses the android and the IPSec proposal uses the android.

Device(config)#crypto tunnel android

Device(config-tunnel)#local address 172.16.10.1

Device(config-tunnel)#peer any

Device(config-tunnel)#set authentication preshared

Device(config-tunnel)#set ike proposal pad

Device(config-tunnel)#set ipsec proposal pad

Device(config-tunnel)#exit

Configure the security policy android on Device to protect the IP communication from the IP address 172.16.10.1 to any network. Associate the tunnel android.

Device(config)#crypto policy android

Device(config-policy)#flow host 172.16.10.1 any udp 1701 any tunnel android

Device(config-policy)#exit

Note:

• At last of the configuration, a routing to Android needs to be configured.

Step 4: Check the result. Android initiates the connection.

www.gtech.ru

L2TP

www.qtech.ru

Long press the established VPN and the network connection succeeds. Enter the ppp user name and password and then click **OK**. It can be viewed that **the connecting** is displayed under the VPN name. After the connection succeeds, **the connected** is displayed, as shown in the following figure.

#View the IPSec information on Device.

Device#show crypto ike sa

sa-id	negotiation-state	localaddr	peeraddr	peer-identity
10290	STATE_QUICK_R2	172.16.10.1	1.1.1.1	1.1.1.1
10289	STATE_MAIN_R3	172.16.10.1	1.1.1.1	1.1.1.1

Device#show crypto ipsec sa

policy name : pad

f (src, dst, protocol, src port, dst port) : 172.16.10.1/32 0.0.0.0/0 udp 1701 any policy name : subflow-1610612823, the parent policy name : pad

f (src, dst, protocol, src port, dst port) : 172.16.10.1/32 1.1.1.1/32 udp 1701 any

local tunnel endpoint : 172.16.10.1 remote tunnel endpoint : 1.1.1.1

the pairs of ESP ipsec sa : id : 10290, algorithm : 3DES HMAC-SHA1-96

inbound esp ipsec sa : spi : 0x60111953(1611733331) crypto context : 0x1b8b08e0 current input 14 packets, 0 kbytes

encapsulation mode : Transport

replay protection : ON

L2TP				ww	w.qtech.ru
	remaining l	lifetime (seconds/kh	vtes) [.] 28785/42949	67294	
	uptime is 0 hour 0 minute 15 second outbound esp ipsec sa : spi : 0xfd3817c(265519484) crypto context : 0x1b8b0860 current output 14 packets, 0 kbytes				
	ronlay prot	oction : ON	L.		
	replay prot	lifatima (sacanda/kh	vtoc) · 28785//.20/.0	147201.	
		hour 0 minuto 15 co	yles) . 20105/42747	07274	
		ct	conu		
	f (crc dct prot	ocol ara port dat pa	vet) · 0 0 0 0 /0 19 0	0.0/2/ in any an	
	total caland cala	roun is 1	JII). 0.0.0.0/0 18.0.	0.0/24 ip any an	у
#\/;	I OTD information	Jroup is i			
#view the	L21P Information	on Device.			
	Device#show vp	odn detail			
L2TP MaxTun1000, MaxSes1000:					
	tunnel free num	า: 998			
	TUNNELS:				
	LOCAL-ID REM- SES-CNT STATE	ID LOCAL-NAME E REM-ADDR	REM-NAME	VPDN-GROUP	PORT
	28 17701 lns 1.1.1.1	;1 anonymou	ıs lns1	58419 1 EST	ABLISHED
	109 85 lnst 119.6.10.2	O GGSNCDO	2 lns0	1701 1 EST.	ABLISHED
	session free nu	ım: 998			
	SESSIONS:				
	LOCAL-ID REM- NUM STATE	ID TUN-ID IF-NAM	IE SYSTEM	MID IMSI/	CALLING-
	445 19270 ESTABLISHED	28 virtual-acces	ss785		
	1084 173 ESTABLISHED	109 virtual-acces	s660		

L2TP total Tunnel and Session Information. Tunnel 2 Session 2 It can be observed that the L2TP tunnel is established between Android and Device.

www.qtech.ru

18. L2TPV3

18.1. Overview

The L2TPv3 (Layer 2 Tunneling Protocol version 3) is the previous Cisco proprietary protocol of the UTI (Universal Transport Interface). The UTI aims to provide the IP-based tunnel technology mechanism of high performance for the connectivity of layer 2 similar to the circuit on the group-based core network. It is an application mode for the layer 2 VPN (Virtual Private Network) transmission technology.

The L2TPv3 is the extension of the layer 2 tunnel UTI by the IETF standard. To overcome the UTI restrictions, the L2TPv3 builds the UTI encapsulation format and combines with a large number of the optional signaling mechanism from the L2TPv2 control plane to provide the pseudo-wire connectivity. The basic L2TPv3 protocol is completed by the control channel signaling of the extended L2TPv2. The signaling supports other attributes which are transferred in the AVP (Attribute Value Pairs) message format.

The L2TPv3 control channel signaling operates on two stages: control connection establishment and session connection establishment. It uses three message exchanges to build the control connection. The following figure shows the tunnel establishment process.

Figure 18-1 The L2TPv3 tunnel establishment process

- After the L2TPv3 node is defined on the PE (Provider Edge), the SCCRQ (Start Control Connection Request) message is sent to initiate the control channel to the PE and inform the performance supported by the local PE.
- The PE sends the SCCRP (Start Control Connection Reply) message to announce its performance settings. This message indicates that the control connection can continue.
- At last, the SCCCN (Start Control Connection Connected) message is the response message of the SCCRP message. The SCCCN message confirms that the SCCRP message is received and the control connection establishment is completed.

After the control co9nnection is established, the two nodes send the keep-alive message to detect the invalid node at a regular interval, which is called the keep-alive mechanism. Due to the overdue keep-alive timer or other key errors, use the StopCCN (Stop Control Connection Notification) message to release the control channel.

www.qtech.ru

After the tunnel is established successfully, the independent L2TPv3 session can be established. The session negotiation uses the three-way handshake mechanism. The following figure shows the session establishment process.

Figure 18-2 The L2TPv3 session establishment process

- When the junction circuit switches to the active state, the PE router sends CRQ (Incoming Call Request) message to exchange the parameter information of the session.
- When the remote PE receives the ICRQ message, the PE sends an ICRP (Incoming Call Reply) message to indicates that the ICRQ message is received.
- The ICCN (Incoming Call Connected) message is sent as the response message for receiving the ICRQ message.

Each pseudo-wire that needs to be dynamically established requires three-way handshake. To send the signaling of the single session state, any PE can send the SLI (Set Link Information) message to indicate the junction circuit state changes. When a node receives the message, the session and related resources must be released.

18.2. L2TPv3 Function Configuration

Table 18-1 L2TPv3 function list

Configuration Task		
Configure the L2TPv3 template	Configure the L2TPv3 basic template	
	Configure the L2TPv3 packet not allowing fragmentation	
	Configure the cookie	

www.qtech.ru

Configuration Task			
Configure the L2TPv3 template	Configure the control connection authentication		
	Configure the timeout retransmission parameter		
Enable the L2TPv3 function	Enable the dynamic L2TPv3 session		
	Enable the static L2TPv3 session		

18.2.1. Configure L2TPv3 Template

Configuration Condition

None

Configure L2TPv3 Basic Template

The L2TPv3 template is the aggregation to save the tunnel and session related features, including the data encapsulation type, tunnel and session signaling protocol, source IP address, and other related attributes, such as authentication, fragmentation, and serial number mechanism.

Table 18-2 Configure the L2TPv3 basic template

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Create the pseudo-wire template and enter the pseudo-wire configuration mode	pseudowire-class class- name	Mandatory By default, the pseudo- wire template is not created.
Configure the data encapsulation type	encapsulation I2tpv3	Mandatory By default, the data encapsulation is not configured.

www.qtech.ru

Step	Command	Description
Configure the signaling protocol	protocol { l2tpv3 none }	Optional By default, the static session mode (none) is used.
Associate the interface of the source IP address	ip local interface <i>interface-name</i>	Mandatory By default, the interface of the source IP address if not associated.

Note:

• When enabling the dynamic session, run the **protocol { l2tpv3 | none }** command to configure the L2TPv3 signaling protocol. The static session is configured as none.

Configure L2TPv3 Packet not Allowing Fragmentation

The IP packet, the encapsulated L2 packet by the L2TPv3, can be set to allow or mot allow the fragmentation in the introduced pseudo-wire template. By default, the packet is allowed to be fragmented.

Table 18-3 Configure the L2TPv3 packet not all	owing fragmentation
--	---------------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the pseudo-wire template configuration mode	pseudowire-class class- name	-
Configure the L2TPv3 packet not allowing fragmentation	ip dfbit set	Mandatory By default, the L2TPv3 packet is allowed to be fragmented.

Configure Cookie

The cookie filed is the optional field in the L2TPv3 protocol header. This field is extended and the value is random with a maximum of 64 bits. The cookie value further ensures that the received data is correctly associated with the local circuit based on the session ID. The randomly selected cookie can only prevent blind insertion attack. Like the session ID, the cookie value only can be used locally. During the session, the AVP local session ID and specified cookie are informed to the peer PE.

www.qtech.ru

Table 18-4 Configure the cookie

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the pseudo-wire template configuration mode	pseudowire-class class- name	-
Configure the cookie	cookie size { 4 8 }	Mandatory By default, the cookie is not configured.

Configure Control Connection Authentication

The L2TPv3 uses a simple and configurable CHAP in the control connection establishment process. If both ends or any end of the PE need authentication, then an AVP containing the CHAP message exist in the SCCRQ or SCCRP control packet. The end initiates the authentication will transmit data to the peer end randomly and the expected hashed value is calculated based on the random number and shared password on the local end. Upon receiving such type of authentication, the SCCRP or SCCCN control packet with the hashed value is sent to respond, respectively. If the responded hashed value does not match the expected hashed value, the tunnel cannot be established.

Table 18-5 Configure the control connection authentication

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the pseudo-wire template configuration mode	pseudowire-class class- name	-
Co9nfigure the host name	hostname host-name	Optional By default, the host name is used.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

Step	Command	Description
Enable the control connection authentication	authentication	Mandatory By default, the control connection authentication is not enabled.
Configure the authentication password	password 0 password	Mandatory By default, the authentication password is not configured.

Configure Timeout Retransmission Parameter

To ensure the reliable transmission of the protocol control packet, the L2TPv3 adopts the packet retransmission mechanism. The retransmission times and retransmission interval of the protocol control packet are set in the pseudo-wire template as required.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the pseudo-wire template configuration mode	pseudowire-class class- name	-
Configure the session connection establishment interval	retransmit initial timeout timeout-value	Optional By default, the timeout time for the session is 5s.
Configure the retransmission times of the tunnel connection establishment	retransmit initial retries retries-value	Optional By default, the retransmission times for the tunnel connection establishment request packet is 2.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Step	Command	Description
Configure the retransmission times of the protocol packet	retransmit retries retry- value	Optional By default, the retransmission number of the control packet (except the tunnel connection establishment request packet) is 10.
Configure the timeout time of the protocol packet	retransmit timeout { max min } timeout-value	Optional By default, the maximum timeout time and minimum timeout time for the control packet is 8s and 1s.

Configure Tunnel Keepalive Time

After the L2TPv3 tunnel is successfully established, in order to detect whether the peer device can communicate normally, the L2TPv3 device uses the method of sending the keepalive packets regularly to confirm the connectivity of the peer device.

Table 18-7 Configure the tunnel keepalive time

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the pseudo-wire template configuration mode	pseudowire-class class- name	-
Configure the tunnel keepalive time	hello time-value	Mandatory By default, the tunnel keepalive time is 60s. After the L2TPv3 tunnel is created, send the packets regularly to confirm whether the tunnel can communicate normally.

Note:

• The **no hello** command is used to prohibit detecting the connectivity of the tunnel.

Configure Tunnel Connection Status Detection

The command is used to configure the packets passing the tunnel to detect the connectivity of the tunnel. Once the local tunnel can receive the data, it is considered that the tunnel can communicate normally and does not actively send the tunnel keepalive packets.

Table 18-8 Configure the t	unnel connection	status detection
----------------------------	------------------	------------------

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the pseudo-wire template configuration mode	pseudowire-class class- name	-
Configure the tunnel connection status detection	predictive hello	Optional By default, enable the tunnel connection status detection function.

Note:

• The **no predictive hello** command is used to prohibit detecting the connectivity of the tunnel by the packet.

18.2.2. Enable L2TPv3 Function

Configuration Condition

Before enabling the L2TPv3 function, first complete the following task:

• Configure the L2TPv3 template to enable the normal communication between local pseudo-wire source IP address and the peer pseudo-wire source IP address.

Enable Dynamic L2TPv3 Session

The dynamic L2TPv3 session negotiated to establish the tunnel and session by the L2TPv3 protocol and negotiates the session-related attribute, including the session ID, cookie value, and pseudo-wire type. When the L2TPv3 function is enabled on the VLAN interface, if Ethernet without VLAN tag is required for the pseudo-wire type, choose the Ethernet parameter option; if Ethernet with VLAN tag is required for the pseudo-wire type, choose the vlan parameter option or do not set the parameter. There are corresponding pseudo-wire types for other types of interfaces.

Table 18-9 Enable the dynamic L2TPv3 session

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable the dynamic L2TPv3 session	xconnect peer-ip-address vc-id pw-class pw-name [vlan ethernet]	Mandatory By default, the dynamic L2TPv3 session on the interface is not enabled.

Note:

- When the L2TPv3 session is enable, a tunnel can be established between the source IP address and the destination IP address. Considering the simple and clear configuration, a destination can only configure a tunnel. Otherwise corresponding error message will be displayed.
- Only when the L2TPv3 function is enabled on the VLAN interface, the Ethernet or vlan parameter can be chose. The VLAN interface is the pseudo-wire of Ethernet with VLAN tag by default.

Enable Static L2TPv3 Session

Different from the dynamic session, the static session does not use the L2TPv3 protocol to negotiate the session establishment process or the session related attribute. For example, parameters such as the session ID and cookie value must be configured and ensured the correctness when the static session is enabled. That is, the session ID and cookie value at both ends are consistent.

1 ADIE 10-10 LHADIE (HE SIA(I) LZ F VS SESSION
--

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Step	Command	Description
Enable the static L2TPv3 session	xconnect peer-ip-address vc-id pw-class pw-name manual [vlan ethernet]	Mandatory By default, the static L2TPv3 session is not enabled on the interface.
Configure the session ID at both ends	l2tp id local-id remote-id	Mandatory By default, the session ID is not configured for the static session.
Configure the session cookie at the local end	I2tp cookie local { 4 cookie-value 8 low- cookie-value high-cookie- value }	Optional By default, the session cookie is not configured for the local end.
Configure the session cookie at the peer end	I2tp cookie remote { 4 cookie-value 8 low- cookie-value high-cookie- value }	Optional By default, the session cookie is not configured for the peer end.

18.2.3. L2TPv3 Monitoring and Maintaining

Table 18-11 The L2TPv3 monitoring and maintaining

Command	Description
clear l2tpv3 [session <i>vc-id</i> tunnel <i>tunnel-id</i>]	Clear all sessions and tunnels and the specified tunnels and sessions
show l2tun detail	Display the detailed information of all the L2TPv3 session and tunnel
show l2tun session [vc-id all brief circuit state sesid ses-id] [ip-addr ip- address [vcid vc-id] tunnel { id tunnel- id session-id remote-name remote- name local-name } vcid vc-id]	Display the related information of the L2TPv3 session

www.qccon.ru

Command	Description
show l2tun tunnel [<i>tunnel-id</i> all state summary] [id <i>tunnel-id</i> local-name <i>local-name remote-name</i> remote-name <i>remote-name local-name</i>]	Display the related information of the L2TPv3 tunnel

18.3. L2TPv3 Typical Configuration Example

18.3.1. Configure Dynamic Session Established over Ethernet Interface

Network Requirements

- The OSPF is used for router advertisement between PE1 and PE2. The dynamic L2TPv3 session is established between PE1 and PE2, enabling the communication between CE1 and CE2.
- The IP addresses of CE1 and CE2 exist in the same network segment.

Network Topology

Figure 18-3 Networking of configuring the dynamic session over the Ethernet interface

Configuration Steps

- **Step 1:** Configure the IP addresses for all interfaces. (Omitted)
- **Step 2:** Configure the OSPF to enable the route between the loopback interfaces of PE1 and PE2 is reachable.

#Configure PE1.

PE1#configure terminal

PE1(config)#router ospf 100

PE1(config-ospf)#network 10.0.0.201 0.0.0.0 area 0

PE1(config-ospf)#network 11.0.0.0 0.0.0.255 area 0

PE1(config-ospf)#exit

#Configure P.

P#configure terminal

P(config)#router ospf 100

P(config-ospf)#network 11.0.0.0 0.0.0.255 area 0

P(config-ospf)#network 12.0.0.0 0.0.0.255 area 0

P(config-ospf)#exit

#Configure PE2.

PE2#configure terminal

PE2(config)#router ospf 100 PE2(config-ospf)#network 10.0.0.203 0.0.0.0 area 0 PE2(config-ospf)#network 12.0.0.0 0.0.0.255 area 0 PE2(config-ospf)#exit

#View the global routing table of PE1.

PE1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 11.0.0.0/24 is directly connected, 00:19:49, gigabitethernet1
- 0 12.0.0.0/24 [110/2] via 11.0.0.1, 00:18:59, gigabitethernet1
- C 127.0.0.0/8 is directly connected, 00:21:05, lo0
- C 10.0.0.201/32 is directly connected, 00:19:55, loopback0
- 0 10.0.0.203/32 [110/3] via 11.0.0.1, 00:18:59, gigabitethernet1

It can be observed that PE1 has learnt the route of Loopback0 to PE2.

Note:

• P and PE2 are viewed in the same way as PE1. The viewing process is omitted.

Step 3: Configure L2TPv3.

#Configure PE1.

Configure the pseudo-wire template as l2tpv3-1 and encapsulated protocol type as L2TPv3. Use Loopback0. Configure L2TPv3 over the gigabitethernet0 interface and use l2tpv3-1 to establish the dynamic L2TPv3 session with PE2.

PE1(config)#pseudowire-class l2tpv3-1

PE1(config-pw-class)#encapsulation l2tpv3

PE1(config-pw-class)#protocol l2tpv3

PE1(config-pw-class)#ip local interface loopback0

PE1(config-pw-class)#exit

PE1(config)#interface gigabitethernet 0

PE1(config-if-gigabitethernet0)#xconnect 10.0.0.203 370 pw-class l2tpv3-1

PE1(config-if-gigabitethernet0)#exit

#Configure PE2.

Configure the pseudo-wire template as l2tpv3-1 and encapsulated protocol type as L2TPv3. Use Loopback0. Configure L2TPv3 over the gigabitethernet1 interface and use l2tpv3-1 to establish the dynamic L2TPv3 session with PE1.

PE2(config)#pseudowire-class l2tpv3-1

PE2(config-pw-class)#encapsulation l2tpv3 PE2(config-pw-class)#protocol l2tpv3 PE2(config-pw-class)#ip local interface loopback0 PE2(config-pw-class)#exit PE2(config)#interface gigabitethernet 1 PE2(config-if-gigabitethernet1)#xconnect 10.0.0.201 370 pw-class l2tpv3-1 PE2(config-if-gigabitethernet1)#exit

Note:

• The VCID of the L2TPv3 session must be consistent at both ends. Otherwise, the dynamic session fails to be established.

Step 4: Check the result.

#View the L2TPv3 tunnel information of PE1.

PE1#show l2tun detail L2TPv3 established Tunnel 1. established Session 1 L2TPv3 total Tunnel and Session Information. Tunnel 1 Session 1

TU	NNEL	S:								
LocID LocName			ame	RemID) RemNa	ime	Ren	nAddr	Port	Sess
Sta	te									
	7	PE1	67	PE2	10.0.0.203	30	1	ESTAB		
SE	SSION	IS:								
	Loci	Reml	כ	TunID	State Type	Vcid		Interface		
	1098	1030	7	EST	TAB dynamic	370	gig	abitethern	et1	

It can be observed that the L2TPv3 tunnel is successfully established between PE1 and PE2. #View the L2TPv3 session information of PE1.

> PE1#show l2tun session L2TPv3 established Tunnel 1. established Session 1 L2TPv3 total Tunnel and Session Information. Tunnel 1 Session 1

Session id 1098 is up, tunnel id 7 Call serial number is 1763798543 Remote tunnel name is PE2 Internet address is 10.0.0.203 Local tunnel name is PE1 Internet Address is 10.0.0.201 Session is L2TP signaled Session state is established, time since change 00:09:47

Session vcid is 370

Session Layer 2 circuit, type is Ethernet, name is gigabitethernet0

Circuit state is UP

Remote session id is 1030, remote tunnel id 67

DF bit off

Session cookie information:

Ses if_tag_len 0, if_tag NULL

Ses psal bit 1

Ses sync bit 0

Ses batch sync bit 0

It can be observed that the dynamic L2TPv3 session is successfully established between PE1 and PE2.

Note:

• PE2 is viewed in the same way as PE1. The viewing process is omitted.

#The interface address of gigabitethernet0 of CE2 can be pinged through on PE1.

CE1#ping 3.0.0.2

Press key (ctrl + shift + 6) interrupt it.

Sending 5, 76-byte ICMP Echos to 3.0.0.2 , timeout is 2 seconds:

!!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

18.3.2. Configure Dynamic Session Established over WAN Interface

Network Requirements

- The OSPF is used for route advertisement between PE1 and PE2. The dynamic L2TPv3 session is established between PE1 and PE2, enabling the communication between CE1 and CE2.
- The IP addresses of CE1 and CE2 exist in the same network segment.

Network Topology

Figure 18-4 Networking of configuring the dynamic session established over the WAN interface

Configuration Steps

Step 1: Configure the IP addresses for all interfaces. (Omitted)

www.qtech.ru

Step 2: Configure the OSPF to enable the routing between the loopback interfaces of PE1 and PE2 is reachable.

#Configure PE1.

PE1#configure terminal PE1(config)#router ospf 100 PE1(config-ospf)#network 10.0.0.201 0.0.0.0 area 0 PE1(config-ospf)#network 11.0.0.0 0.0.0.255 area 0 PE1(config-ospf)#exit

#Configure P.

P#configure terminal

P(config)#router ospf 100

P(config-ospf)#network 11.0.0.0 0.0.0.255 area 0

P(config-ospf)#network 12.0.0.0 0.0.0.255 area 0

P(config-ospf)#exit

#Configure PE2.

PE2#configure terminal

PE2(config)#router ospf 100

PE2(config-ospf)#network 10.0.0.203 0.0.0.0 area 0

PE2(config-ospf)#network 12.0.0.0 0.0.0.255 area 0

PE2(config-ospf)#exit

#View the global routing table of PE1.

PE1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 11.0.0.0/24 is directly connected, 00:19:49, gigabitethernet1
- 0 12.0.0.0/24 [110/2] via 11.0.0.1, 00:18:59, gigabitethernet1
- C 127.0.0.0/8 is directly connected, 00:21:05, lo0
- C 10.0.0.201/32 is directly connected, 00:19:55, loopback0
- 0 10.0.203/32 [110/3] via 11.0.0.1, 00:18:59, gigabitethernet1

It can be observed that PE1 has learnt the routing of Loopback0 to PE2.

Note:

• P and PE2 are viewed in the same way as PE1. The viewing process is omitted.

Step 3: Configure L2TPv3.

#Configure PE1.

Configure the pseudo-wire template as I2tpv3-1 and the encapsulated protocol type as L2TPv3. Use Loopback0. Configure L2TPv3 on the serial1/0 interface. Use the pseudo-wire template I2tpv3-1 to establish the dynamic L2TPv3 session with PE2.

PE1(config)#pseudowire-class l2tpv3-1 PE1(config-pw-class)#encapsulation l2tpv3 PE1(config-pw-class)#protocol l2tpv3 PE1(config-pw-class)#ip local interface loopback0 PE1(config-pw-class)#exit PE1(config)#interface serial 1/0 PE1(config-if-serial1/0)#encapsulation hdlc PE1(config-if-serial1/0)#xconnect 10.0.0.203 380 pw-class l2tpv3-1 PE1(config-if-serial1/0)#exit

#Configure PE2.

Configure the pseudo-wire template as I2tpv3-1 and the encapsulated protocol type as L2TPv3. Configure L2TPv3 on the serial1/0 interface. Use the pseudo-wire template I2tpv3-1 to establish the dynamic L2TPv3 session with PE1.

PE2(config)#pseudowire-class l2tpv3-1 PE2(config-pw-class)#encapsulation l2tpv3 PE2(config-pw-class)#protocol l2tpv3 PE2(config-pw-class)#ip local interface loopback0 PE2(config-pw-class)#exit PE2(config)#interface serial 1/0 PE2(config-if-serial1/0)#encapsulation hdlc PE2(config-if-serial1/0)#xconnect 10.0.0.201 380 pw-class l2tpv3-1 PE2(config-if-serial1/0)#exit

Step 4: Check the result.

#View the L2TPv3 tunnel information of PE1.

PE1#show l2tun detail

L2TPv3 established Tunnel 1. established Session 1

L2TPv3 total Tunnel and Session Information. Tunnel 1 Session 1

TUNNE	ELS:								
LocID LocName State			RemID	RemNam	RemAddr		Port	Sess	
98	PE1	3	PE2	10.0.0.203	0	1	ESTAB		

							www.qtech.r	
	SESSIONS	S:						
	LocID	RemID	TunID	State	e Type	Vcid	Interface	
	1045	1095	98	ESTAB	dynamic	380	serial1/0	
lt can be o	bserved that	t the L2TP	v3 tunnel is	successfu	Illy estab	lished b	etween PE1 and PE2	2.
#View the	L2TPv3 ses	sion inform	ation of PE	1.				
	PE1#show	l2tun sess	ion					
	L2TPv3 est	ablished T	unnel 1. est	ablished S	ession 1			
	L2TPv3 tota	al Tunnel a	nd Session	Informatio	on. Tunne	el 1 Ses	sion 1	
	Session id	1045 is up,	tunnel id 9	8				
	Call serial	number is	1763799104	ļ				
	Remote tur	nnel name	is PE2					
	Intern	et address	is 10.0.0.20)3				
	Local tunn	el name is	PE1					
	Intern	et Address	; is 10.0.0.20)1				
	Sessio	on is L2TP	signaled					
	Sessio	on state is	established	d, time sind	e chang	e 00:00	22	
	Sessio	on vcid is 3	80					
	Sessio	on Layer 2	circuit, type	e is HDLC,	name is	serial1/	0	
	Circui	t state is U	Р					
	R	emote ses	sion id is 10	095, remot	e tunnel	id 3		
	DF bit	off						
	Sessio	on cookie i	nformation	:				
	Ses if <u>.</u>	_tag_len 0,	if_tag NULI	L				
	Ses ps	sal bit 1						
	Ses sy	ync bit O						
	Ses ba	atch sync b	oit O					
It can be c	bserved that	at the dyna	mic L2TPv3	3 session	is succes	ssfully e	stablished between F	PE1

It can be observed that the dynamic L2TPv3 session is successfully established between PE1 and PE2.

Note:

• PE2 is viewed in the same way as PE1. The viewing process is omitted.

#The serial1/0 interface of CE2 can be pinged through on CE1.

CE1#ping 3.0.0.2Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 3.0.0.2 , timeout is 2 seconds: !!!!! Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

 $\bullet \bullet \bullet \bullet$

18.3.3. Configure Static Session Established over Ethernet Sub Interface

Network Requirements

- The OSPF is used for route advertisement between PE1 and PE2. The L2TPv3 static session is established between PE1 and PE2, enabling the communication between CE1 and CE2.
- The IP addresses of CE1 and CE2 exist in the same network segment.

Network Topology

Figure 18-5 Networking of configuring static session established ober Ethernet sub interface

Configuration Steps

- Step 1: Configure the IP addresses for all interfaces. (Omitted)
- **Step 2:** Configure OSPF to enable the route between the loopback interfaces of PE1 and PE2 is reachable.

#Configure PE1.

PE1#configure terminal

PE1(config)#router ospf 100

PE1(config-ospf)#network 10.0.0.201 0.0.0.0 area 0

PE1(config-ospf)#network 11.0.0.0 0.0.0.255 area 0

PE1(config-ospf)#exit

#Configure P.

P#configure terminal

P(config)#router ospf 100

P(config-ospf)#network 11.0.0.0 0.0.0.255 area 0

P(config-ospf)#network 12.0.0.0 0.0.0.255 area 0

P(config-ospf)#exit

#Configure PE2.

PE2#configure terminal

PE2(config)#router ospf 100

PE2(config-ospf)#network 10.0.0.203 0.0.0.0 area 0

PE2(config-ospf)#network 12.0.0.0 0.0.0.255 area 0

PE2(config-ospf)#exit

#View the global route table of PE1.

PE1#show ip route

Codes: C - connected, S - static, R - RIP, O - OSPF, OE-OSPF External, M - Management

D - Redirect, E - IRMP, EX - IRMP external, o - SNSP, B - BGP, i-ISIS

Gateway of last resort is not set

- C 11.0.0.0/24 is directly connected, 00:19:49, gigabitethernet1
- 0 12.0.0.0/24 [110/2] via 11.0.0.1, 00:18:59, gigabitethernet1
- C 127.0.0.0/8 is directly connected, 00:21:05, lo0
- C 10.0.0.201/32 is directly connected, 00:19:55, loopback0
- 0 10.0.0.203/32 [110/3] via 11.0.0.1, 00:18:59, gigabitethernet1

It can be observed that PE1 learns the route to the loopback0 interface of PE2.

Note:

• The viewing methods of P and PE2 are the same as that of PE1, so the viewing process is omitted.

Step 3: Configure L2TPv3.

#Configure PE1.

Configure the pseudo-wire template as l2tpv3-1 and the encapsulated protocol type as L2TPv3. Use Loopback0. Configure L2TPv3 on the gigabitethernet0.1 interface. Use the pseudo-wire template l2tpv3-1 to establish the dynamic L2TPv3 session with PE2.

PE1(config)#pseudowire-class l2tpv3-1

PE1(config-pw-class)#encapsulation l2tpv3

PE1(config-pw-class)#protocol none

PE1(config-pw-class)#ip local interface loopback0

PE1(config-pw-class)#exit

PE1(config)#interface gigabitethernet0.1

PE1(config-if-gigabitethernet0.1)#encapsulation dot1q 1

PE1(config-if-gigabitethernet0.1)#xconnect 10.0.0.203 370 pw-class l2tpv3-1 manual

PE1(config-if-xconn)#l2tp id 1 2

PE1(config-if-xconn)#l2tp cookie local 4 1111

PE1(config-if-xconn)#l2tp cookie remote 8 2222 2222

PE1(config-if-xconn)#exit

PE1(config-if-gigabitethernet0.1)#exit

#Configure PE2.

Configure the pseudo-wire template as l2tpv3-1 and the encapsulated protocol type as L2TPv3. Use Loopback0. Configure L2TPv3 on the gigabitethernet1.1 interface. Use the pseudo-wire template l2tpv3-1 to establish the dynamic L2TPv3 session with PE2.

PE2(config)#pseudowire-class l2tpv3-1

PE2(config-pw-class)#encapsulation l2tpv3

PE2(config-pw-class)#protocol none

PE2(config-pw-class)#ip local interface loopback0 PE2(config-pw-class)#exit PE2(config)#interface gigabitethernet1.1 PE2(config-if-gigabitethernet1.1)#encapsulation dot1q 1 PE2(config-if-gigabitethernet1.1)#xconnect 10.0.0.201 370 pw-class l2tpv3-1 manual PE2(config-if-xconn)#l2tp id 2 1 PE2(config-if-xconn)#l2tp cookie remote 4 1111 PE2(config-if-xconn)#l2tp cookie local 8 2222 2222 PE2(config-if-xconn)#exit PE1(config-if-gigabitethernet1.1)#exit

Step 4: Check the result.

#View the L2TPv3 tunnel information of PE1.

PE1#show l2tun detail L2TPv3 established Tunnel 0. established Session 1 L2TPv3 total Tunnel and Session Information. Tunnel 0 Session 1

TUNNELS: RemID RemAddr LocID LocName RemName Port Sess State NO TUNNELS SESSIONS: LocID RemID TunID State Type Vcid Interface 1 0 1 ESTAB manual 370 gigabitethernet0.1

It can be observed that the L2TPv3 static session is successfully established between PE1 and PE2.

#View the L2TPv3 session information of PE1.

PE1#show l2tun session L2TPv3 established Tunnel 0. established Session 1 L2TPv3 total Tunnel and Session Information. Tunnel 0 Session 1

Session id 1 is up, tunnel id 0 Call serial number is 1763798462 Remote tunnel Internet address is 10.0.0.203 Local tunnel Internet address is 10.0.0.201

Session is manually signalled Session state is established, time since change 00:55:46 Session vcid is 370 Session Layer 2 circuit, type is Ethernet-Tagged-Mode, name is gigabitethernet0.1, VLAN 1 Circuit state is UP Remote session id is 2, remote tunnel id 0 DF bit off Session cookie information: local cookie, size 4 bytes, value 1111 remote cookie, size 8 bytes, value 2222 2222 Ses if_tag_len 4, if_tag 0x81000006 Ses psal bit 1 Ses sync bit 0 Ses batch sync bit 0 Ses timer real batch send bit 0

It can be observed that the L2TPv3 static session is successfully established between PE1 and PE2.

Note:

 The viewing method of PE2 is the same as that of PE1, so the viewing process is omitted.

#On CE1, you can ping Gi0.1 interface address of CE2.

CE1#ping 3.0.0.2 Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 3.0.0.2 , timeout is 2 seconds: !!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

18.3.4. Configure L2TPv3 Over L2TPv2

Network Requirements

- PE1 acts as LAC, PE2 acts as LNS, set up L2TPv2, and establish the L2TPv3 tunnel.
- CE1 and CE2 are in the same network segment and can communicate normally.

Network Topology

www.qtech.ru

Configuration Steps

Step 1: Configure the IP address and route of the interfaces, ensuring that PC1 can communicate with PE2 (omitted).

Step 2: Configure L2TPv2.

#Configure PE1 as LAC.

Configure the the pseudo-wire template lac.

PE1#configure terminal

PE1(config)#pseudowire-class lac

PE1(config-pw-class)#encapsulation l2tpv2

PE1(config-pw-class)#hostname lac

PE1(config-pw-class)#ip local interface gigabitethernet1

PE1(config-pw-class)#password 0 admin

PE1(config-pw-class)#exit

Create virtual-ppp interface, configure the authentication user name and password, and reference the pseudo-wire template.

PE1(config)#interface virtual-ppp0

PE1(config-if-virtual-ppp0)#ppp chap hostname qtech

PE1(config-if-virtual-ppp0)#ppp chap password qtech123

PE1(config-if-virtual-ppp0)#ip address 20.1.1.1 255.255.255.0

PE1(config-if-virtual-ppp0)#pseudowire 100.1.1.2 1 pw-class lac

PE1(config-pw-class)#exit

#Configure PE2 as LNS.

Configure the user name and password.

PE2#configure terminal

PE2(config)#local-user qtech class network

PE2(config-user-network-admin@cctv.com)#service-type ppp

PE2(config-user-network-admin@cctv.com)#password 0 qtech123

PE2(config-user-network-admin@cctv.com)#exit

Create virtual template Virtual-template0, encapsulate PPP, and borrow the IP address of the Loopback0 interface.

PE2(config)#interface virtual-template 0

PE2(config-if-virtual-template0)#encapsulation ppp

PE2(config-if-virtual-template0)#ppp authentication chap

PE2(config-if-virtual-template0)#ip unnumbered loopback0

PE2(config-if-virtual-template0)#exit

Enable VPDN, create a VPDN group Ins, and configure it to accept dial-in requests. Apply L2TP protocol and borrow Virtual-template0. Only L2TP connection requests with the name lac are accepted. Configure the shared key of LAC and LNS as admin.

- PE2 (config)#vpdn enable
- PE2 (config)#vpdn-group lns
- PE2 (config-vpdn)#accept-dialin
- PE2 (config-vpdn-acc-in)#protocol l2tp
- PE2 (config-vpdn-acc-in)#virtual-template 0
- PE2 (config-vpdn-acc-in)#exit
- PE2 (config-vpdn)#local name lns
- PE2 (config-vpdn)#terminate-from hostname lac
- PE2 (config-vpdn)#l2tp tunnel password 0 admin
- PE2 (config-vpdn)#exit

Note:

• The shared keys of LAC and LNS must be consistent. Otherwise, the L2TP tunnel cannot be successfully established.

#View the L2TP information on the PE1 device.

PE1#show vpdn detail

L2tp MaxTun 1000, MaxSes 1000:

tunnel fr	ee num	n: 999			
TUNNEL	S:				
LOC PORT SI	AL-ID F ES-CNT	REM-ID STATE	LOCAL-NAME REM-ADDR	REM-NAME	VPDN-GROUP
81 100.1.1.2	512	lac	Router	1701 1	ESTABLISHED
session	free nu	m: 999			

SESSIONS: LOCAL-ID REM-ID TUN-ID IF-NAME SYSTEMID IMSI/CALLING-NUM STATE 58 249 81 virtual-ppp0 ------ESTABLISHED

L2tp total Tunnel and Session Information. Tunnel 1 Session 1 It can be observed that the L2TP tunnel is set up between PE1 and PE2 successfully. #On the PE1 device, view the global route table.

> PE1#show ip route Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS U - Per-user Static route

0 - OSPF, 0E-OSPF External, M - Management, E - IRMP, EX - IRMP external

- C 20.1.1.0/24 is directly connected, 00:03:06, virtual-ppp0
- L 20.1.1.1/32 is directly connected, 00:03:06, virtual-ppp0
- C 20.1.1.2/32 is directly connected, 00:03:06, virtual-ppp0
- #On PE1, you can ping the virtual-template0 interface address of PE2.

PE1#ping 20.1.1.2

Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 20.1.1.2 , timeout is 2 seconds: !!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 1/1/2 ms.

Note:

- The viewing method of PE2 is the same as that of PE1, so the viewing process is omitted.
- **Step 3:** Configure L2TPV3.

#Configure PE1.

Configure the pseudo wire template test, and the encapsulated protocol type is L2TPv3. When the l2tpv2 session is successfully established, virtual-ppp0 is used as the L2TPv3 tunnel interface. Configure L2TPv3 on the interface gigabitethernet0, and use seudo wire template l2tpv3-1 to establish L2TPv3 dynamic session with PE2.

PE1(config)#pseudowire-class test

PE1(config-pw-class)#encapsulation l2tpv3

PE1(config-pw-class)#protocol l2tpv3

PE1(config-pw-class)#ip local interface virtual-ppp0

PE1(config-pw-class)#exit

PE1(config)#interface gigabitethernet 0

PE1(config-if-gigabitethernet0)#xconnect 20.1.1.2 1 pw-class test

PE1(config-if-gigabitethernet0)#exit

#Configure PE2.

Configure the pseudo wire template test, and the encapsulated protocol type is L2TPv3. The L2TPv3 tunnel is established on loopback0 borrowed by the L2TPv2 tunnel. Configure L2TPv3 on the interface gigabitethernet0, and use the pseudo wire template test to establish L2TPv3 dynamic session with PE1.

PE2(config)#pseudowire-class test

PE2(config-pw-class)#encapsulation l2tpv3

PE2(config-pw-class)#protocol l2tpv3

PE2(config-pw-class)#ip local interface loopback0

PE2(config-pw-class)#exit PE2(config)#interface gigabitethernet 0 PE2(config-if-gigabitethernet0)#xconnect 20.1.1.1 1 pw-class test PE2(config-if-gigabitethernet0)#exit

Note:

- The VCIDs at the two ends of the L2TPv3 session must be consistent. Otherwise, the dynamic session cannot be set up.
- Step 4: Check the result.

#View the L2TPv3 tunnel information of PE1.

PE1#show l2tun detail

L2TPv3 established Tunnel 1. established Session 1

L2TPv3 total Tunnel and Session Information. Tunnel 1 Session 1

TUNNELS:

LocID LocName RemID RemName RemAddr Port Sess State 25 PE1 312 PE2 20.1.1.2 0 1 ESTAB

SESSIONS:

LocID RemID	TunID	State Type Vcid	Interface
1115 1551	25	ESTAB dynamic 1	gigabitethernetO

It can be observed that the L2TPv3 tunnel is established between PE1 and PE2. #View the L2TPv3 session information of PE1.

PE1#SHOW l2tun session

L2TPv3 established Tunnel 1. established Session 1

L2TPv3 total Tunnel and Session Information. Tunnel 1 Session 1

Session id 1115 is up, tunnel id 25 Call serial number is 910772403 Remote tunnel name is PE2 Internet address is 20.1.1.2 Local tunnel name is PE1 Internet Address is 20.1.1.1 Session is L2TP signaled Session state is established, time since change 00:03:06 Session vcid is 1 Session Layer 2 circuit, type is Ethernet, name is gigabitethernet0 Circuit state is UP

Remote session id is 1551, remote tunnel id 312 DF bit off Vrf index 0 Session cookie information: Ses if_tag_len 4, if_tag 0x81000002 Ses psal bit 1 Ses sync bit 0 Ses batch sync bit 0 Ses timer real batch send bit 0

It can be observed that the L2TPv3 dynamic session is set up between PE1 and PE2 successfully.

Note:

• The viewing method of PE2 is the same as that of PE1, so the viewing process is omitted.

#On CE1, you can ping the gigabitethernet0 interface address of CE2.

CE1#ping 10.1.1.2 Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 10.1.1.2 , timeout is 2 seconds: !!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

18.3.5. Configure L2TPv3 over IPsec

Network Requirements

- The IPsec tunnel is established between PE1 and PE2, and then L2TPv3 connection is established to protect L2TPv3 data communication between PE1 and PE2 by IPSec.
- Establish L2TPv3 dynamic session between PE1 and PE2, CE1 and CE2 are in the same network segment, and CE1 and CE2 can communicate normally.

Network Topology

Figure 18-7 Networking of configuring L2TPv3 over IPsec

Configuration Steps

- **Step 1:** Configure the IP address and the route of the interface, ensuring that PE1 can communicate with PE2 (omitted).
- Step 2: Configure IPSEC.

#On PE1, configure the IKE proposal ikepro, use the encryption algorithm SM1, authentication algorithm SHA1; configure the IPsec proposal ippro, use the ESP security protocol, use the encryption algorithm SM4 and authentication algorithm SHA1.

PE1#configure terminal PE1(config)#crypto ike proposal ikepro PE1(config-ike-prop)#encryption sm1 PE1(config-ike-prop)#integrity sha1 PE1(config-ike-prop)#exit PE1(config)#crypto ipsec proposal ippro PE1(config-ipsec-prop)#esp sm4 sha1 PE1(config-ipsec-prop)#exit

www.qtech.ru

....

#On PE2, configure the IKE proposal ikepro, use the encryption algorithm SM1, authentication algorithm SHA1; configure the IPsec proposal ippro, use the ESP security protocol, use the encryption algorithm SM4 and authentication algorithm SHA1.

PE2#configure terminal

PE2(config)#crypto ike proposal ikepro

PE2(config-ike-prop)#encryption sm1

PE2(config-ike-prop)#integrity sha1

PE2(config-ike-prop)#exit

PE2(config)#crypto ipsec proposal ippro

PE2(config-ipsec-prop)#esp sm4 sha1

PE2(config-ipsec-prop)#exit

#On PE1, configure the pre-shared key, the key is admin, and permit all peers to use the key.

PE1(config)#crypto ike key admin any

#On PE2, configure the pre-shared key, the key is admin, and permit all peers to use the key.

PE2(config)#crypto ike key admin any

#Configure tunnel tun on PE1, use the address of gigabitethernet1 as the local address of the tunnel, configure the peer address of the tunnel as 100.1.1.2, configure the authentication method as pre-shared key authentication, IKE propose to use ikepro, IPSec propose to use ippro, and start auto negotiation.

PE1(config)#crypto tunnel tun

PE1(config-tunnel)#local address 100.1.2.1

PE1(config-tunnel)#peer address 100.1.1.2

PE1(config-tunnel)#set authentication preshared

PE1(config-tunnel)#set ike proposal ikepro

PE1(config-tunnel)#set ipsec proposal ippro

PE1(config-tunnel)#set auto-up

PE1(config-tunnel)#exit

#Configure tunnel tun on PE2, use the address of gigabitethernet1 as the local address of the tunnel, configure the peer address of the tunnel as any, IKE propose to use ikepro, and IPSec propose to use ippro.

PE2(config)#crypto tunnel tun

PE2(config-tunnel)#local address 100.1.1.2

PE2(config-tunnel)#peer any

PE2(config-tunnel)#set ike proposal ikepro

PE2(config-tunnel)#set ipsec proposal ippro

PE2(config-tunnel)#exit

#Configure security policy policy1 on PE1 to protect IP communication from network 20.1.1.1/32 to network 30.1.1.1/32 and associate the tunnel tun.

PE1(config)#crypto policy policy1

www.gtech.ru

PE1(config-policy)#flow 20.1.1.1 255.255.255 30.1.1.1 255.255.255 ip tunnel tun

PE1(config-policy)#set reverse-route

PE1(config-policy)#exit

#Configure security policy policy1 on PE2 to protect IP communication from network 30.1.1.1/32 to network 20.1.1.1/32, associate tunnel Tun, and automatically add the route to the peer protection network.

PE2(config)#crypto policy policy1

PE2(config-policy)#flow 30.1.1.1 255.255.255.255 20.1.1.1 255.255.255.255 ip tunnel tun

PE2(config-policy)#set reverse-route

PE2(config-policy)#exit

#On PE1 device, view the IPsec tunnel.

PE1#show crypto ike sa

sa-id negotiation	-state localaddr	peeraddr	peer-identity
-------------------	------------------	----------	---------------

3 STATE_QUICK_R2 100.1.2.1 100.1.1.2 100.1.1.2

2 STATE_MAIN_R3 100.1.2.1 100.1.1.2 100.1.1.2

PE1#show crypto ipsec sa

policy name : policy1

f (src, dst, protocol, src port, dst port) : 20.1.1.1/32 30.1.1.1/32 ip any any

local tunnel endpoint : 100.1.2.1 remote tunnel endpoint : 100.1.1.2, fabric lpunode : 1 $\ensuremath{\mathsf{node}}$

the pairs of ESP ipsec sa : id : 5, algorithm : SM4 HMAC-SHA1-96

inbound esp ipsec sa : spi : 0x354c5d0f(894197007)

current input 0 packets, 0 kbytes

encapsulation mode : Tunnel

replay protection : ON

remaining lifetime (seconds/kbytes) : 28737/4294967295

uptime is 0 hour 1 minute 3 second

outbound esp ipsec sa : spi : 0xfbb98906(4223240454)

current output 0 packets, 0 kbytes

encapsulation mode : Tunnel

replay protection : ON

remaining lifetime (seconds/kbytes) : 28737/4294967295

uptime is 0 hour 1 minute 3 second

total sa and sa group is 1

It can be observed that the IPsec tunnel is established between PE1 and PE2 succesfully.

#On the PE1 device, view the route table.

PE1#show ip route static

Codes: C - Connected, L - Local, S - static, R - RIP, B - BGP, i-ISIS

U - Per-user Static route

0 - 0SPF, 0E-0SPF External, M - Management, E - IRMP, EX - IRMP external

S 30.1.1.1/32 [1/0] via 100.1.1.2, 00:04:34, gigabitethernet0/1/1

#On PE1, you can ping the loopback0 interface address of PE2.

PE1#ping 30.1.1.1 -s 20.1.1.1

Press key (ctrl + shift + 6) interrupt it. Reply from 30.1.1.1: bytes = 76 time = 1 ms Reply from 30.1.1.1: bytes = 76 time = 1 ms Reply from 30.1.1.1: bytes = 76 time = 1 ms Reply from 30.1.1.1: bytes = 76 time = 1 ms Reply from 30.1.1.1: bytes = 76 time = 1 ms Success rate is 100% (5/5). Round-trip min/avg/max = 1/1/1 ms.

Note:

 The viewing method of PE2 is the same as that of PE1, so the viewing process is omitted here.

Step 3: Configure L2TPv3.

#Configure PE1.

Configure the pseudo wire template test, and the encapsulated protocol type is L2TPv3. Use the loopback0 protected by IPSec as the L2TPv3 tunnel interface. Configure L2TPv3 on the interface gigabitethernet0, and use the pseudo wire template test to establish L2TPv3 dynamic session with PE2.

PE1(config)#pseudowire-class test

PE1(config-pw-class)#encapsulation l2tpv3

PE1(config-pw-class)#protocol l2tpv3

PE1(config-pw-class)#ip local interface loopback0

PE1(config-pw-class)#exit

PE1(config)#interface gigabitethernet 0

PE1(config-if-gigabitethernet0)#xconnect 30.1.1.1 1 pw-class test

PE1(config-if-gigabitethernet0)#exit

#Configure PE2.

Configure the pseudo wire template test, and the encapsulated protocol type is L2TPv3. Use the loopback0 protected by IPSec as the L2TPv3 tunnel interface. Configure L2TPv3 on the interface gigabitethernet0, and use the pseudo wire template test to establish L2TPv3 dynamic session with PE2.

PE2(config)#pseudowire-class test

PE2(config-pw-class)#encapsulation l2tpv3

PE2(config-pw-class)#protocol l2tpv3 PE2(config-pw-class)#ip local interface loopback0 PE2(config-pw-class)#exit PE2(config)#interface gigabitethernet 0 PE2(config-if-gigabitethernet0)#xconnect 20.1.1.1 pw-class test PE2(config-if-gigabitethernet0)#exit

Note:

- The VCIDs at both ends of L2TPv3 session must be consistent. Otherwise, the dynamic session cannot be set up.
- Step 4: Check the result.

#View the L2TPv3 tunnel information of PE1.

PE1#show l2tun detail L2TPv3 established Tunnel 1. established Session 1 L2TPv3 total Tunnel and Session Information. Tunnel 1 Session 1

TUNNELS:

Loc	ID LocName	Reml	D	RemName	Re	mAddr	Port	Sess
State								
25	PE1	312	PE2	30.1.1.1	0	1 1	ESTAB	
SESSI	DNS:							
Loo	ID RemID	TunID	S	tate Type	Vcid	Inte	erface	

1115 1551 25 ESTAB dynamic 1 gigabitethernet0

It can be observed that the L2TPv3 tunnel is established between PE1 and PE2 successfully. #View the L2TPv3 session information of PE1.

PE1#show l2tun session L2TPv3 established Tunnel 1. established Session 1 L2TPv3 total Tunnel and Session Information. Tunnel 1 Session 1

Session id 1115 is up, tunnel id 25 Call serial number is 910772403 Remote tunnel name is PE2 Internet address is 30.1.1.1 Local tunnel name is PE1 Internet Address is 20.1.1.1 Session is L2TP signaled Session state is established, time since change 00:03:06 Session vcid is 1

www.qtech.ru

Session Layer 2 circuit, type is Ethernet, name is gigabitethernet0 Circuit state is UP Remote session id is 1551, remote tunnel id 312 DF bit off Vrf index 0 Session cookie information: Ses if_tag_len 4, if_tag 0x81000002 Ses psal bit 1 Ses sync bit 0 Ses batch sync bit 0 Ses timer real batch send bit 0

It can be observed that the L2TPv3 dynamic session is established between PE1 and PE2 successfully.

Note:

• The viewing method of PE2 is the same as that of PE1, so the viewing process is omitted.

#On CE1, you can ping the gigabitethernet0 interface address of CE2.

CE1#ping 10.1.1.2

Press key (ctrl + shift + 6) interrupt it.

Sending 5, 76-byte ICMP Echos to 10.1.1.2 , timeout is 2 seconds:

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/0 ms.

19. NAT

19.1. Overview

The NAT (Network Address Translate) translates the IP address of the IP packet header to another IP address. In actual application, a private IP address is translated to a public Ip address. The intranet only needs to use a few public IP addresses to communicate with the Internet. The NAT can relieve the IP address exhaustion problem.

The NAT generally locates at the boundary of the Internet and intranet. The intranet can visit the Internet after the IP address is translated by the NAT. the Internet only knows the translated IP address, but do not know the IP address of the intranet. Therefore, the NAT hide the internal private network, improving the security.

Generally, the NAT supports the IP address mapping relationship of static creating and dynamic generating. Based on the generating methods of the IP address mapping relationship, the IP addresses can be divided into static NAT and dynamic NAT.

• Static NAT

The IP address mapping relationship between the Internet and intranet is determined and statically corresponds with each other. Each intranet IP address corresponds to an Internet IP address.

• Dynamic NAT

The IP address mapping relationship between the intranet and Internet is determined by packets. The dynamic translation rule needs to associate to visit the ACL and the IP address pool. Through the packets filtered in the ACL, an IP address is selected from the IP address pool to create the mapping relationship. When the session of this IP address visiting the Internet ends, the IP address resource in the IP address pool is released to other users.

The NAT locates at the boundary of the Internet and intranet and divided into inside source NAT and outside source NAT.

• Inside source NAT

The inside source translation translates the private IP address of the intranet to the public IP address of the Internet. Generally, the internal IP address adopts the reserved network segment IP address such as 192 and 127. However, compared with the external IP address, these IP addresses do not have corresponding routings. To enable the intranet visits the Internet, the inside source translation is required. The source IP address that the intranet visiting the Internet packet is translated by the NAT to a corresponding Internet IP address.

• Outside source NAT

The outside source translation translates the public IP address of the Internet to the private IP address of the intranet. The source IP address that the Internet visiting the intranet packet is translated by the NAT to a corresponding intranet IP address.

The following describes some NAT-related terms:

IL (Inside Local): indicates the intranet IP address, which will not be publicized to the Internet.

IG (Inside Global): indicates the IP address that is translated from the intranet IP address by the NAT, through which the Internet can visit the intranet devices.

OL (Outside Localind): indicates the Internet IP address allocated to the Internet devices, which will not be publicized to the intranet.

www.qtech.ru

www.qtech.ru

. . . .

OG (Outside Global): indicates the IP address that is translated from the Internet IP address by the NAT, through which the intranet can visit the Internet devices.

ALG (Application Layer Gateway): mainly handles the application layer protocol packets that are incompatible with the NAT, enabling the application layer data flow can be handled by the NAT normally like the common data flow. The following describes the detailed functions:

- Parse the IP address port information contained in the data packet and translate the IP address as required.
- Extract the data channel information and establish a connection channel for the subsequent packets.
- Detect the application layer status of the packet and drop the status error packet.

Translation table: After the IP data flow is translated by the NAT, a translation table entry is created. The subsequent packets of the data flow are translated by the IP address port information recorded in the translation table entry and all the translation table entries are saved in the translation table.

19.2. NAT Function Configuration

Table 19-1 NAT function list

Configuration Task			
Configure the NAT interface	Configure the NAT internal interface		
	Configure the NAT external interface		
	Configure NAT internal backflow function		
Configure the NAT address pool	Configure the NAT address pool		
	Configure the addresses of the NAT address pool		
	Configure the port range of the NAT pool addresses		
	Configure NAT pool address port block size		

www.qtech.ru

Configuration Task	
Configure the static NAT	Configure the inside source NAT static port translation
	Configure the inside source NAT static address translation
	Configure the outside source NAT static port translation
	Configure the outside source NAT static address translation
Configure the dynamic NAT	Configure the inside source NAT dynamic port translation
	Configure the inside source NAT dynamic address translation
	Configure the outside source NAT dynamic address translation
Configure the destination NAT	Configure the destination address NAT
Configure NAT444 translation	Configure NAT444 static address translation
	Configure NAT444 dynamic address translation
Configure the NAT ALG function	Configure the TFTP ALG function
	Configure the FTP ALG function
	Configure the SIP ALG function
Configure the NAT logs	Configure the NAT sending logs

19.2.1. Configure NAT Interface

The NAT locates at the boundary of the Internet and intranet. To realize the NAT function, at least an internal interface (connecting to the intranet) and an external interface (connecting to the Internet) need to be configured.

Configuration Condition

None

Configure NAT Internal Interface

After the internal interface is configured, the network connected to the NAT internal interface is called intranet.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	Mandatory
Configure the NAT internal interface	ip nat inside	Mandatory By default, the current interface is not configured as the NAT internal interface.

Configure NAT External Interface

After the external interface is configured, the network connecting to the NAT external interfaces is called Internet.

Table 19-3 Configure the NAT external interface

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	Mandatory

www.qtech.ru

....

Step	Command	Description
Configure the NAT external interface	ip nat outside	Mandatory By default, the current interface is not configured as the NAT external interface.

Configure NAT Backflow Function

After configuring the NAT internal interface, you can access the intranet server through the global address of the intranet by configuring the NAT backflow function.

Table 19-1 Configure the NAT backflow function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	Mandatory
Configure the NAT internal interace	ip nat inside	Mandatory By default, the current interface is not configured as the NAT internal interface.
Enable the backflow function on the internal interface	ip nat hairpin	Mandatory By default, the current interface does not enable the NAT backflow function.

Note:

The command **ip nat hairpin** can only be configured on the ip nat inside interface, that is, you can only configure the NAT backflow function on the inside interface.

19.2.2. Configure NAT Address Pool

Configuration Condition

None

Configure the NAT IP address pool

A defined IP address pool needs to be associated when configuring the dynamic NAT rule.

Table 19-4 Configure the NAT IP address pool

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT address pool	ip nat pool pool-name	Mandatory By default, the NAT address pool is not configured.

Note:

- An address cannot be defined in two different address pools. •
- An address pool can only be associated for one time and different NAT rules must associate different IP address pool.
- The port range configured in the same address pool cannot be smaller than the port • block size.
- For the address pool bound to the static NAT444 rules, the port range, port block size and address segment must be configured.
- If port range, port block size and address segment are configured in the address pool at the same time, the rules associated with this address pool will automatically become dynamic NAT444 rules.
- The configured port block size and port range take effect only under the rules of static • NAT444 translation and dynamic NAT444 translation.

Configure Addresses of NAT Address Pool

After configuring the address pool, you need to configure the available address of the address pool. When there is a packet matching dynamic rules, you can get a new address from the available address.

....

Table 19-2 Configure the addresses of the NAT address pool

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT address pool	ip nat pool pool-name	Mandatory By default, the NAT address pool is not configured.
Configure the addresses of the NAT address pool	address start-IP end-IP [match interface interface- name]	Mandatory By default, the address pool does not have addresses.

Note:

• One address cannot be defined in two different address pools.

Configure Port Range of NAT Pool Addresses

After the address pool is configured, if you need to configure the port range under the address pool, when associating the PAT rules, the same IP address can apply for different ports to be assigned to different users from the port range.

	40.0	0 0			e	N 1 A T		
I able	19-3	Contigure	the po	rt range	of the	NAT	address	pool
i abio	10 0	Configure	ano po	renango			aaarooo	P001

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT address pool	ip nat pool pool-name	Mandatory By default, the NAT address pool is not configured.
Configure the port range of the NAT address pool	port-range start-number end-number	Mandatory By default, do not set the port range.

www.qtech.ru

Note:

- The port range configured in the same address pool cannot be smaller than the port block size.
- The configured port range in the address pool take effect only for static NAT444 and dynamic NAT444.

Configure Port Block Size of NAT Address Pool

After the address pool is configured, the dynamic rules associated with the address pool are changed into dynamic nat444 rules by configuring the port block size, port range and available addresses.

Table	19-4	Configure	the	port bloc	k size	of NAT	address	looq
1 0010		Connigato		por . 0.00		011011	444.000	p 0 0 .

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT address pool	ip nat pool pool-name	Mandatory By default, the NAT address pool is not configured.
Configure the port block size of NAT address pool	port-block block-size block-size [extended-block- number extended-block- number]	Optional By default, the address pool is not distributed with port block.

Note:

- Only when the port block size and port range are configured at the same time, the port block will take effect.
- The **extend-block-number** parameter only takes effect under the dynamic NAT444 translation rule.

19.2.3. Configure Static NAT

The NAT shields the intranet host. If the intranet needs to provide external services, such as FTP service and web service, static NAT translation rules can play a role. Through configuring the static NAT rule, an internal address can be mapped to a fixed external address, providing external services. The static NAT rule can map the "internal address+port" to the fixed "external address+port", providing external services.

Configuration Condition

None

Configure Inside Source NAT Static Port Translation

Internal source NAT static address translation (SAT), which maps "internal address" to "external address".

After the intranet packet is handled by NAT, the source address is converted to the configured external address; after the response packet arrives, the destination address is converted to the corresponding internal address.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the inside source NAT static port translation rule	ip nat inside source static { network <i>local-</i> <i>subnet</i> [local-vrf <i>local-vrf</i>] <i>global-subnet netmask</i> [global-vrf <i>global-vrf</i>] <i>local-IP</i> [local-vrf <i>local-vrf</i>] <i>global-IP</i> [global-vrf <i>global-vrf</i>] }	Mandatory By default, the inside source NAT static port translation rule is not configured.

Table 19-5 Configure the inside source NAT static port translation

Note:

 In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

Configure Inside Source NAT Static Address Translation

Internal source NAT static port translation (SPT) maps "internal address + port" to "external address + port".

After the packets of internal network are handled by NAT, the source address and port are converted to the configured external address and port; after the response packet arrives, the destination address and port are converted to the corresponding internal address and port.

	-	-
www.atech.ru		 -

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the inside source NAT static address translation rule	nat inside source static { tcp udp } { local-IP local- port [local-vrf local-vrf] {global-IP interface interface-name} global- port [global-vrf global-vrf] range local-IP local- port-min local-port-max [local-vrf local-vrf] { global-IP interface interface-name } global- port-min global-port-max [global-vrf global-vrf]}	Mandatory By default, the inside source NAT static address translation rule is not configured.

Table 19-6 Configure the inside source NAT sta	atic address translation
--	--------------------------

Note:

• In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

Configure Outside Source NAT Static Address Translation

The external source NAT static address translation (OSAT) is similar to SAT, but the translation direction is different. OSAT maps "external address" to "internal address".

After the packet of the external network is handled by NAT, the source address is converted to the configured internal address; after the response packet arrives, the destination address is converted to the corresponding external address.

Table 19-7 Configure the outside source NAT static port translation

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the outside source NAT static address translation rule	ip nat outside source static { network <i>global-</i> <i>subnet</i> [global-vrf <i>global-</i> <i>vrf</i>] <i>local-subnet netmask</i> [local-vrf <i>local-vrf</i>] <i>global-</i> <i>IP</i> [global-vrf <i>global-vrf</i>] <i>local-IP</i> [local-vrf <i>local-</i> <i>vrf</i>]}	Mandatory By default, the outside source NAT static address translation rule is not configured.

Note:

 In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

Configure Outside Source NAT Static Port Translation

External source NAT static port conversion rule (OSPT) is similar to SPT function, but the translation direction is different. OSPT rules map external address + port to internal address + port.

After the packet of external network is handled by NAT, the source address and port are converted to the configured internal address and port; the destination address and port are converted to corresponding external addresses and ports after the response packet arrives.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the outside source NAT static port translation rule	ip nat outside source static { tcp udp } { global-IP global- port [global-vrf global-vrf] local-IP local-port [local-vrf local-vrf] range global-IP global-port-min global-port- max [global-vrf global-vrf] local-IP local-port-min local- port-max [local-vrf local-vrf]}	Mandatory By default, the outside source NAT static port translation rule is not configured.

Table 19-8 Configure the outside source NAT static port translation

www.qtech.ru

Note:

 In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

19.2.4. Configure Dynamic NAT

After the NAT dynamic translation rule is configured, the response packet of the intranet visiting the Internet packet can be handled by the NAT. when the reversible parameter of the NAT dynamic translation rule is configured, the Internet is restrictedly allowed to visit the hosts in the intranet. The reversible parameter can be set to two levels: restrict (partially allowed) and full (completely allowed). When the intranet IP address visits the Internet, a mapping relationship of intranet IP address to the Internet IP address is established. Before the mapping relationship breaks, the restrict level allows the Internet IP address. The full level allows other Internet IP address accesses the intranet by the mapped external IP address.

Configuration Condition

Before configuring the dynamic NAT, first complete the following tasks:

- Configure the ACL.
- Configure the NAT IP address pool.

Configure Inside Source NAT Dynamic Port Translation

The inside source NAT dynamic port address translation (PAT) allows multiple intranet IP addresses mapping to the same Internet IP address. When the PAT rule is configured, a few public IP addresses can satisfy the requirements of intranet visiting the Internet.

The PAT translates the "intranet IP address+port" to "Internet IP address+port". Source IP addresses of packets from different intranet IP address are mapped to the same Internet IP address, but the port numbers are translated to different port numbers of the same IP address. This reserves the difference between packets. When the response packet arrives, the PAT can identify to which Internet IP address the packet should be translated based on the IP address and port number of the response packet.

The mapping relationship between the PAT "intranet IP address+port" and "Internet IP address+port" is generated dynamically. When the session of the intranet IP address visiting the network ends, the corresponding mapping relationship breaks and the IP address in the IP address pool can be used by other users.

www.gtech.ru	

Table 19-9Configure the	e inside source NAT	dynamic port translation
0		2 1

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the inside source NAT dynamic port translation rule	<pre>ip nat inside source list access-list-name [local- vrf local-vrf] { pool pool- name [overload] interface interface-name overload} [global-vrf global-vrf] [reversible { full restrict }]</pre>	Mandatory By default, the inside source NAT dynamic address translation rule is not configured.

Note:

 In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

Configure Outside Source NAT Dynamic Address Translation

The outside source NAT dynamic address translation (ONAT) translates the Internet IP address to the intranet IP address dynamically. The number of intranet IP addresses in the IP address pool is limited. When all the pool addresses establish mapping relationship with the Internet IP addresses, the new NAT translation request will be rejected.

The mapping relationship between the ONAT intranet IP address and Internet IP address is generated dynamically. When the session of the Internet IP address accessing the intranet ends, the corresponding mapping relationship breaks and the IP address in the IP address pool can be used by other users.

The ONAT does not support reversible access.

Table 19-10Configure the outside source NAT dynamic address translation

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the outside source NAT dynamic address translation rule	ip nat outside source list access-list-name [global- vrf global-vrf] pool pool- name [local-vrf local-vrf]	Mandatory By default, the outside source NAT dynamic address translation rule is not configured.

www.qtech.ru

Note:

 In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

19.2.5. Configure NAT Destination Address Translation

If multiple hosts providing the same service exist in the intranet (multiple web servers with continuous intranet IP addresses for example), simple TCP load sharing can be realized by configuring the SERVER (destination NAT) rule. The SERVER rule maps multiple host IP addresses in the intranet to a virtual IP address. External services are provided through the virtual IP address.

When configuring the ACL associated with the SERVER rule, the IP packet whose destination address is the virtual address is allowed for DAT.

Configuration Condition

Before configuring the destination NAT, first complete the following tasks:

• Configure the ACL.

Configure Destination NAT

Table 19-11 Configure the destination NAT

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the destination IP address NAT rule	ip nat server list access- list-name [global-vrf global-vrf] {local-ip [local- port] pool pool-name } [local-vrf local-vrf]	Mandatory By default, the destination NAT rule is not configured.

Note:

- If there is only one host in the intranet, the TCP load sharing is unnecessary. Do not perform this configuration.
- This configuration is only valid for the TCP/UDP packet. If the host provides services of other protocols, do not perform this configuration.
- The destination NAT does not support the ICMP protocol.
- If this rule references an address pool, only the first address segment of the address pool takes effect.
- In the cross VRF scenario of IP network, local VRF is recommended to be configured as the VRF of the inside interface, and global VRF is recommended to be configured as the VRF of the outside interface.

19.2.6. onfigure NAT444 Translation

Configuration Condition

Before configuring NAT444 translation, first complete the following task:

- Configure an address pool
- Configure the address of the address pool
- Configure the port range of the address pool
- Configure the port block size of the address pool

Configure Static NAT444 Translation

The configuration takes effect on all **ip nat outside** interfaces. According to the configuration data in the port block group, a port block is assigned to each private IP address according to a fixed algorithm, and a port block table entry is created. When a private IP address initiates a connection to the public network, it searches the port block table entry through the private IP address, uses the public IP address recorded in the table entry for address translation, and dynamically allocates a port from the corresponding port block for TCP/UDP port translation.

Note that:

- Only TCP/UDP/ICMP packet is supported, in which ICMP packet uses ID as port.
- How to allocate port blocks: sort all global IP port blocks from small to large according to IP and from small to large according to port, and search for the corresponding unique port block according to local IP.
- How to allocate ports in a port block: Search for free ports from small to large to assign.
- When the IP connections of a private network exceed the size of the allocated port block, new connection requests cannot be allocated to the port through NAT.
- The public IP port block to which the private network IP is assigned will not cross public IP, that is, if the number of remaining ports of public address 1 is less than the size of port block, the number of ports of port block size will not be allocated to private IP from public address 2.
- Static NAT444 translation does not support initiating the connection from public network to intranet.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the static NAT444 translation	ip nat inside source local-ip start-ip end-ip [local-vrf local-vrf] pool pool-name [global-vrf global-vrf] }	Mandatory By default, do not configure the static NAT444 translation.

Table 19-12 Configure the static NAT444 translation

www.qtech.ru

Note:

- This configuration is only valid for the TCP/UDP/ICMP packet. If the host provides services of other protocols, do not perform this configuration.
- In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

Configure Dynamic NAT444 Translation

The configuration takes effect on all **ip nat outside** interfaces. According to the configuration data in the port block group, a port block is assigned to each private IP address. When a private IP address initiates a connection to the public network, it searches the port block table entry through the private IP address, and dynamically allocates a port from the corresponding port block for TCP/UDP port translation.

Note that:

- Only TCP/UDP/ICMP packet is supported, in which ICMP packet uses ID as port.
- How to allocate ports in a port block: Search for free ports from small to large to assign.
- When the IP connections of a private network exceed the size of the allocated port block, new connection requests cannot be allocated to the port through NAT.
- The public IP port block to which the private network IP is assigned will not cross public IP, that is, if the number of remaining ports of public address 1 is less than the size of port block, the number of ports of port block size will not be allocated to private IP from public address 2.
- Static NAT444 translation does not support initiating the connection from public network to intranet.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the dynamic NAT444 translation	ip nat inside source list access-list-name [local- vrf local-vrf] { pool pool- name [global-vrf global- vrf]	Mandatory By default, do not configure the dynamic NAT444 translation.

Table 19-13 Configure the dynamic NAT444 translation

Note:

- This configuration is only valid for the TCP/UDP/ICMP packet. If the host provides services of other protocols, do not perform this configuration.
- When dynamic NAT444 and internal source NAT dynamic translation rules are configured at the same time, and the ACLs referenced by the two rules are effective at the same time, the ACLs associated with dynamic NAT444 rules should be configured with the specific service protocol types supported.

....

 In the cross VRF scenario of IP network, local-vrf is recommended to be configured as the VRF of the inside interface, and global-vrf is recommended to be configured as the VRF of the outside interface.

19.2.7. Configure NAT ALG Function

Configuration Condition

None

Configure NAT ALG Function

Configure the NAT ALG function, and you can enable the function of accessing TFTP, FTP and SIP server through NAT device.

Table 19-14 Configure NAT ALG

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the FTP ALG function	ip nat alg ftp	Optional By default, do not enable the ftp alg function.
Configure the TFTP ALG function	ip nat alg tftp	Optional By default, do not enable the tftp alg function.
Configure the SIP ALG function	ip nat alg sip	Optional By default, do not enable the sip alg function.

19.2.8. Configure NAT Logs

Configuration Condition

Before configuring NAT to send logs, first complete the following task:

• Configure the log server

Configure NAT Logs

There are two main types of NAT logs:

- 1. NAT translation table entries, used to track and record users' network access related information;
- 2. The allocation information of NAT444 port block is used to record the port block used by private network IP. By sending these records to the external log server in the form of log messages, the network access behavior of the user can be traced through these records when necessary.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

. . . .

After configuring the NAT send log function, NAT sends the log to the log server.

Table 19-15 Configure NAT to send logs

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Send logs when creating the NAT table entry	ip nat logging security- data connection-begin	Optional By default, do not send logs when creating NAT table entries.
Send logs when the NAT entries are aged	ip nat logging security- data connection-end	Optional By default, do not send logs when NAT entries are aged.
Send logs when assigning the NAT port blocks	ip nat logging security- data port-block–assign	Optional By default, do not send logs when assigning NAT port blocks.
Send logs when recycling the NAT port block	ip nat logging security- data port-block- withdraw	Optional By default, do not send logs when recycling the NAT port blocks.

19.2.9. NAT Monitoring and Maintaining

Table 19-16 The NAT monitoring and maintaining

Command	Description
clear ip nat statistics	Clear the NAT statistics data
show running-config ip nat	Display the NAT part in the configuration file
show ip nat translation	Display the NAT translation table

Command	Description
show ip nat pool	Display all NAT address pools
show ip nat port-block	Display the NAT444 port block
show ip nat rule	Display all NAT rules
show ip nat statistics	Display the NAT statistics data

19.3. NAT Typical Configuration Example

19.3.1. Configure Inside Source NAT Static Address/Port Translation

Network Requirements

- PC1 and PC2 are hosts in the internal private network, Web Server is the web server in the public network, Device is the NAT device, gigabitethernet0 is the NAT internal interface, and gigabitethernet1 is the NAT external interface. Configure the static IP address/port translation using the inside source NAT.
- PC1 in the internal private network can successfully visit Web Server and the source IP address of the packet is translated from the private IP address 1.1.1.2 to the public IP address 201.16.16.2. PC2 can successfully visit Web Server through the source port 1024. The source IP address of the packet is translated from the private IP address 1.1.1.3 to the public IP address 201.16.16.2 and the source port 1024 is translated to 2048.

Network Topology

Figure 19-5 Networking of configuring the inside source NAT static address/port translation

Configuration Steps

Configure the IP addresses and routes for all the interfaces. (Omitted) Step 1:

Configure the NAT interface attribute and NAT rule for Device. Step 2:

#Configure the inside interface with gigabitethernet0 as the NAT.

Device#configure terminal

Device(config)#interface gigabitethernet0 Device(config-if-gigabitethernet0)#ip nat inside Device(config-if-gigabitethernet0)#exit

#Configure the outside interface with gigabitethernet1 as the NAT.

Device(config)#interface gigabitethernet1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

#Configure the inside source NAT static address/port translation rule, the internal private IP addresses 1.1.1.2 and 1.1.1.3 are translated to the public IP address 201.16.16.2 and the source port 1024 of 1.1.1.3 is translated to 2048.

Device(config)#ip nat inside source static 1.1.1.2 201.16.16.2

Device(config)#ip nat inside source static tcp 1.1.1.3 1024 201.16.16.2 2048

Step 3: Check the result.

#When PC1 of the internal private network accesses the Web Server, it can see the NAT translation table entry of type SAT on the device, which converts the internal local address 1.1.1.2 to the internal global address 201.16.16.2. When PC2 uses the source port 1024 to access the web server, it can see the NAT translation table entry of type SPT on the device, converting the internal local address 1.1.1.3 to the internal global address 201.16.16.2, and converting the source port 1024 to 2048.

Device#show	ip	nat	translation
-------------	----	-----	-------------

Type Outside glo	Pro bal:po	Inside global:po rt lifetime	rt Inside lo	cal:port	Outside local:port
SAT 3600	ТСР	[201.16.16.2]:1587	[1.1.1.2]:1587	 [17.1.1.2]:8	0 [17.1.1.2]:80
SPT 3600	ТСР	[201.16.16.2]:2048	[1.1.1.3]:1024	[17.1.1.2]:8	0 [17.1.1.2]:80

Valid/Total: 2/2

19.3.2. Configure NAT444 Static Port Block Translation

Network Requirements

- PC1 and PC2 are hosts in the internal private network, Web Server is the web server in the public network, Device is the NAT device, gigabitethernet0 is the NAT internal interface, and gigabitethernet1 is the NAT external interface. Configure the NAT444 static port block translation.
- All users in the 1.1.1.0/24 network segment of the internal private network can successfully access the web server. By searching for the static port block table entry,

www.qtech.ru

the public IP address 201.16.16.3 recorded in the table entry is used for source address translation, and a port is dynamically allocated from the corresponding port block for port translation.

Network Topology


```
1.1.1.3/24
```

Figure 19-17 Networking of configuring NAT444 static port block translation

Configuration Steps

Step 1: Configure the IP address and route of the interface (omitted).

Step 2: Configure the NAT interface attribute and NAT translation rules of Device.

#Configure interface gigabitethernet0 as the inside interface of NAT.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as outside interface of NAT.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

#Create NAT address pool pool1.

Device(config)#ip nat pool pool1

Device(config-nat-pool)#port-range 1 1000

Device(config-nat-pool)#port-block block-size 500

Device(config-nat-pool)#address 201.16.16.3 201.16.16.5

Device(config-nat-pool)#exit

#Configure NAT444 static port block mapping rules to convert internal private network address 1.1.1.2 and 1.1.1.3 to public network address 201.16.16.3.

Device (config)#ip nat inside source local-ip 1.1.1.2 1.1.1.3 pool pool1

#View the distribution of the static port block.

Device#show ip nat port-block static

NAT									www.qte	ch.ru	
	No.	Pool r	name	Loc	al IP	Glob	al IP	Port bloc	k Conne	ections	
	 1	 pool1		1.1.1.2	201.	16.16.3	1-500	0			
	2	pool1		1.1.1.3	201	.16.16.3	501-10	0 000			
#View th	e addres	s pool.									
	Devic	e#shov	v ip nat pool								
	No. Interf	Type ace	Pool name I	nterface i	l ndex	Pool ind	ex Vers	sion Start	IP	End IP	
	 1 S N/A	5NAT44	4 pool1		0	12	201.16	.16.3 20	1.16.16.5	N/A	

Step 3: Check the result.

#When PC1 and PC2 of the internal private network access the web server, you can see the NAT translation table entry of type SNAT444 on the device, converting the internal local address 1.1.1.2 of PC1 to the internal global address 201.16.16.3, source port 1024 to 1, the internal local address 1.1.1.3 of PC2 to the global address 201.16.16.3, and source port 1024 to 501.

Device#show ip nat translation

Type Outside glob	Pro al:port	Inside global:por lifetime	t Inside loc	al:port	Outside local:port
 SNAT444 3600	тср	[201.16.16.3]:501	[1.1.1.3]:1024	- [17.1.1.2]:8	30 [17.1.1.2]:80
SNAT444 3600	ТСР	[201.16.16.3]:1	[1.1.1.2]:1024	[17.1.1.2]:8	80 [17.1.1.2]:80

Valid/Total: 2/2

Note:

• When there are many intranet hosts accessing the Internet service, after the port segment of one address is distributed, start to distribute and convert from the next address.

19.3.3. Configure Inside Source NAT Dynamic Address Translation

Network Requirements

• PC1 and PC2 are hosts in the internal private network, Web Server is the web server in the public network, Device is the NAT device, gigabitethernet0 is the NAT internal interface, and gigabitethernet1 is the NAT external interface. Configure the inside source NAT dynamic address translation.

www.qtech.ru

 The users of network segment 1.1.1.0/24 in the internal private network can successfully access Web Server. The used public network addresses are 201.16.16.2 and 201.16.16.3.

Network Topology

Figure 19-6 Networking of configuring the inside source NAT dynamic address translation

Configuration Steps

Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)

Step 2: Configure the NAT interface attribute and NAT rule for Device.

#Configure the inside interface with gigabitethernet0 as the NAT.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure the outside interface with gigabitethernet1 as the NAT.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

#Configure the NAT IP address pool, pool1, containing two public network IP addresses 201.16.16.2 and 201.16.16.3.

Device(config)#ip nat pool pool1

Device(config-nat-pool)#address 201.16.16.2 201.16.16.3

Device(config-nat-pool)#exit

#Configure the ACL 1001, only permitting PCs in the internal private network segment 1.1.1.0/24 to access Web Server.

Device(config)#ip access-list extended 1001

Device(config-ext-nacl)#permit ip 1.1.1.0 0.0.0.255 any

Device(config-ext-nacl)#exit

#Configure the inside source NAT dynamic address translation rule, translating the internal IP addresses 1.1.1.2 and 1.1.1.3 as the public IP addresses 201.16.16.2 and 201.16.16.3, respectively.

Device(config)#ip nat inside source list 1001 pool pool1

#View the address pool. Device#show ip nat pool No. Type Pool name Pool index Version Start IP End IP Interface Interface index	NAT					www.q	tech.ru
Device#show ip nat pool No. Type Pool name Pool index Version Start IP End IP Interface Interface index	#View th	e address pool					
No. Type Pool name Pool index Version Start IP End IP Interface Interface index		Device#sho	w ip nat pool				
		No. Type Interface	Pool name Interface inde	Pool index x	x Version	Start IP	End IP
		1 NAT	pool1 0	12	201.16.16.2	201.16.16.3	N/A

Step 3: Check the result.

N/A

#When PC1 and PC2 of the internal private network access the web server, you can see the NAT translation table entry on Device, converting the internal local address 1.1.1.2 of PC1 to the internal global address 201.16.16.2, and the internal local address 1.1.1.3 of PC2 to the global address 201.16.16.3.

Device#show ip nat translation

Type Outside gl	Pro obal:poi	Inside global:po rt lifetime	ort Inside lo	cal:port	Outside local:port
NAT 3600	ТСР	[201.16.16.3]:1024	[1.1.1.3]:1024	[17.1.1.2]:8	0 [17.1.1.2]:80
NAT 3600	TCP	[201.16.16.2]:1024	[1.1.1.2]:1024	[17.1.1.2]:8	0 [17.1.1.2]:80

Valid/Total: 2/2

19.3.4. Configure Inside Source NAT Dynamic Port Translation

Network Requirements

- PC1 and PC2 are hosts in the internal private network, Web Server is the web server in the public network, Device is the NAT device, gigabitethernet0 is the NAT internal interface, and gigabitethernet1 is the NAT external interface. Configure the inside source NAT dynamic port translation.
- The users of the network segment 1.1.1.0/24 in the internal private network can successfully access Web Server, map the TCP port number to multiplex the same public network address, and the public network address used is 201.16.16.2.

www.qtech.ru

Network Topology

Figure 19-7 Networking of configuring the inside source NAT dynamic port translation **Configuration Steps**

Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)

Step 2: Configure the NAT interface attribute and NAT rule for Device.

#Configure the inside interface with gigabitethernet0 as the NAT.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure the outside interface with gigabitethernet1 as the NAT.

Device(config)#interface gigabitethernet 1

Device(config-if- gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

#Configure the NAT IP address pool, pool1, containing only one public network IP address 201.16.16.2.

Device(config)#ip nat pool pool1

Device(config-nat-pool)#address 201.16.16.2 201.16.16.2

Device(config-nat-pool)#exit

#Configure the ACL 1001, only permitting PCs in the internal private network segment 1.1.1.0/24 to access Web Server.

Device(config)#ip access-list extended 1001

Device(config-ext-nacl)#permit ip 1.1.1.0 0.0.0.255 any

Device(config-ext-nacl)#exit

#Configure the PAT translation rule, translating the internal IP addresses 1.1.1.2 and 1.1.1.3 as the public IP addresses 201.16.16.1.

Device(config)#ip nat inside source list 1001 pool pool1 overload

View the address pool.

Г						www.q	tech.ru	
	Device#sho	ow ip nat pool						
	No. Type Interface	Pool name I	nterface index	Pool index	Version	Start IP	End IP	
	 1 PAT N/A	pool1	0	12 2	201.16.16.2	201.16.16.2	N/A	

Step 3: Check the result.

#When PC1 and PC2 of the internal private network access the web server, you can see the NAT translation table entry of type PAT on the device, converting the internal local address 1.1.1.2 of PC1 to the internal global address 201.16.16.2, source port 1024 to 10001, the internal local address 1.1.1.3 of PC2 to the internal global address 201.16.16.2, and source port 1024 to 10002.

Device#show ip nat translation

Type Outside glo	Pro obal:po	Inside global:po rt lifetime	rt Inside loc	al:port	Outside local:port
PAT 3600	тср	[201.16.16.2]:10002	[1.1.1.3]:1024	- [17.1.1.2]:8	80 [17.1.1.2]:80
PAT 3600	ТСР	[201.16.16.2]:10001	[1.1.1.2]:1024	[17.1.1.2]:8	0 [17.1.1.2]:80

Valid/Total: 2/2

19.3.5. Configure Intranet Users to Access Extranet via Multiple Exports

Network Requirements

- PC1 is the internal private network host, web server is the web server on the public network, Device is the NAT device, gigabitethernet0 is the internal interface of NAT, and gigabitethernet1 and gigabitethernet2 are the external interfaces of NAT. The internal source NAT dynamic port translation is configured, and the address pool referenced by NAT rules uses the mode of matching the out interface.
- All users in the 1.1.1.0/24 network segment of the internal private network can successfully access the web server. When they go out from the outgoing interface of the telecom operator, they use the public address 201.16.16.5 for source address translation. When they go out from the outgoing interface of the Unicom operator, they use the public address 202.16.16.5 for source address translation.

www.qtech.ru

Network Topology

Figure 19-18 Networking of configuring intranet users to access extranet via multiple exports **Configuration Steps**

configuration steps

Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)

Step 2: Configure the NAT interface attribute and NAT rule for Device.

#Configure interface gigabitethernet0 as the inside interface of NAT.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1as the outsize interface of NAT.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

#Configure interface gigabitethernet2as the outsize interface of NAT.

Device(config)#interface gigabitethernet 2

Device(config-if-gigabitethernet2)#ip nat outside

Device(config-if-gigabitethernet2)#exit

#Configure the NAT address pool pool1, and use the public address 201.16.16.5 when the outgoing interface is gigabitethernet1, and use the public address 202.16.16.5 when the outgoing interface is gigabitethernet2.

Device(config)#ip nat pool pool1

Device(config-nat-pool)#address gigabitethernet1	201.16.16.5	201.16.16.5	match	interface
Device(config-nat-pool)#address gigabitethernet2	202.16.16.5	202.16.16.5	match	interface

Device(config-nat-pool)#exit

#Configure the ACL 1001, only permitting the PC of the network segment 1.1.1.0/24 in the private network to access Web Server.

Device(config)#ip access-list extended 1001 Device(config-ext-nacl)#permit ip 1.1.1.0 0.0.0.255 any Device(config-ext-nacl)#exit

#Configure the PAT translation rules. When the internal private network address 1.1.1.2 accesses the public network address and goes out from the interface gigabitethernet1, the source address is converted to the public network address 201.16.16.5. When the internal private network address 1.1.1.2 accesses the public network address and goes out from the interface gigabitethernet2, the source address is converted to the public network address 202.16.16.5.

Device(config)#ip nat inside source list 1001 pool pool1 overload

Step 3: Check the result.

#When the internal private network PC1 accesses Web Server 17.1.1.2, you can see the NAT translation table entry of PAT type on the device, which converts the internal local address 1.1.1.2 of PC1 to the internal global address 201.16.16.5, and the source port 1024 to 10001. When PC1 accesses web server 18.1.1.2, the internal local address 1.1.1.2 of PC1 is converted to the internal global address 202.16.16.5, and the source port 1024 is converted to 10001.

Device#show ip nat translation

Type Outside g	Type Pro Inside global: utside global:port lifetime		rt Inside local:port		Outside local:port	
PAT 3600	ТСР	[201.16.16.5]:10001	[1.1.1.2]:1024	 [17.1.1.2]:8	0 [17.1.1.2]:80	
PAT 3600	TCP	[202.16.16.5]:10001	[1.1.1.2]:1024	[18.1.1.2]:8	80 [18.1.1.2]:80	

Valid/Total: 2/2

19.3.6. Configure Across-vrf Internal Source NAT Dynamic Port Translation

Network Requirements

- PC1 and PC2 are internal private network hosts, web server is the web server of the public network, Device is the NAT device, gigabitethernet0 is NAT internal interface, in vrf a, gigabitethernet1 is NAT external interface, and in vrf b, configure internal source NAT dynamic port translation.
- All users in the 1.1.1.0/24 network segment of the internal private network can successfully access the web server and multiplex the same public network address by mapping the port number of TCP. The public network address used is 201.16.16.2.

www.gtech.ru

Network Topology

Figure 19-19 Networking of configuring the across-vrf internal source NAT dynamic port translation

Configuration Steps

Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)

Step 2: Configure the NAT interface attribute and NAT rule for Device.

#Configure vrf a and vrf b, and then, add the ingress port and egress port to the two vrfs respectively.

> Device#configure terminal Device(config)#ip vrf a Device(config-vrf)#rd 1:1 Device(config-vrf)#exit

Device(config)#ip vrf b Device(config-vrf)#rd 2:2 Device(config-vrf)#exit

Device(config)#interface gigabitethernet 0 Device(config-if-gigabitethernet0)#ip vrf forwarding a Device(config-if-gigabitethernet0)#ip address 1.1.1.1 24 Device(config-if-gigabitethernet0)#exit

Device(config)#interface gigabitethernet 1 Device(config-if-gigabitethernet1)#ip vrf forwarding b Device(config-if-gigabitethernet1)#ip address 201.16.16.2 24 Device(config-if-gigabitethernet1)#exit #Configure interface gigabitethernet0 as the inside interface of NAT. Device#configure terminal Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as the outside interface of NAT.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

#Configure NAT address pool pool1, only containing one public network address 201.16.16.2.

Device(config)#ip nat pool pool1

Device(config-nat-pool)#address 201.16.16.2 201.16.16.2

Device(config-nat-pool)#exit

#Configure access control list 1001, only permitting the PCs of the segment 1.1.1.0/24 in the internal private network to access web server.

Device(config)#ip access-list extended 1001

Device(config-ext-nacl)#permit ip 1.1.1.0 0.0.0.255 any

Device(config-ext-nacl)#exit

#Configure the across-vrf PAT translation rules, converting the internal private network addresses 1.1.1.2 and 1.1.1.3 to public address 201.16.16.1.

Device(config)#ip nat inside source list 1001 local-vrf a pool pool1 overload globalvrf b

#Configure the route from vrf a to vrf b.

Device(config)#ip route vrf a 17.1.1.0 24 gigabitethernet 1

Step 3: Check the result.

#When the internal private networks PC1 and PC2 access the web server, they can see the NAT translation table entry of PAT type on Device, which converts the internal local address 1.1.1.2 of PC1 to the internal global address 201.16.16.2, and the source port 1024 to 10001. The internal local address 1.1.1.3 of PC2 is converted to the internal global address 201.16.16.2, and the source port 1024 is converted to 10002.

Device#show ip nat translation

Type Outside glo	Pro Insido bal:port l	e global:port ifetime 	Inside local:port	Outside local:port
PAT [17.1.1.2]:80	TCP 3600	[201.16.16.2]:100	02 [1.1.1.3]:1024	[17.1.1.2]:80
PAT [17.1.1.2]:80	TCP 3600	[201.16.16.2]:100	01 [1.1.1.2]:1024	[17.1.1.2]:80

Valid/Total: 2/2

Note:

 When the inside or outside interface is under VRF, the corresponding local-vrf and global-vrf must be carried when configuring NAT rules. The VRF name can be the actual VRF or any. When VRF is any, it means any VRF. By default, the corresponding VRF is global VRF.

19.3.7. Configure NAT444 Dynamic Port Block Translation

Network Requirements

- PC1 and PC2 are internal private network hosts, web server is the web server on the public network, Device is the NAT device, gigabitethernet0 is NAT internal interface, gigabitethernet1 is NAT external interface, and configure NAT444 dynamic port block translation.
- All users in the 1.1.1.0/24 network segment of the internal private network can successfully access the web server. According to the configuration of the corresponding dynamic port block, the public IP address 201.16.16.5 and the port block are allocated, and a port is dynamically allocated from the port block for port translation.

Network Topology

1.1.1.3/24

Figure 19-20 Networking of configuring NAT444 dynamic port block translation

Configuration Steps

- Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)
- **Step 2:** Configure the NAT interface attribute and NAT rule for Device.

#Configure interface gigabitethernet0 as the inside interface of NAT.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as the outside interface of NAT.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

www.gtech.ru

#Create NAT address pool pool1.

Device(config)#ip nat pool pool1

Device(config-nat-pool)#port-range 2001 3500

Device(config-nat-pool)#port-block block-size 500

Device(config-nat-pool)#address 201.16.16.5 201.16.16.7

Device(config-nat-pool)#exit

#Configure access control list 1001, only permitting the PCs in 1.1.1.0/24 segment of internal private network to access web server.

Device(config)#ip access-list extended 1001

Device(config-ext-nacl)#permit ip 1.1.1.0 0.0.0.255 any

Device(config-ext-nacl)#exit

#Configure NAT444 dynamic port block translation rules, converting internal private network addresses 1.1.1.2 and 1.1.1.3 to public network address 201.16.16.5.

Device(config)#ip nat inside source list 1001 pool pool1

#View the address pool.

Device#show ip nat pool

No Inte	. Type rface	Pool name	e Interface index	Pool index	Version	Start IP	End IP
· 1 N/A	DNAT444	 pool1	0	12	201.16.16.5	201.16.16.7	N/A

Step 3: Check the result.

#When the internal private networks PC1 and PC2 access the web server, you can see the NAT translation table entry of type DNAT444 on Device. The internal local address 1.1.1.2 of PC1 is converted to the internal global address 201.16.16.5, and the source port 1024 is converted to 2001. The internal local address 1.1.1.3 of PC2 is converted to the internal global address 201.16.16.5, and the source port 1024 is converted to 2501.

Device#show ip nat translation Type Pro Inside global:port Inside local:port **Outside local:port** Outside global:port lifetime _____ _ _ _____ DNAT444 TCP [201.16.16.5]:2501 [1.1.1.3]:1024 [17.1.1.2]:80 [17.1.1.2]:80 3599 DNAT444 [201.16.16.5]:2001 [1.1.1.2]:1024 [17.1.1.2]:80 [17.1.1.2]:80 TCP 3599

Valid/Total: 2/2

#View the distribution of the dynamic port block.

NAT								www.qtech.ru	
	Devi	ice#show ip nat po	ort-block dyna	mic					
	No	. Pool name	Loca	al IP Glob	al IP	Port	block	Connections	
	1	pool1	1.1.1.2	201.16.16.5	2001-	2500	1		
	2	pool1	1.1.1.3	201.16.16.5	2501	-3000	1		

19.3.8. Configure NAT Internal Server Translation

Network Requirements

- Web server 1 and web server 2 are internal web servers and provide external web services. PC is the external host, Device is the NAT device, gigabitethernet0 is the internal interface of NAT, and gigabitethernet1 is the external interface of NAT.
- When the external public network host PC accesses the public network address 201.16.16.2, NAT will balance the load to the internal web server 1 and web server 2.

Network Topology

Figure 19-21 Networking of configuring NAT internal server translation

Configuration Steps

- Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)
- **Step 2:** Configure the NAT interface attribute and NAT rule for Device.

#Configure interface gigabitethernet0 as the inside interface of NAT.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as the outside interface of NAT.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

www.qtech.ru

#Configure the NAT address pool pool1, which contains two private network addresses 1.1.1.2 and 1.1.1.3, so that TCP flows can be evenly allocated to these two addresses.

Device(config)#ip nat pool pool1

Device(config-nat-pool)#address 1.1.1.2 1.1.1.3

Device(config-nat-pool)#exit

#Configure access control list 1001, only the PC of port 80 of the address 201.16.16.2 can access internal web server.

Device(config)#ip access-list extended 1001

Device(config-ext-nacl)#permit tcp any host 201.16.16.2 eq 80

Device(config-ext-nacl)#exit

#Configure NAT internal server conversion rules to convert destination address 201.16.16.2 to internal private network addresses 1.1.1.2 and 1.1.1.3.

Device(config)# ip nat server list 1001 pool pool1

#View the address pool.

Device#show ip nat pool

No. Type Interface 	Pool name Interface index	Pool inde	x Version	Start IP	End IP
 1 SERVER N/A	pool1) 13	1.1.1.2	1.1.1.3	N/A

Step 3: Check the result.

#When the external public network PC accesses port 80 of the public network address 201.16.16.2, you can see the NAT translation table entry of type SERVER on Device, and map the load balancing of the destination address 201.16.16.2 of the external network PC to the internal network addresses 1.1.1.2 and 1.1.1.3.

Device#show ip nat translation

Type Outside globa	Pro l:port	Inside global:port lifetime	Inside local:port	Outside local:port
SERVER [203.18.10.2]:10		2 [201.16.16.2]:80 3599	[1.1.1.3]:80	[203.18.10.2]:1025
SERVER [203.18.10.2]:10	TCI 24	P [201.16.16.2]:80 3599	[1.1.1.2]:80	[203.18.10.2]:1024

Valid/Total: 2/2

Note:

- When there are multiple discrete address segments in the address pool associated with NAT internal server rules, only the first address segment can be used for load balancing.
- NAT internal server rules can be associated with address pools or specific IP or IP + ports.

19.3.9. Configure Outside Source NAT Static Address/Port Translation

Network Requirements

- PC1 is the internal host, PC2 and PC3 are the external hosts, Device is the NAT device, gigabitethernet0 is the NAT internal interface, and gigabitethernet1 is the NAT external interface. Configure the outside source NAT static address/port translation.
- The external host PC2 can successfully visit PC1. The source IP address of the packet is translated from the Internet IP address 17.1.1.2 to the intranet IP address 110.10.10.1. PC3 can successfully visit PC1 through the source port 1024. The source IP address of the packet is translated from the Internet IP address 17.1.1.3 to the intranet IP address 110.10.10.1 and the source port 1024 is translated to 2048.

Network Topology

Figure 19-8 Networking of configuring outside source NAT static address/port translation **Configuration Steps**

Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)

Step 2: Configure the NAT interface attribute and NAT rule for Device.

#Configure the inside interface with gigabitethernet0 as the NAT.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#ip nat inside

Device(config-if-gigabitethernet0)#exit

#Configure the outside interface with gigabitethernet1 as the NAT.

Device(config)#interface gigabitethernet1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

www.qtech.ru

#Configure the outside source NAT static address/port translation rule, translating the Internet IP address 17.1.1.2 and 17.1.1.3 to the intranet IP address 110.10.10.1 and the source port 1024 of 17.1.1.3 translated to 2048.

Device(config)#ip nat outside source static 17.1.1.2 110.10.10.1

Device(config)#ip nat outside source static tcp 17.1.1.3 1024 110.10.10.1 2048

Step 3: Check the result.

When PC2 visits PC1, the NAT table entry with the type setting to OSAT can be viewed on Device. When PC3 visits PC1, the NAT table entry with the type setting to OSPT can be viewed on Device.

Device#show ip nat translations static

Type Pro	Inside Global	Inside Local	Outside Local	Outside Global
0SAT ()	()	()	110.10.10.1	17.1.1.2
OSPT TCP	()	()	110.10.10.1:2048	17.1.1.3:1024
Type Pro Age	Inside Global	Inside Local	Outside Local	Outside Global
OSAT 253)(2:1)	110.10.10.2:0	110.10.10.2:0	110.10.10.1:0	17.1.1.2:0 600 (-
OSPT TCP 1800 (NORMA	110.10.10.2:1024 AL:0)(2:1)	110.10.10.2:1024	110.10.10.1:204	8 17.1.1.3:1024

19.3.10. Configure Outside Source NAT Dynamic Address Translation

Network Requirements

- PC1 is the internal host, PC2 and PC3 are the external hosts, Device is the NAT device, gigabitethernet0 is the NAT internal interface, and gigabitethernet1 is the NAT external interface. Configure the outside source NAT dynamic address translation
- Users in the external IP address segment 17.1.1.0/24 can successfully visit PC1, using the internal IP address 110.10.10.2 and 110.10.10.3.

www.qtech.ru

Network Topology

Figure 19-9 Networking of configuring the outside source NAT dynamic address translation **Configuration Steps**

Step 1: Configure the IP addresses and routings for all the interfaces. (Omitted)

Step 2: Configure the NAT interface attribute and NAT rule for Device.

#Configure the inside interface with gigabitethernet0 as the NAT.

Device#configure terminal Device(config)#interface gigabitethernet 0 Device(config-if-gigabitethernet0)#ip nat inside Device(config-if-gigabitethernet0)#exit

#Configure the outside interface with gigabitethernet1 as the NAT.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#ip nat outside

Device(config-if-gigabitethernet1)#exit

#Configure the NAT IP address pool, pool1, containing two IP addresses 110.10.10.2 and 110.10.10.3.

Device(config)#ip nat pool pool1 110.10.10.2 110.10.10.3 netmask 255.255.255.0

Configure the ACL 1001, only permitting PCs of the source IP address segment 17.1.1.0/24 to visit PC1.

Device(config)#ip access-list extended 1001

Device(config-ext-nacl)#permit ip 17.1.1.0 0.0.0.255 any

Device(config-ext-nacl)#exit

#Configure the outside source NAT dynamic address translation rule, translating the Internet IP addresses 17.1.1.2 and 17.1.1.3 to the intranet IP addresses 110.10.10.2 and 110.10.10.3.

Device(config)#ip nat outside source list 1001 pool pool1

Step 3: Check the result.

Ν	A	Т
•••	• •	

www.qtech.ru

When PC2 and PC3 visit PC1, the NAT table entry can be viewed on Device.

Device#show ip nat translations

Type Pro Age	Inside Global	Inside Local	Outside Local	Outside	Global
ONAT 253)(2:1)	110.10.10.1:0	110.10.10.1:0	110.10.10.2:0	17.1.1.2:0	600 (-
ONAT 253)(2:1)	110.10.10.1:0	110.10.10.1:0	110.10.10.3:0	17.1.1.3:0	600 (-

20. NAT64

20.1. Overview

With the exhaustion of IPv4 public addresses, operators can provide user access services in IPv6 mode; however, most services on the Internet are still pure IPv4 services. In order to realize the communication between IPv6 host and IPv4 server in the process of IPv4-IPv6 migration, you can adopt the NAT64 scheme.

20.1.1. NAT64 IPv6 Network Specific Prefix

NAT64 translation process requires IPv6 address translated by IPv4, which is composed of IPv6 network specific prefix (NSP: Network-Specific Prefix) and IPv4 address. The structure of the IPv6 address converted by IPv4 is shown in Figure 1-1.

NAT64 IPv6 network-specific prefixes are used to translate IPv4 addresses to IPv6 addresses:

- Translate the destination address of the IPv6 packet to the IPv4 address: When the IPv6 packet arrives at the NAT64 device, NAT64 resolves the IPv4 address from the IPv6 destination address (IPv6 address translated by IPv4 destination address) using IPv6 network specific prefix.
- Translate the source address of the IPv4 packet to the IPv6 address: When the IPv4 packet arrives at the NAT64 device, NAT64 uses the IPv6 network specific prefix to translate the IPv4 source address to the IPv6 address.

Length	0	32	40	48	56	64	72	80	88	96	
32	Prefix		v4	(32)		u				Suffix	
40	Prefix			v4(24	.)	u	(8)			Su	ffix
48	Prefix			v4	(16)	u	v4(16)			Suffix
56	Prefix				(8)	u	v	4 (24)		Suffix
64	Pr	efix				u		v4(32)		Suffix
96			Р	refix							v4 (32)

Figure 14-1 The structure of the IPv6 address translated by the IPv4 address

The length of the IPv6 network specific prefix can only be 32, 40, 48, 56, 64 or 96 bits, and the 8-bit u is the reserved bits, set to 0; suffix is currently not used, and set to 0. The v4 addresses are embedded in different locations of the v6 addresses according to the prefix length.

- When the prefix length is 32 bits, the v4 address is embedded in 32-63 bits.
- When the prefix length is 40 bits, the v4 address is divided into two parts. The first 24 bits are embedded in 40-63 bits, and the last 8 bits are embedded in 72-79 bits.
- When the prefix length is 48 bits, the v4 address is divided into two parts. The first 16 bits are embedded in 48-63 bits, and the last 16 bits are embedded in 72-87 bits.
- When the prefix length is 56 bits, the v4 address is divided into two parts. The first 8 bits are embedded in 56-63 bits, and the last 24 bits are embedded in 72-95 bits.
- When the prefix length is 64 bits, the v4 address is embedded in 72-103 bits.
- When the prefix length is 96 bits, the v4 address is embedded in 96-127 bits.

www.qtech.ru

NAT64 Gi0 Gi1 2001::1 1.1.1.1 IPv6 host IPv4 host IPv6 prefix:3001::/96 2001::2 1.1.1.2 Translate src by translation rule; translate destination Dst: 1.1.1.2 Src: 1.1.1.10 Src: 2001::2 Dst: 3001::0101:0102 prefix Src: Translate By the Src: 1.1.1.2 3001::0101:0102 information recorded by the translation Dst:2001::2 Dst: 1.1.1.10 entries

20.1.2. NAT64 Packet Translation Process

Figure 14-2 The packet translation process of IPv6 actively initiating access

- 1. After receiving the IPv6 packet, NAT64 determines whether the packet needs to be translated to the IPv4 packet. If the IPv6 packet matches the NAT64 static translation rule or dynamic translation rule, the packet needs NAT64 translation.
- 2. Translate source address: After the IPv6 packet matches the translation rule successfully, translate the source address by using the configuration in the translation rule. For the static translation rule, directly translate the source address of the IPv6 packet to the IPv4 address configured in the static rule; for the dynamic translation rule, translate the source address of IPv6 packet to the IPv4 address in the address pool, or to the IPv4 address of the interface associated with the dynamic rule.
- 3. Translate destination address: According to the NAT64 IPv6 prefix, resolve the IPv4 address from the IPv6 destination address as the translated destination IPv4 address.
- 4. After translation, NAT64 creates the translation entries and records the mapping relationship between IPv6 packets and IPv4 packets.
- 5. The response packet is translated from the IPv4 packet to the IPv6 packet via the translation entry.

 $\bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet$

20.2. NAT64 Function Configuration

Table 14-1 NAT64 function configuration

Configuration Task	
Enable the NAT64 function	Enable the NAT64 function
Configure the NAT64 flow log	Configure NAT64 new flow log function
	Configure NAT64 end flow log function
Configure NAT64 IPv6 network specific prefix	Configure NAT64 IPv6 network specific prefix
Configure the NAT64 filter policy	Configure the NAT64 filter policy
Configure the NAT64 address pool	Configure the NAT64 address pool
Configure the NAT64 available port range	Configure the NAT64 available port range
Configure NAT64 IPv6 internal server translation rule	Configure NAT64 IPv6 internal server translation rule
Configure the NAT64 static translation rule	Configure the NAT64 static translation rule
Configure the NAT64 dynamic translation rule	Configure the associated dynamic translation rule of IPv6 ACL
	Configure the associated dynamic translation rule of IPv6 prefix

20.2.1. Enable the NAT64 Function

After enabling the NAT64 function on the interface connecting IPv6 and IPv4, the translation between the IPv6 packet and IPv4 packet can be performed.

Configuration Condition

None

Enable the NAT64 Function

Table 14-2 Enable the NAT64 function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	Mandatory
Enable the NAT64 function	nat64 enable	Mandatory By default, do not enable the NAT64 function.

20.2.2. Configure NAT64 Flow Log Function

After configuring the new flow log function of NAT64, the corresponding data log will be output when the translation table entry of NAT64 is generated. After configuring the end flow log function of NAT64, the corresponding data log will be output when the translation table entries of NAT64 are aged or cleared normally.

Configuration Condition

None

Configure NAT64 Flow Log Function

Table 20-2 Configure the NAT64 flow log function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT64 flow log function	nat64 logging security- data { connection-begin connection-end } *	Mandatory By default, do not configure the NAT64 flow log function.

20.2.3. Configure NAT64 IPv6 Network Specific Prefix

Configuration Condition

None

Configure NAT64 IPv6 Network Specific Prefix

Table 14-3 Configure the NAT64 IPv6 network specific prefix

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT64 IPv6 network specific prefix	nat64 prefix ipv6-prefix / lenght	Mandatory By default, do not Configure the NAT64 IPv6 network specific prefix.

Note:

- If no IPv6 network-specific prefix is configured, NAT64 adopts the well-known prefix 64:ff9b:/96 to translate packets.
- It is not recommended to use this rule together with the static source translation rule from V4 to V6. The usage scenarios of the two rules are different. If they are used together, unexpected results may appear.

20.2.4. Configure the NAT64 Filter Policy

After configuring NAT64 dynamic translation rules, the host of the IPv6 side can actively access the host of the IPv4 side, while the host of the IPv4 side actively accessing the host of the IPv6 side is limited. Whether to permit the host of the IPv4 side to initiate access actively is determined by the NAT64 filtering policy. NAT64 provides three filtering policies: endpoint-independent filtering, address-dependent filtering, and all.

Endpoint-independent filtering:

When the host of the IPv6 side accesses the host of the IPv4 side, NAT64 assigns an IPv4 address and port to it. All hosts of the IPv4 side can access the IPv6 host through this address and port.

Address-dependent filtering:

When the host of the IPv6 side accesses the host of the IPv4 side, NAT64 assigns an IPv4 address and port to it. The host of the IPv4 side can access the IPv6 host through this address and port, but the IPv4 host must have been accessed by the IPv6 host.

All:

The host of the IPv4 side (except for the response packets with quintuple matching) is not allowed to access the host of the IPv6 side through dynamic translation rules.

Configuration Condition

It is necessary to configure the dynamic rule.

Configure NAT64 Filter Policy

Table 14-4 Configure the NAT64 filter policy

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT64 filter policy	nat64 filter { address- dependent endpoint- independent all }	Mandatory By default, the NAT64 filtering policy is endpoint- independent filtering

Note:

• The filtering policy is only for the TCP, UDP and ICMP packets, and the other packets cannot actively access the IPv6 side from the IPv4 side.

20.2.5. Configure the NAT64 Address Pool

Configuration Condition

None

Configure the NAT64 Address Pool

The NAT64 address pool consists of a set of consecutive IPv4 addresses. After dynamic NAT64 translation rules associate the address pool, and when packets are sent from the IPv6 network to the IPv4 network, NAT64 takes an IPv4 address from the address pool as the source address of the translated IPv6 packet.

Table 14-5 Configure the NAT64 address pool

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT64 address pool	nat64 v4 pool pool-name start-IP end-IP { netmask network-mask prefix- length prefix-length }	Mandatory By default, do not configure the NAT64 address pool.

Note:

- The same address should not be defined in two different address pools.
- The same address pool can only be associated once, and different dynamic transformation rules can only associate different address pools.

20.2.6. Configure NAT64 Available Port Range

Configuration Conditions

None

Configure NAT64 Available Port Range

The port multiplexing of NAT64 will map different IPv6 addresses to different ports of the same IPv4 address to reduce the consumption of the IPv4 address to the greatest extent. The available port range of IPv4 address can be configured. After configuring the available port range of NAT64, the source ports of all packets converted by NAT64 are within the configured available port range. By configuring the available range, we can meet some requirements for the use of ports, such as not using well-known ports.

Table 20-3 Configure NAT64 available port range

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT64 available port range	nat64 v4 port-range start start-port end end-port	Mandatory By default, the available ports of the NAT64 pool address are10001-65535.

20.2.7. Configure NAT64 v4-v6 Source Static Translation Rule

NAT64 static translation rule converts the IPv4 address to the IPv6 address through static mapping, and the mapping relationship is fixed. The IPv4 side host can access the IPv6 side host through the source static translation rules, and the IPv6 side host can also actively access the IPv4 side host through the source static rules. The priority of source static translation rule is higher than that of the dynamic translation rule. When both source static translation rule and dynamic translation rule are configured, the source static rule is preferred.

Configuration Conditions

None

Configure NAT64 Static Translation Rules

Table 20-4 Configure NAT64 static translation rule

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT64 v4v6 source static translation rule	nat64 v4v6 source ipv4- address [vrf ipv4-vrf-name] ipv6-address [vrf ipv6-vrf- name]	Mandatory By default, do not configure NAT64 v4v6 source static translation rule.

Note:

 It is not recommended to use this rule together with IPv6 network specific prefix rule. The usage scenarios of the two rules are different. If they are used together, unexpected results may appear.

20.2.8. Configure NAT64 IPv6 Internal Server Translation Rule

NAT64 IPv6 internal server translation rules, through static mapping, the server address and port on IPv6 side are converted to corresponding IPv4 addresses and ports. The mapping relationship is fixed and unchanged. IPv4 side client hosts can access IPv6 side server hosts through internal server translation rules. The priority of IPv6 internal server translation rules is higher than that of the static translation rules and dynamic translation rules. When IPv6 internal server translation rules and dynamic translation rules are configured at the same time, IPv6 internal server translation rules are preferred for translation.

Configuration Conditions

None

Configure NAT64 IPv6 Internal Server Translation Rules

Table 20-5 Configure NAT64 IPv6 internal server translation rules

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT64 IPv6 internal server translation rules	nat64 v6server protocol protocol-type ipv4-address ipv4-port [vrf ipv4-vrf- name] IPv6-address IPv6- port [vrf IPv6-vrf-name]	Mandatory By default, do not configure NAT64 IPv6 internal server translation rules.

Note:

• IPv6 internal server translation rules are not limited by NAT64 filtering policy

20.2.9. Configure NAT64 Static Translation Rules

NAT64 static translation rules translate the IPv6 address to the IPv4 address via static mapping, and the mapping relationship is fixed. The host of the IPv6 side can access the host of the IPv4 side through static translation rules, and the host of the IPv4 side can actively access the host of the IPv6 side through static rules. The priority of the static translation rule is higher than that of the dynamic translation rule. When static translation rules and dynamic translation rules are configured simultaneously, static translation rules are preferred.

Configuration Condition

None

Configure NAT64 Static Translation Rules

 Table 14-4Configure the NAT64 static translation rules

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the NAT64 static translation rules	nat64 static <i>ipv4-address</i> [vrf <i>ipv4-vrf-name</i>] <i>IPv6-</i> <i>address</i> [vrf <i>IPv6-vrf-</i> <i>name</i>]	Mandatory By default, do not configure the NAT64 static translation rules.

Note:

• The static translation rule is not limited by the NAT64 filtering policy.

20.2.10. Configure NAT64 Dynamic Translation Rules

The address mapping relationship between the IPv6 network and the IPv4 network is dynamic. If the packet matches the translation rule, the source IPv6 address will be translated to the IPv4 address in the specified address pool or the IPv4 address of the specified interface. There are two ways of matching the translation rules: one is the configured ACL6 rule matching the source address of the IPv6 packet, the other is the destination address of the IPv6 packet matching the configured prefix in the rule.

NAT64 supports the following dynamic translations:

- The associated dynamic translation rule of IPv6 ACL
- The associated dynamic translation rule of the IPv6 prefix

Configuration Condition

Before configuring the NAT64 dynamic translation rule, first complete the following task:

- Configure IPv6 ACL
- Configure NAT64 address pool

Configure Associated Dynamic Translation Rules of IPv6 ACL

The source IPv6 address of the IPv6 packet matches the specified IPv6 ACL in the translation rule, and the source IPv6 address is translated to the IPv4 address in the address pool or to the IPv4 address of the specified interface. When the overload keyword is specified in the configuration, different IPv6 addresses can be translated to the same IPv4 address, which can be distinguished by different port numbers. Configuring the overload keyword can save the IPv4 address to the greatest extent.

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the associated dynamic translation rule of IPv6 ACL	nat64 v6v4 list access-list- name [vrf <i>IPv6-vrf-name</i>] { interface interface-name overload pool pool-name [overload] } [vrf ipv4-vrf- name]	Mandatory By default, do not configure the associated dynamic translation rule of IPv6 ACL.

Table 14-8 Configure the associated dynamic translation rule of IPv6 ACL

Configure Associated Dynamic Translation Rules of IPv6 Prefix

The destination IPv6 address of the IPv6 packet matches the specified IPv6 prefix in the translation rule, and the source IPv6 address is translated to the IPv4 address in the address pool or to the IPv4 address of the specified interface. When the overload keyword is specified in the configuration, different IPv6 addresses can be translated to the same IPv4 address, which can be distinguished by different port numbers. Configuring the overload keyword can save the IPv4 address to the greatest extent.

www.qtech.ru

Table 14-95 Configure the associated dynamic translation rule of IPv6 prefix

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the associated dynamic translation rule of the IPv6 prefix and address pool	nat64 v6v4 prefix <i>IPv6-</i> prefix/length [vrf <i>IPv6-vrf-</i> name] { interface interface-name overload pool pool-name [overload] } [vrf ipv4-vrf-name]	Mandatory By default, do not configure the associated dynamic translation rule of the IPv6 prefix.

20.2.11. Configure NAT64 IPv4 Internal Server Translation Rules

NAT64 IPv4 internal server translation rules, through the way of static mapping, the server address and port of the IPv4 side are converted to the corresponding IPv6 address and port, and the mapping relationship is fixed. IPv6 side client host can access the IPv4 side server host through internal server translation rules. The priority of IPv4 internal server translation rule is higher than that of static translation rule and dynamic translation rule. When IPv4 internal server translation rule and dynamic translation rule are configured at the same time, IPv4 internal server translation rule is preferred.

Configuration Condition

None

Configure NAT64 IPv4 Internal Server Translation Rules

Table 20-6 Configure NAT64 IPv4 internal server translation rules

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT64 IPv4 internal server translation rules	nat64 v4server list access-list-name [vrf ipv6- vrf-name] ipv4-address [ipv4-port] [vrf ipv4-vrf- name]	Mandatory By default, do not configure NAT64 IPv4 internal server translation rules.

Note:

• The IPv4 internal server translation rule is not limited by the NAT64 filtering policy.

20.2.12. Configure NAT64 ALG Switch

NAT64 ALG switch is used to enable the processing function of application layer packet. At present, the application layer protocols supported by NAT64 include FTP, TFTP, DNS, HTTP and SIP.

Configuration Condition

None

Configure NAT64 ALG Switch

Table 20-7 Configure NAT64 ALG switch

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT64 ALG switch	nat64 alg { ftp tftp dns http sip all }	Mandatory By default, the NAT64 ALG is not configured, and the ALG function is not enabled.

20.2.13. NAT64 Monitoring and Maintaining

Table 14-12 NAT64 monitoring and maintaining

Command	Description
clear nat64 statistics	Clears all statistics information of NAT64
show nat64 address-pool	Displays the NAT64 address pool information
show nat64 prefix	Displays the NAT64 IPv6 prefix information
show nat64 rule	Displays the NAT64 translation rule information
show nat64 statistics [verbose]	Displays NAT64 global or board statistics

www.qtech.ru

Command	Description
<pre>show nat64 translation lpu /pu-unit [proto { icmp tcp udp ip }] [v6src IPv6-address] [v6dst IPv6-address] [v4src ipv4-address] [v4dst ipv4- address]</pre>	Displays the NAT64 translation entries
show running-config nat64	Displays all configuration information of NAT64

20.3. NAT64 Typical Configuration Examples

20.3.1. Configure NAT64 Static Address Translation

Network Requirements

 The PC with the address 2001::2/64 in the IPv6 network hopes to access the server with the IPv4 network address 192.0.2.2/24. In order to meet the above requirement, it is necessary to deploy NAT64 translation device between the IPv4 network and the IPv6 network, and when configuring the static NAT64 address mapping on Device, ensure that the host in the IPv6 network can access network resources in IPv4.

Network Topology

Figure 20-8 Networking of configuring the NAT64 static address translation

Configuration Steps

- **Step 1:** Configure the interface IP address (omitted).
- **Step 2:** Configure the IPv6 route of the PC host.

On the PC, configure the static route to the prefix 2001:1::/96.

Step 3: Configure the NAT64 prefix, NAT64 interface attribute, and NAT64 translation rules of Device.

#Configure the NAT64 prefix.

Device#configure terminal

Device(config)#nat64 prefix 2001:1::/96

#Enable the NAT64 function on interface gigabitethernet0.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat64 enable

Device(config-if-gigabitethernet0)#exit

#Enable the NAT64 function on interface gigabitethernet1.

Device(config)#interface gigabitethernet 1 Device(config-if-gigabitethernet1)#nat64 enable Device(config-if-gigabitethernet1)#ipv6 enable Device(config-if-gigabitethernet1)#exit

#Configure the NAT64 static address translation rule.

Device(config)#nat64 static 192.0.3.2 2001::2

Step 4: Check the result.

#On PC, ping 2001:1::c000:0202, and the ping can be connected.

Note:

 IPv6 address 2001:1::c000:0202 is the corresponding IPv6 address of the server in the IPv4 network (consisting of network prefix + hexadecimal IPv4 address).
 Pinging 2001:1::c000:0202 with 32 bytes of data:

Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms

Ping statistics for 2001:1::c000:0202:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

#On Device, you can see the corresponding NAT64 translation entry.

Device#show	nat64	trans	lation
-------------	-------	-------	--------

Proto IPv6 source:port IPv6 destination:port	IPv4 source:port IPv4 destination:port	Status	lifetime
ICMP [2001::2]:195 [2001:1::c000:202]:0	 192.0.3.2:195 192.0.2.2:0	43	

20.3.2. Configure NAT64 Dynamic Address Translation

Network Requirements

 Many hosts in the IPv6 network, such as PC1 or PC2, need to actively access the servers in the IPv4 network and record the translation entries. To meet the above requirements, the NAT64 translation device needs to be deployed between the IPv4 network and the IPv6 network. As long as the number of the IPV6 hosts initiated to the

www.qtech.ru

IPV4 server in the IPV6 domain is not more than the number of the IPV4 addresses in IPV4 address pool, you can configure the NAT64 dynamic address translation on the Device, meeting the requirement that multiple hosts in its IPv6 network actively access the network resources in the IPv4 network.

Network Topology

Figure 20-9 Networking of configuring the NAT64 dynamic address translation

Configuration Steps

- Step 1: Configure the interface IP address (omitted).
- **Step 2:** Configure the IPv6 route of host PC1 and PC2.

On PC1 and PC2, configure the static route to the prefix 2001:1::/96.

Step 3: Configure the NAT64 prefix, NAT64 interface attribute, and NAT64 translation rule of Device.

#Configure the NAT64 prefix.

Device#configure terminal

Device(config)#nat64 prefix 2001:1::/96

#Configure interface gigabitethernet0 to enable the NAT64 function.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat64 enable

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 to enable the NAT64 function.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat64 enable

Device(config-if-gigabitethernet1)#ipv6 enable

Device(config-if-gigabitethernet1)#exit

#Configure IPv6 ACL 7001, only permitting the PC of the 2001::/64 segment in the IPv6 network to access Server.

Device(config)#ipv6 access-list extended 7001

Device(config-v6-list)#permit ipv6 2001::/64 any

Device(config-v6-list)exit

#Configure NAT64 v4 address pool1, containing two IPv4 addresses 192.0.3.3 and 192.0.3.4.

Device(config)# nat64 v4 pool pool1 192.0.3.3 192.0.3.4 netmask 255.255.255.0 #Configure the NAT64 dynamic address translation rule.

Device(config)#nat64 v6v4 list 7001 pool pool1

Step 4: Check the result.

#On PC1, ping 2001:1::c000:0202, and the ping can be connected.

Note:

 IPv6 address 2001:1::c000:0202 is the corresponding IPv6 address of the server in the IPv4 network (consisting of network prefix + hexadecimal IPv4 address).

Pinging 2001:1::c000:0202 with 32 bytes of data:

Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms

Ping statistics for 2001:1::c000:0202: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms

#On PC2, ping 2001:1::c000:0202, and the ping can be connected. Pinging 2001:1::c000:0202 with 32 bytes of data:

> Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms

Ping statistics for 2001:1::c000:0202: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms

#On Device, you can see the corresponding NAT64 translation entry.

Device#show nat64 translation

Proto	IPv6 source:port	IPv4 source:port	Status	lifetime
11010	n vo Source.port		Status	uncume

NAT64					www.qtech.ru	
	IPv6 destination:port	IPv4 destination:	port			
	ICMP [2001::3]:195	192.0.3.4:195		57		
	[2001:1::c000:202]:0	192.0.2.2:0				
	ICMP [2001::2]:195	192.0.3.3:195		51		
	[2001:1::c000:202]:0	192.0.2.2:0				

20.3.3. Configure NAT64 Dynamic Port Translation

Network Requirements

Many hosts in the IPv6 network, such as PC1 or PC2, need to actively access the servers in the IPv4 network and record the translation entries. To meet the above requirements, the NAT64 translation device needs to be deployed between the IPv4 network and the IPv6 network. When the number of the IPv6 hosts initiated to the IPv4 server in the IPv6 domain is larger than the number of the IPv4 addresses in the IPv4 address pool, you can configure the NAT64 dynamic address translation on the Device, meeting the requirement that multiple hosts in its IPv6 network actively access the network resources in the IPv4 network.

Network Topology

Figure 20-10 Networking of configuring the NAT64 static address translation

Configuration Steps

- **Step 1:** Configure the interface IP address (omitted).
- **Step 2:** Configure the IPv6 route to the host PC1 and PC2.

On PC1 and PC2, configure the static route to the prefix 2001:1::/96.

Step 3: Configure the NAT64 prefix, NAT64 interface attribute, and NAT64 translation rule of Device.

#Configure the NAT64 prefix.

Device#configure terminal

Device(config)#nat64 prefix 2001:1::/96

#Configure the interface gigabitethernet0 to enable the NAT64 function.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat64 enable

Device(config-if-gigabitethernet0)#exit

#Configure the interface gigabitethernet1 to enable the NAT64 function.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat64 enable

Device(config-if-gigabitethernet1)#ipv6 enable

Device(config-if-gigabitethernet1)#exit

#Configure IPv6 ACL 7001, only permitting the PC of the 2001::/64 segment in the IPv6 network to access Server.

Device(config)#ipv6 access-list extended 7001

Device(config-v6-list)#permit ipv6 2001::/64 any

Device(config-v6-list)exit

#Configure the NAT64 v4 address pool pool1, containing two IPv4 addresses 192.0.3.3 and 192.0.3.4.

Device(config)#nat64 v4 pool pool1 192.0.3.3 192.0.3.4 netmask 255.255.255.0 #Configure the NAT64 dynamic address translation rule.

Device(config)#nat64 v6v4 list 7001 pool pool1 overload

Note:

• When the dynamic rule is configured as overload (port multiplexing), ports will be allocated to the addresses of the address pool according to the port range (10001-65535 by default). When one address has occupied all the available ports, the next address will be used.

Step 4: Check the result.

#On PC1, ping 2001:1::c000:0202, and the ping can be connected.

Note:

 IPv6 address 2001:1::c000:0202 is the corresponding IPv6 address of the server in the IPv4 network (consisting of network prefix + hexadecimal IPv4 address).

Pinging 2001:1::c000:0202 with 32 bytes of data:

Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms Reply from 2001:1::c000:0202: time<1ms

Ping statistics for 2001:1::c000:0202:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

NAT64					www.qtech.ru	••••
#On PC2, ping 2001:1::c0	00:0202, and the	e ping can be cor	nnected			
Pinging 2001:1::	c000:0202 with	32 bytes of data:				
Reply from 200	01:1::c000:0202: t	ime<1ms				
Reply from 200	01:1::c000:0202: t	ime<1ms				
Reply from 200	01:1::c000:0202: t	ime<1ms				
Reply from 200)1:1::c000:0202: t	ime<1ms				
Ping statistics	for 2001:1::c000:	0202:				
Packets: Ser	nt = 4, Received	= 4, Lost = 0 (0%	loss),			
Approximate r	ound trip times	in milli-seconds:				
Minimum = 0)ms, Maximum =	= 0ms, Average =	Oms			
#On Device, you can see t	the correspondir	ng NAT64 transla	tion ent	ry.		
Device#show r	nat64 translatio	n				
Proto IPv6 so	urce:port	IPv4 source:p	ort	Status	lifetime	
IPv6 desti	nation:port	IPv4 destination	n:port			
 ICMP [2001::3]:195 1	 192.0.3.4:195		 56		
[2001:1::c0	00:202]:0	192.0.2.2:0				
ICMP [2001::2	:] :195 1	192.0.3.3:195		50		
[2001:1::c0	00:202]:0	192.0.2.2:0				

20.3.4. Configure IPV4 internet to Access IPV6 Internal Server

Network Requirements

Multiple hosts such as PC1 or PC2 in IPv4 network need to actively access the internal HTTP, FTP and other servers in IPv6 network, and record the translation table entries. In order to meet the above requirements, NAT64 translation device needs to be deployed between IPv4 network and IPv6 network. When initiating the access to IPv6 internal server in IPv4 domain, NAT64 internal server rules need to be configured on the device. It meets the requirement that the host in the IPv4 network can actively access the network resources in IPv6.

www.gtech.ru

Figure 20-6 Networking of configuring IPV4 Internet to access IPv6 internal server

Configuration Steps

Step 1: Configure the IP address of the interface (omitted).

Step 2: Configure the IPv4 route of the host PC1 and PC2.

On PC1 and PC2, configure the static route to 20.1.1.0/24.

Step 3: Configure the NAT64 prefix, NAT64 interface attribute, and NAT64 translation rule of Device.

#Configure the NAT64 prefix.

Device#configure terminal

Device(config)#nat64 prefix 2001:1::/96

#Configure the interface gigabitethernet0 to enable the NAT64 function.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat64 enable

Device(config-if-gigabitethernet0)#ipv6 enable

Device(config-if-gigabitethernet0)#exit

#Configure the interface gigabitethernet1 to enable the NAT64 function.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat64 enable

Device(config-if-gigabitethernet1)#exit

#Configure the corresponding IPv4 address and port of the IPv6 internal server.

Device(config)# nat64 v6server protocol tcp 20.1.1.2 1024 2000:1::1 80

Step 4: Check the result.

#In PC1, access the IPv6 HTTP server through HTTP protocol. The address and port are 20.1.1.2 and 1024 respectively.

#In PC2, access the IPv6 HTTP server through HTTP protocol. The address and port are 20.1.1.2 and 1024 respectively.

www.qtech.ru

#On Device, you can see the corresponding NAT64 translation table entries. When the PC accesses the IPv4 address 20.1.1.2 and port 1024, it will be converted to the address 2000:1:: 1 and port 80 of the internal server.

Device#show nat64 translation

Prot	o IPv6 source:port	IPv4 source:port	lifetime
	IPv6 destination:port	IPv4 destination:port	
ТСР	[2000:1::1]:80	20.1.1.2:1024	7155
	[2001:1::1400:0002]: 45535	5 20.0.0.2:45535	
ТСР	[2000:1::1]:80	20.1.1.2:1024	7155
	[2001:1::1400:0003]: 45536	6 20.0.0.3:45536	
Valio	I/Total: 2/2		

20.3.5. Configure IPV6 internet to Access IPV4 Internal Server

Network Requirements

 Multiple operators such as PC1 or PC2 in IPv6 network need to actively access the internal server in IPv4 network, and record the translation table entries. In order to meet the above requirements, NAT64 translation device needs to be deployed between IPv4 network and IPv6 network. When initiating the access to IPv4 internal server in IPv6 domain, NAT64 internal server rules need to be configured on Device. It meets the requirement that the host in the IPv6 network can actively access the network resources in IPv4.

Network Topology

Figure 20-7 Networking of configuring IPV6 Internet to access IPv4 internal server

Configuration Steps

- Step 1: Configure the IP address of the interface (omitted).
- **Step 2:** Configure the IPv6 route of the host PC1 and PC2.

On PC1 and PC2, configure the routes to 2003::/64 and 2004::/64.

Step 3: Configure the destination address ACL, NAT64 interface attribute, and NAT64 translation rules of Device.

NAT64		www.qtech.ru	••••
#Configure	the ACL associated with the IPv4 internal server.		
	Device#configure terminal		
	Device(config)#ipv6 access-list extended 7001		
	Device(config-v6-list)#permit ipv6 any host 2003::1		
	Device(config-v6-list)#permit ipv6 any host 2004::1		
	Device(config-v6-list)#exit		
#Configure	the interface gigabitethernet0 to enable the NAT64 function.		
	Device(config)#interface gigabitethernet 0		
	Device(config-if-gigabitethernet0)#nat64 enable		
	Device(config-if-gigabitethernet0)#exit		
#Configure	the interface gigabitethernet1 to enable the NAT64 function.		
	Device(config)#interface gigabitethernet 1		
	Device(config-if-gigabitethernet1)#nat64 enable		
	Device(config-if-gigabitethernet1)#ipv6 enable		
	Device(config-if-gigabitethernet1)#exit		
#Configure	interface gigabitethernet2 to enable the NAT64 function.		
	Device(config)#interface gigabitethernet 2		
	Device(config-if-gigabitethernet2)#nat64 enable		
	Device(config-if-gigabitethernet2)#exit		
#Configure	NAT64 V4server rules for IPv6 destination address translation.		
	Device(config)# nat64 v4server list 7001 192.0.2.2		
#Configure	the NAT64 IPv4 address pool.		
	Device(config)# nat64 v4 pool pool1 192.0.2.10 192.0.2.20 netmask 25	5.255.255.0	
#Configure	NAT64 V6V4 list rule for the IPv6 source address translation.		
	Device(config)# nat64 v6v4 list 7001 pool pool1		
Step 4:	Check the result.		

#On PC1, access IPV4 HTTP Server via the HTTP protocol.

#On PC2, access IPV4 HTTP Server via the HTTP protocol.

#On Device, you can see the corresponding NAT64 translation table entries. When the PC accesses the IPv6 addresses 2003:: 1 and 2004:: 1, it converts them to the address 192.0.2.2 of the IPv4 internal server.

Device#show nat64 translation

Proto	IPv6 source:port	IP	v4 source:	port	lifetime
I	IPv6 destination:port		IPv4 destination:port		
ТСР	[2001::1]:10054	192.0.2.10:10	0054	3599	

NAT	64
-----	----

[2003::1]:80 192.0.2.2:80 TCP [2002::1]:10055 192.0.2.11:10055 3599 [2004::1]:80 192.0.2.2:80 Valid/Total: 2/2

20.3.6. Configure Exchange Access of IPV4 and IPv6 Networks

Network Requirements

 IPv4 network and IPv6 network can access each other. In this scenario, multiple IPv4 users and multiple IPv6 users can access each other, and any party can initiate the access actively. nat64 v4v6 destination rule realizes the stateless conversion of IPv4 and IPv6 addresses.

Network Topology

Figure 20-8 Networking of configuring the exchange access of IPv4 and IPv6 networks

Configuration Steps

Step 1: Configure the IP address and route of the interface (omitted).

Step 2: Configure the NAT64 interface attributes and NAT64 translation rules of Device.

#Configure the associated ACL of nat64 v4v6 destination rules.

Device#configure terminal

Device(config)#ip access-list extended list1

Device(config-std-nacl)# permit ip any 10.1.2.0 0.0.0.255

Device(config-std-nacl)# permit ip 10.1.2.0 0.0.0.255 any

Device(config-std-nacl)# exit

#Configure the NAT64 prefix and nat64 v4v6 destination translation rules.

Device#configure terminal

Device(config)#nat64 prefix 2002::/96

Device(config)#nat64 v4v6 destination list list1 prefix 2001::/96

#Configure the interface gigabitethernet0 to enable the NAT64 function.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat64 enable

Device(config-if-gigabitethernet0)#exit

#Configure the interface gigabitethernet1 to enable the NAT64 function.

www.qtech.ru

Device(config)#interface gigabitethernet 1 Device(config-if-gigabitethernet1)#nat64 enable Device(config-if-gigabitethernet1)#ipv6 enable Device(config-if-gigabitethernet1)#exit

Step 3: Check the result.

#On PC3, ping 10.1.2.10 and the ping can be connected.

Device#ping 10.1.2.10 Press key (ctrl + shift + 6) interrupt it. Sending 5, 76-byte ICMP Echos to 10.1.2.10 , timeout is 2 seconds: !!!!!

Success rate is 100% (5/5). Round-trip min/avg/max = 0/0/2 ms.

#On PC4, ping 10.1.2.11, and the ping can be connected.

#On Device, you can see the corresponding NAT64 translation table entries.

Device#show nat64 translation

Proto	IPv6 source:port	IPv4 source:port	lifetime
IP	v6 destination:port	IPv4 destination:port	
ICMP	[2002::a01:101]:734	10.1.1.1:734	55
[2	2001::a01:020a]:734	10.1.2.10:734	
ICMP	[2002::a01:102]:735	10.1.1.2:735	55
[2	2001::a01:20b]:735	10.1.2.11:735	

Valid/Total:2/2

#On PC1, ping 2002::a01:101, and the ping can be connected.

Device#ping 2002::a01:101			
Press key (ctrl + shift + 6) inte	Press key (ctrl + shift + 6) interrupt it.		
Sending 5, 76-byte ICMP Echo !!!!!	Sending 5, 76-byte ICMP Echos to 2002::a01:101 , timeout is 2 seconds: !!!!!		
Success rate is 100% (5/5). Ro	und-trip min/avg/max =	0/0/2 ms.	
#On PC2, ping 2002::a01:102 and the ping	g can be connected.		
#On Device, you can see the correspondir	ng NAT64 translation tab	le entries.	
Device#show nat64 translation	n		
Proto IPv6 source:port	IPv4 source:port	lifetime	

NAT64					www.qtech.ru	••••
	ICMP	[2001::a01:020a]:734	10.1.2.10:734	55		
	[2002::a01:101]:734	10.1.1.1:734			
	ICMP	[2001::a01:020b]:735	10.1.2.11:735	55		
	[2002::a01:102]:735	10.1.1.2:735			
	Valid/	Fotal:2/2				

20.3.7. Configure IPv6 internet to Access IPv4 Network

Network Requirements

• Multiple hosts such as PC1 or PC2 in IPv6 network need to actively access the internal HTTP, FTP and other servers in IPv4 network, and record the translation table entries. In order to meet the above requirements, NAT64 translation device needs to be deployed between IPv4 network and IPv6 network. When the IPv6 domain initiates access to the IPv4 internal server, the target mapping from IPv6 to IPv4 cannot be converted by the way of IPv4 embedded in IPv6 prefix, only by static mapping, adding a nat64 v4v6 source address mapping to achieve static mapping, so as to meet the requirement that the host in the IPv6 network can actively access the network resources in IPv4.

Network Topology

Figure 20-9 Networking of configuring IPV6 Internet to access the IPv4 network

Configuration Steps

- **Step 1:** Configure the IP address of the interface (omitted).
- Step 2: Configure the IPv6 route of the host PC1 and PC2.

On PC1 and PC2, configure the route to the prefix 2002::/64.

Step 3: Configure the NAT64 prefix, NAT64 attributes, and NAT64 translation rules of Device.

#Configure the NAT64 static translation rule to convert the IPv6 source address.

Device#configure terminal

Device(config)#nat64 static 192.0.3.10 2001::2

Device(config)#nat64 static 192.0.3.11 2001::3

#Configure the interface gigabitethernet0 to enable the NAT64 function.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat64 enable Device(config-if-gigabitethernet0)#exit

#Configure the interface gigabitethernet1 to enable the NAT64 function.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat64 enable

Device(config-if-gigabitethernet1)#ipv6 enable

Device(config-if-gigabitethernet1)#exit

#Configure the corresponding IPv6 address of the IPv4 internal server.

Device(config)# nat64 v4v6 source 192.0.2.2 2002::10

Step 4: Check the result.

#Access the IPV4 HTTP Server : 2002::10 through HTTP protocol.

#Access the IPV4 HTTP Server : 2002::10 through HTTP protocol.

#On Device, you can see the corresponding NAT64 translation table entries. When PC1 and PC2 access the IPv6 address 2002:10, it will be converted to the address 192.0.2.2 of the IPv4 internal server.

Device#show nat64 translation

Proto IPv6 sourc	e:port IPv4 source:por	t lifetime
IPv6 destinati	on:port IPv4 destination:	port
TCP [2001::2]:100	192.0.3.10:10054	3599
[2002::10]:80	192.0.2.2:80	
TCP [2001::3]:100	192.0.3.11:10054	3599
[2002::10]:80	192.0.2.2:80	
Valid/Total:2/2		

21. NAT66

21.1. Overview

The main function of the NAT66 module is to convert the IPv6 address of IPv6 packet header into another IPv6 address. In fact, the NAT66 module is the supplement of NAT (network address translation) for IPv6 protocol stack. The common use scenario is to convert the source IPv6 address of the internal network into the accessible IPv6 address of the external network. In this way, the internal network host can use a small number of public IPv6 addresses to connect with the Internet.

NAT66 is generally located at the junction of the internal network and the external network. The internal network accesses the external network through the address converted by NAT66. The external network only knows the converted IPv6 address, but does not know the address of the internal network. Therefore, NAT66 "hides" the internal private network and improves the security.

Due to the particularity of NAT66 deployment location, it also brings two kinds of network access requirements. One is that the internal network actively accesses the external network (that is, the internal host accesses the Internet), and the other is that the external network actively accesses the internal network server (that is, the internal server).

For the first kind of requirements (inside actively accesses outside), NAT66 supports statically establishing or dynamically generating the address mapping relationship. According to the generation method of address mapping relationship, address translation can be divided into two types: static translation and dynamic translation:

1. Static translation:

The address mapping relationship between inside and outside is determined in the configuration, which is static one-to-one correspondence. Each "internal address" has an "external address" corresponding to it.

2. Dynamic translation:

The address mapping relationship between inside and outside is determined by the packet. The dynamic translation rule needs to associate the access control list (ACL) with the address pool. The packet filtered by ACL selects an address in the address pool to establish the mapping relationship. After the session of the address accessing the external network, the address resource in the address pool is released to other users.

For the second requirement (outside actively accesses inside), NAT66 supports this requirement by configuring internal server rules. The rule publishes the address and port of the internal server, and enables users who meet the access conditions (matching ACL) to access the server deployed on the inside side normally.

www.qtech.ru

....

 $\bullet \bullet \bullet \bullet$

21.2. NAT66 Function Configuration

Table 21-1 NAT66 function configuration

Configuration tasks			
Configure the current interface as the NAT66 internal interface	Configure the current interface as the NAT66 internal interface		
Configure the current interface as the NAT66 external interface	Configure the current interface as the NAT66 external interface		
Configure the NAT66 internal source static translation rule	Configure the satic translation rule of the NAT66 internal source address		
	Configure the internal source address static translation rule of the NAT66 TCP packet		
	Configure the static translation rule of the internal source address of the NAT66 UDP packet		
Configure the dynamic translation rule of NAT66 internal source address	Configure the NAT66 address pool		
	Configure the available address segment of NAT66 address pool		
	Configure IPv6 ACL		
	Configure the dynamic translation rule of NAT66 internal source address		
Configure NAT66 internal server rule	Configure NAT66 internal server rule		
Configure NAT66 to enable the ALG switch	Configure NAT66 to enable the ALG switch		

www.qtech.ru

Configuration tasks	
Configure NAT66 flow log function	Enable NAT66 new flow log function
	Enable NAT66 end flow log function

21.2.1. Configure Current Interface as NAT66 Internal Interface

Specify the current interface as the NAT66 internal interface. On the ingress and egress interfaces of the packet, configure nat66 inside and nat66 outside respectively, and then, the packet can be translated according to the NAT66 rule.

Configuration Conditions

None

Configure Current Interface as NAT66 Internal Interface

Table 21-2 Configure the current interface as NAT66 internal interface

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	Mandatory
Configure the current interface as NAT66 internal interface	nat66 inside	Mandatory By default, do not configure nat66 inside.

21.2.2. Configure Current Interface as NAT66 External Interface

Specify the current interface as the NAT66 external interface. On the ingress and egress interfaces of the packet, configure nat66 inside and nat66 outside respectively, and then, the packet can be translated according to the NAT66 rule.

Configuration Conditions

None

....

Configure Current Interface as NAT66 External Interface

Table 21-3 Configure the current interface as the NAT66 external interface

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface- name	Mandatory
Configure the current interface as NAT66 external interface	nat66 outside	Mandatory By default, do not configure nat66 outside.

21.2.3. Configure NAT66 Internal Source Address Static Translation Rule

There are three kinds of internal source static translation rules, namely, NAT66 internal source address static translation rules that only do source address translation, of the source address port static translation rule of the TCP protocol, and the source address port static translation rules of the UDP protocol. When the packet passes from inside to outside, one of the three rules can be used to convert the source address (port). The internal source address static translation rule is referred to as SAT (source address translate) rule, and the source address port static translation rule of the TCP/UDP protocol is referred to as SPT (source port translate) rule. SPT rule has higher priority than SAT rule.

Configuration Conditions

None

 $\bullet \bullet \bullet \bullet$

. . . .

Configure NAT66 Internal Source Address Static Translation Rule

Table 21-4 Configure NAT66 internal source static translation rules

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT66 internal source static translation rules	nat66 inside source static { network <i>local-subnet/</i> <i>prefix-length</i> [vrf vrf- <i>name</i>] global- subnet/prefix-length [vrf vrf-name] / local-IPv6 [vrf vrf-name] global-IPv6 [vrf vrf-name] }	Mandatory By default, do not configure NAT66 internal source static translation rules.

Configure NAT66 TCP Protocol Internal Source Address Port Static Translation Rule

Table 21-5 Configure NAT66 TCP protocol internal source address port static translation rule

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT66 TCP protocol internal source address port static translation rule	nat66 inside source static tcp { local-IPv6 local-port [vrf vrf-name] { global-IPv6 interface interface-name } global- port [vrf vrf-name] range local-IPv6 local-port-min local-port-max [vrf vrf- name] { global-IPv6 interface interface-name } global-port-min global-port- max [vrf vrf-name]}	Mandatory By default do not configure NAT66 TCP protocol internal source address port static translation rule.

www.qtech.ru

....

Configure NAT66 UDP Protocol Internal Source Address Port Static Translation Rule

Table 21-6 Configure NAT66 UDP protocol internal source address port static translation rule

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT66 UDP protocol internal source address port static translation rule	nat66 inside source static udp { local-IPv6 local-port [vrf vrf-name] { global-IPv6 interface interface-name } global- port [vrf vrf-name] range local-IPv6 local- port-min local-port-max [vrf vrf-name] { global-IPv6 interface interface-name } global-port-min global- port-max [vrf vrf-name]}	Mandatory By default, do not configure NAT66 UDP protocol internal source address port static translation rule.

21.2.4. Configure NAT66 Internal Source Address Dynamic Translation Rule

The address mapping relationship between NAT66 internal network (inside) and external network (outside) is dynamic. The inside side actively initiates access. If the packet matches the translation rules, the source address will be converted to the address in the specified address pool or the address of the specified interface. It is mainly used in the scene of multiple hosts in the internal network accessing external Internet network.

Configuration Conditions

Before configuring NAT66 dynamic translation rule, first complete the following task:

- Configure IPv6 ACL.
- Configure NAT66 address pool

....

Configure NAT66 Internal Source Address Dynamic Translation Rule

Table 21-7 Configure NAT66 internal source address dynamic translation rules

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT66 internal source address dynamic translation rules	<pre>nat66 inside source list access-list-name [vrf vrf- name] { pool pool-name [overload] interface interface-name overload } [reversible { full restrict }] [vrf vrf-name]</pre>	Mandatory By default, do not configure NAT66 internal source address dynamic translation rules.

Configure NAT66 Address Pool

Table 21-8 Configure the NAT66 address pool

Step	Command	Description	
Enter the global configuration mode	configure terminal	-	
Configure the NAT66 address pool	nat66 pool pool-name	Mandatory By default, do not configure the address pool.	

Configure Available Address Segment of NAT66 Address Pool

Table 21-9 Configure the available address segment of the NAT66 address pool

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the NAT66 address pool configuration mode	nat66 pool pool-name	Mandatory

www.qtech.ru

Step	Command	Description
Configure the available address segment of the NAT66 address pool	address start-ipv6 end- ipv6 [match interface interface]	Mandatory By default, do not configure the available address segment of the NAT66 address pool.

21.2.5. Configure NAT66 Internal Server Translation Rule

This rule specifies that the packet conforming to the specified ACL rules can use the specified address and port to convert the destination address and port of the packet. It is mainly used in the scenario of the external network actively accessing the internal server.

Configuration Conditions

Configure IPv6 ACL.

Configure NAT66 Internal Server Translation Rule

Table 21-10 Configure NAT66 internal server translation rule

Step	Command	Description	
Enter the global configuration mode	configure terminal	-	
Configure NAT66 internal server translation rule	nat66 server list access- list-name [vrf global-vrf- name] { local-IPv6 network local- subnet/prefix-length } [local-port] [vrf local-vrf- name]	Mandatory By default, do not configure NAT66 internal server translation rule.	

21.2.6. Configure NAT66 Flow Log Function

After configuring the new flow log function of NAT66, the corresponding data log will be output when the translation table entry of NAT66 is generated. Configure the end flow log function of NAT66. When the translation table entry of NAT66 is aged normally or is cleared, the corresponding data log will be output.

Configuration Conditions

None

Configure NAT66 Flow Log Function

Table 21-11 Configure NAT66 flow log function

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT66 flow log function	nat66 logging security- data { connection-begin connection-end } *	Mandatory By default, do not configure NAT66 flow log function.

21.2.7. Configure NAT66 ALG Switch

The NAT66 ALG switch is used to enable the processing function of application layer message. At present, the application layer protocols supported by NAT66 include FTP, TFTP, HTTP and SIP.

Configuration Conditions

None

Configure NAT66 ALG Switch

Table 21-12 Configure NAT66 ALG switch

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure NAT66 ALG switch	nat66 alg { ftp tftp http sip all }	Mandatory By default, do not configure NAT66 ALG, and the ALG function is not enabled.

21.2.8. NAT66 Monitoring and Maintaining

Table 21-13 NAT66 monitoring and maintaining

Command	Description
clear nat66 statistics	Clear all statistics information of NAT66
show nat66 statistics [verbose]	Display the NAT66 global and board statistics information
<pre>show nat66 translation lpu lpu-unit [proto { icmp tcp udp raw-ip }] [v6src ipv6] [v6dst ipv6]</pre>	Display the NAT66 translation table entry
show running-config nat66	Display all configuration information of NAT66

21.3. NAT66 Typical Configuration Example

21.3.1. Configure Internal Source NAT66 Static Address/Port Translation

Network Requirements

- PC1 and PC2 are internal private network hosts, web server is the web server on the public network, Device is the NAT66 device, gigabitethernet0 is the NAT66 internal interface, gigabitethernet1 is the NAT66 external interface, and internal source NAT66 static address/port translation is configured.
- The internal private network PC1 can successfully access the web server, the source address of the packet is converted from private address 2018::2 to public address 2001:1::5, PC2 can successfully access the web server using source port 1024, the source address of the packet is converted from private address 2018::3 to public address 2001:1::6, and the source port 1024 is converted to 2000.

Network Topology

Figure 21-1Networking of configuring internal source NAT66 static address/port translation

....

Configuration Steps

Step 1: Configure the IP address and route of the interface (omitted).

Step 2: Configure the NAT66 interface attributes and NAT66 translation rule of Device.

#Configure interface gigabitethernet0 as the inside interface of NAT66.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat66 inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as the outside interface of NAT66.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat66 outside

Device(config-if-gigabitethernet1)#exit

#Configure the internal source nat66 static address / port conversion rules, convert the internal private network address 2018::2 to the public network address 2001:1::5, and convert the internal private network address 2018::3 and port 1024 to the public network address 2001:1::6 and port 2000.

Device(config)#nat66 inside source static 2018::2 2001:1::5

Device(config)#nat66 inside source static tcp 2018::3 1024 2001:1::6 2000

Step 3: Check the result.

#When PC1 of the internal private network accesses the web server, you can see the NAT translation table item with type SAT on Device. When PC2 accesses the web server using source port 1024, you can see the NAT translation table item with type SPT on Device.

Device#show nat66 translation

Type lifetime	Pro P	Local source:port	Global sou	rce:port
		Local destination:port	Global destination:port	
SPT	ТСР	[2018::3]:1024	[2001:1::6]:2000	3600
		[2001:2::2]:80	[2001:2::2]: 80	
SAT	ТСР	[2018::2]:1024	[2001:1::5]:1024	3600
		[2001:2::2]: 80	[2001:2::2]: 80	

Valid/Total: 2/2

21.3.2. Configure Internal Source NAT66 Dynamic Address Translation

Network Requirements

• PC1 and PC2 are internal private network hosts, web server is the web server on the public network, Device is the NAT66 device, gigabitethernet0 is the NAT66 internal

www.qtech.ru

....

interface, gigabitethernet1 is the NAT66 external interface, and the internal source NAT66 dynamic address translation is configured.

• The users in the 2018::/64 network segment of the internal private network can successfully access the web server, and the public network addresses used are 2001:1:: 4 and 2001:1:: 5.

Network Topology

2018::3/64

Figure 21-2 Networking of configuring internal source NAT66 dynamic address translation

Configuration Steps

- **Step 1:** Configure the IP address and route of the interface (omitted).
- **Step 2:** Configure the NAT66 interface attributes and NAT66 translation rule of Device.

#Configure interface gigabitethernet0 as the inside interface of NAT66.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat66 inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as the outside interface of NAT66.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat66 outside

Device(config-if-gigabitethernet1)#exit

#Configure the NAT66 address pool pool1, which contains two public network addresses 2001:1::4 and 2001:1::5.

Device(config)#nat66 pool pool1

Device (config-nat66-pool)#address 2001:1::4 2001:1::5

Device (config-nat66-pool)#exit

#Configure the access control list 7001, only permitting the PCs in the 2018::/64 network segment of the internal private network to access the web server.

Device(config)#ipv6 access-list extended 7001

Device(config-ext-nacl)# permit ipv6 2018::/64 any

Device(config-ext-nacl)#exit

www.qtech.ru

....

#Configure the internal source NAT66 dynamic address translation rules to convert the internal private network addresses 2018::2 and 2018::3 into public network addresses 2001:1::4 and 2001:1::5 respectively.

Device(config)#nat66 inside source list 7001 pool pool1

Step 3: Check the result.

#When PC1 and PC2 of the private network access the web server, you can see the NAT66 translation table entry on Device.

Device #show nat66 translation

Type lifetime	Pro e	Local source:port	Global sou	rce:port
		Local destination:port	Global destination:port	
NAT	ТСР	[2018::3]:1024	[2001:1::5]:1024	3600
		[2001:2::2]:80	[2001:2::2]:80	
NAT	TCP	[2018::2]:1024	[2001:1::4]:1024	3600
		[2001:2::2]:80	[2001:2::2]:80	

Valid/Total: 2/2

21.3.3. Configure Internal Source NAT66 Dynamic Port Translation

Network Requirements

- PC1 and PC2 are internal private network hosts, web server is the web server on the public network, Device is the NAT66 device, gigabitethernet0 is the NAT66 internal interface, gigabitethernet1 is the NAT66 external interface, and the internal source NAT66 dynamic port translation is configured.
- The users in the 2018::/64 network segment of the internal private network can successfully access the web server, and multiplex the same public network address by mapping the TCP port number. The public network address used is 2001:1::4.

Network Topology

Figure 21-3 Networking of configuring the internal source NAT66 dynamic port translation

Configuration Steps

Step 1: Configure the IP address and route of the interface (omitted).

Step 2: Configure the NAT66 interface attributes and NAT66 translation rule of Device.

#Configure interface gigabitethernet0 as the inside interface of NAT66.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat66 inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as the outside interface of NAT66.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat66 outside

Device(config-if-gigabitethernet1)#exit

#Configure the NAT66 address pool pool1, which only contains one public network address 2001:1::4.

Device(config)#nat66 pool pool1

Device (config-nat66-pool)#address 2001:1::4 2001:1::4

Device (config-nat66-pool)#exit

#Configure the access control list 7001, only permitting the PCs in the 2018:: / 64 network segment of the internal private network to access the web server.

Device(config)#ipv6 access-list extended 7001

Device(config-ext-nacl)# permit ipv6 2018::/64 any

Device(config-ext-nacl)#exit

#Configure the internal source NAT66 dynamic port translation rules to convert the internal private network addresses 2018::2 and 2018::3 to the public network address 2001:1::4.

Device(config)# nat66 inside source list 7001 pool poo11 overload

Step 3: Check the result.

#When PC1 and PC2 of the internal private network access the web server, you can see the NAT66 translation table entry on the device.

Devic	e #sho	ow nat66 translation		
Type lifetim	Pro e	Local source:port	Global so	ource:port
		Local destination:port	Global destination:po	rt
PAT	ТСР	[2018::3]:1024	[2001:1::4]:10001	3598
		[2001:2::2]:80	[2001:2::2]:80	
PAT	ТСР	[2018::2]:1024	[2001:1::4]:10002	3598
		[2001:2::2]:80	[2001:2::2]:80	

Valid/Total: 2/2

21.3.4. Configure NAT66 Internal Server Translation

Network Requirements

- PC1 and PC2 are external hosts, Server1 is a web server on the intranet, the server IPv6 address is 2018::2, Device is a NAT66 device connected to gigabitethernet1 and gigabitethernet2, respectively connected to two operator lines of Rostelecom, gigabitethernet0 is configured as NAT66 inside interface, and gigabitethernet1 and gigabitethernet2 are configured as NAT66 outside interface.
- PC1 accesses 2001:1::2 and PC2 accesses 2001:3::3. After nat66 translation, replace the destination address with IPv6 address as 2018::2. Finally, both can access and reach the web server.

Network Topology

Figure 21-4 Networking of configuring NAT66 internal server translation

Configuration Steps

- **Step 1:** Configure the IP address and route of the interface (omitted).
- **Step 2:** Configure the NAT66 interface attributes and NAT66 translation rule of Device.

#Configure interface gigabitethernet0 as the inside interface of NAT66.

Device#configure terminal

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat66 inside

Device(config-if-gigabitethernet0)#exit

#Configure interface gigabitethernet1 as the outside interface of NAT66.

Device(config)#interface gigabitethernet 1

Device(config-if-gigabitethernet1)#nat66 outside

Device(config-if-gigabitethernet1)#exit

#Configure interface gigabitethernet2 as the outside interface of NAT66.

Device(config)#interface gigabitethernet 2

Device(config-if-gigabitethernet2)#nat66 outside

Device(config-if-gigabitethernet2)#exit

#Configure the access control list server. The source address is any and the destination address is the interface address of the two exits of Device.

Device (config)#ipv6 access-list extended server Device (config-v6-list)# permit ipv6 any host 2001:1::2

Device (config-v6-list)# permit ipv6 any host 2001:3::3

Device (config-ext-nacl)#exit

#Configure NAT66 internal server translation rules to convert the destination public network addresses 2001:1::2 and 2001:3::3 into private server addresses 2018::2.

Device(config)# nat66 server list server 2018::2

Step 3: Check the result.

#The public network users PC1 and PC2 connected to Rostelecom respectively access the web server. The access destination addresses are the addresses 2001:1::2 and 2001:3::3 of the outgoing interfaces of the two operators connected to Device. The NAT66 translation table entry can be seen on the Device.

Device #show n	at66 translation		
Type Pro lifetime	Local source:port	Global	source:port
Lo	cal destination:port	Global destination:p	ort
SERVER TCP	[2018::2]:80	[2001:1::2]:80	3600
[20	001:1::6]:1024	[2001:1::6]:1024	
SERVER TCP	[2018::2]:80	[2001:3::3]:80	3543
[20	001:3::6]:1024	[2001:3::6]:1024	
.			

Valid/Total: 2/2

22. BANDWIDTH LIMIT

22.1. Overview

Bandwidth limit provides IP-based bandwidth guarantee and constraint for intranet users. When the traffic of intranet users is connected to Internet through NAT devices, the resources provided to the intranet users are usually limited—for example, the bandwidth provided by ISP to users is limited and the address translation quantity provided by NAT devices for users is also limited. With the increasing application of users, more and more bandwidth is needed. Therefore, in case of the limited resources, provide every user with the fair resources as possible, and prevent one or some users from occupying too many resources, which leads to the failure of other users to get reasonable resources. IP-based bandwidth limit mainly provides the bandwidth limit based on IP address for NAT devices, which prevents some users from occupying too much bandwidth, which makes other users unable to allocate bandwidth resources. At the same time, IP-based bandwidth limit can also be used in non-NAT scenarios.

22.2. Bandwidth Limit Function Configuration

Table 22-1 Bandwidth limit function configuration list

Configuration Tasks Configure uplink traffic bandwidth limit Configure the total bandwidth of the uplink bandwidth Configure downlink traffic bandwidth limit Configure the bandwidth of the uplink user Configure downlink traffic bandwidth limit Configure the total bandwidth of the downlink bandwidth Configure the total bandwidth of the downlink bandwidth Configure the total bandwidth of the downlink bandwidth

22.2.1. Configure Uplink Traffic Bandwidth Limit

Configuration Conditions

None

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

Configure Uplink Traffic Bandwidth Limit Function

Table 22-2 Configure the uplink traffic bandwidth limit function

Step	p Command	
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the total uplink bandwidth of the interface	bandwidth-limit total ipv4 egress <i>bw-value</i>	Mandatory By default, the interface is not configured with the total uplink bandwidth.
Configure the uplink bandwidth of the user	bandwidth-limit ipv4 address { range start- address end-address } egress cir_value bir_value	Mandatory By default, the user uplink bandwidth is not configured for the interface The total uplink bandwidth of the interface must be configured before configuring the user's uplink bandwidth.

22.2.2. Configure Downlink Traffic Bandwidth Limit

Configuration Conditions

None

www.qtech.ru

Configure Downlink Traffic Bandwidth Function

Table 22-3 Configure the downlink traffic bandwidth function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the total downlink bandwidth of the interface	bandwidth-limit total ipv4 ingress <i>bw-value</i>	Mandatory By default, the interace is not configured with the total downlink bandwidth.
Configure the downlink bandwidth of the user	bandwidth-limit ipv4 address { range start- address end-address } ingress cir_value bir_value	Mandatory By default, the user downlink bandwidth is not configured for the interface The total downlink bandwidth of the interface must be configured before configuring the downlink bandwidth of the user.

22.3. Bandwidth Limit Typical Configuration Example

22.3.1. Configure IP-based Bandwidth Limit

Network Requirements

- Device is a NAT device, and the interface gigabitethernet0 is connected to the Intranet; Interface gigabitethernet1 is connects to the Internet network.
- IP-based bandwidth restriction is applied to the data flow sent and received by interface gigabitethernet1 on Device: limit the 20Mbps total interface bandwidth for the uplink traffic (sending data) of interface gigabitethernet1, and limit the 100Mbps total interface bandwidth for the downlink traffic (receiving data) of interface gigabitethernet1; perform the bandwidth limit for the users of NAT intranet host network segment 1 (source IP address range: 192.168.1.1–192.168.1.10). Ensure 500Kbps uplink traffic and 1Mbps downlink traffic for each IP; perform the bandwidth limit for the users of NAT intranet host network segment 2 (source IP address range: 192.168.2.1–192.168.2.10), and ensure 1Mbps uplink traffic and 2Mbps downlink traffic for each IP; the users of

www.qtech.ru

network segment 1 and network segment 2 can share the free bandwidth of the total bandwidth of the interface.

Network Topology

Figure 22-1 Networking of configuring IP-based bandwidth limit

Configuration Steps

- **Step 1:** Configure the IP address and route of the interface (omitted).
- Step 2: Configure Device NAT.

#Configure the NAT interface attributes and NAT translation rules of Device.

Device#configure terminal Device(config)#interface gigabitethernet0 Device(config-if-gigabitethernet0)#ip nat inside Device(config-if-gigabitethernet0)#exit Device(config)#interface gigabitethernet1 Device(config-if-gigabitethernet1)#ip nat outside Device(config-if-gigabitethernet1)#exit Device(config)#ip nat pool pool1 200.0.0.1 200.0.0.1 netmask 255.255.255.0 Device(config)#ip access-list extended 1001 Device(config-ext-nacl)#permit ip 192.168.0.0 0.0.255.255 any Device(config-ext-nacl)#exit Device(config)#ip nat inside source list 1001 pool pool1 overload Step 3: Configure the IP-based bandwidth limit rules of Device. #Configure the total interface bandwidth of the bandwidth limit. Device#configure terminal

Device(config)#interface gigabitethernet1

Device(config-if-gigabitethernet1)# bandwidth-limit total ipv4 egress 20000 Device(config-if-gigabitethernet1)# bandwidth-limit total ipv4 ingress 100000

. . . .

#Configure the user bandwidth rules of the bandwidth limit.

Device(config-if-gigabitethernet1)#bandwidth-limit ipv4 address range 192.168.1.1 192.168.1.10 egress 500 20000

Device(config-if-gigabitethernet1)#bandwidth-limit ipv4 address range 192.168.1.1 192.168.1.10 ingress 1000 100000

Device(config-if-gigabitethernet1)#bandwidth-limit ipv4 address range 192.168.2.1 192.168.2.10 egress 1000 20000

Device(config-if-gigabitethernet1)#bandwidth-limit ipv4 address range 192.168.2.1 192.168.2.10 ingress 2000 100000

Device(config-if-gigabitethernet1)#end

Step 4: When the Device interface gigabitethernet1 has uplink and downlink traffic of intranet users, the bandwidth limit takes effect. You can view the user traffic statistics on the device.

Device#show bandwidth-limit ipv4 user interface gigabitethernet1

bandwidth use	er entity:		
Source address bw (kbps) bps pps bps		Recv:pps bps pps bps	Send:pps
192.168.1.1 11877:10452053	500<- 3 11761:10350237	->20000	0:0 0:0
192.168.2.1 10874:9569413	1000 10784:9490096	<->20000	0:0 0:0
192.168.1.1	1000<->100000	25365:22321786 25373:22328606	0:0 0:0
192.168.2.1	2000<->100000	25365:22321786 25373:22328460	0:0 0:0

23. CONNECTION LIMIT

23.1. Overview

Connection management is a common basic function abstracted to facilitate the implementation of NAT, ASPF, IPFIX and other security related services based on DPI. This function is classified according to transport layer packets (TCP, UDP, ICMP, ICMPv6, etc.), abstracted into connections according to their interaction, and maintains and ages the connection status according to the packet information of the initiator and the responder. It supports multiple business modules to process the same connection. In order to prevent too many connections, it supports limiting the number of connections based on ACL classification.

The working principle of connection management is to analyze the transport layer packet information, extract its source/destination IP address, source/destination port number (ICMP takes the ID value), protocol number and VRF to create a connection, and maintain the current connection status according to whether it is the initiator or responder (additional flag information of the TCP packet).

As a public function, connection management abstracts connections and tracks, ages and limits connections. It must be combined with specific services to play security and other functions, and only supports unicast.

23.2. Connection Limit Function Configuration

Configuration Tasks	
Configure the aging time function of the connection	Configure the aging time function of the connection
Configure connection limit policy function	Configure the connection limit rules
Configure the global application connection limit policy function	Configure the global application connection limit policy function
Configure the maximum specification function of the connection	Configure the maximum specification function of the connection
Configure forwarding action function when failed to get connection	When failed to configure the service module to get the connection, refer to the forwarding action function.

Table 23-1 Connection limit function configuration list

23.2.1. Configure Connection Aging Time Function

By default, the connection aging time of the protocol status is:

TCP-SYN: 30s; TCP-EST: 3600s; TCP-FIN: 30s;

www.qtech.ru

TCP-TIME-WAIT: 2s; TCP-CLOSE: 2s; UDP-OPEN: 30s; UDP-READY: 60s; ICMP: 60s; ICMP-ERROR: 30s; RAWIP-OPEN: 30s; RAWIP-READY: 60s;

Configuration Conditions

None

Configure Age Time of Connection

Table 23-2 Configure the aging time of the connection

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the aging time of the connection	connection age-timeout { tcp- syn tcp-fin tcp-est tcp-close tcp-time-wait udp-open udp- ready rawip-open rawip- ready icmp icmp-error } [<i>lifetime</i> never]	Mandatory

23.2.2. Configure Connection Limit Policy Function

A connection restriction policy can define multiple connection restriction rules. Each connection restriction rule formulates a connection restriction user range. The new connections of the user belonging to this range will be restricted by the policies configured by this rule. When the number of the connections of a certain type reaches the upper limit, the new connection of this type will be rejected. The new connection cannot be permitted until the number of connections of this type is lower than the lower limit.

Currently, it only supports limiting the user range according to ACL. The types of the restriction rules include:

per-source: Limit by source IP address

per-service: Limit by the service (same transport layer protocol and port);

By default, limit all users specified by the service ACL.

When matching the connections to be established with the restriction rule, it will be matched according to the size order of the rule serial number (the smaller serial number, the earlier matching). Therefore, if there are special requirements for the matching order, it needs to be considered as a whole.

The current restriction policy only supports global application.

www.qtech.ru

....

Configuration Conditions

None

Configure Connection Restriction Policy

Table 23-3 Configure the connection restriction policy

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the connection restriction policy	<pre>connection limit { ipv6-policy policy } policy-name</pre>	Mandatory

Configure Connection Restriction Rule

Table 23-4 Configure the connection restriction rule

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the connection restriction policy configuration mode	<pre>connection limit { ipv6-policy policy } policy-name</pre>	Mandatory
Configure the connection restriction rule	<pre>rule rule-id { acl ipv6-acl } { acl- number acl-name } [per-source per-service] count min-count max-count</pre>	Mandatory

23.2.3. Configure Global Application Connection Restriction Policy Function

Configuration Conditions

None

Configure Global Application Connection Restriction Policy

Table 23-5 Configure the global application connection restriction policy

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the global application connection restriction policy	<pre>connection limit apply global { ipv6-policy policy } policy- name</pre>	Mandatory

23.2.4. Configure the Max. Specification Function of Connection

Configuration Conditions

None

Configure Max. Specification of Connection

Table 23-6 Configure the maximum specification of the connection

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the maximum specification of the connection	connection { ipv4 ipv6 } max- entries entries-size	Mandatory

23.2.5. Configure Forarding Action Function When Failed to Get Connection Node

When a service (such as NAT and ASPF) fails to obtain/create a connection, it can further obtain the forwarding behavior policy after the failure.

Configuration Conditions

None

. . . .

Configure Forwarding Action after Failed to Get Connection Node

Table 23-7 Configure the forwarding action after failed to get connection node

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Configure the forwarding action after failed to get connection node	connection policy create-failure drop	Mandatory。 By default, forward. After configuration, drop.

23.2.6. Connection Restriction Monitoring and Maintaining

Table 23-8 Connection restriction monitoring and maintaining

Command	Description
<pre>clear connection { all { ipv4 ipv6 } [proto icmp raw-ip tcp udp] [src-ip src-ipaddress] [dst-ip dst-ipaddress] [src-port src-port] [dst-port dst-port] [vrf vrf-name] limit statistics }</pre>	Clear the connection table entry/connection restriction statistics, and the 6-tuple filter can be used in any combination
show connection all statistics	View the statistics information of the connection table
<pre>show connection limit { ipv6-policy policy } [policy name]</pre>	Display the configuration information of the connection restriction policy
show connection limit statistics	Display the statistics information of the connection restriction
<pre>show connection limit [table ipv6- table] [source src-addr service port- number]</pre>	Display the connection restriction table entry information
<pre>show connection { ipv4 ipv6 } { table expectant }</pre>	Display the ipv4/ipv6 connection table entry information

23.3. Connection Restriction Typical Configuration Example

23.3.1. Configure Globally Referencing IPv4 IPv6 Connection and **Restriction Policy**

Network Requirements

- PC1 and PC2 are internal hosts, server is a server on the public network, Device is a NAT64 device, NAT64 translation rules are configured, and the route is reachable.
- In order to prevent the system resources in the application environment from being exhausted by a few users, allocate the system resources reasonably, and configure the connection restriction policies of IPv4 and IPv6 on Device to restrict the connections in the NAT64 service environment. When the number of connections exceeds the maximum upper limit, it is not allowed to create new connections, and when the number of connections falls below the lower limit, it is allowed to create new connections.

Network Topology

2001::3/64

Figure 23-1 Networking of globally referencing IPv4 and IPv6 connection restriction policy

Configuration Steps

- Step 1: Configure the IP address of the interface (omitted).
- Configure the IPv6 route of the host PC1 and PC2. Step 2:

On PC1 and PC2, configure the static route to the prefix 2001:1::/96.

Configure the NAT64 prefix, NAT64 interface attributesm and NAT64 translation rules Step 3: of Device.

#Configure the NAT64 prefix.

Device#configure terminal

Device(config)#nat64 prefix 2001:1::/96

#Enable the NAT64 function on interface gigabitethernet 0.

Device(config)#interface gigabitethernet 0

Device(config-if-gigabitethernet0)#nat64 enable

Device(config-if-gigabitethernet0)#exit

#Enable the NAT64 function on interface gigabitethernet 1.

Device(config)#interface gigabitethernet 1

www.qtech.ru

Device(config-if-gigabitethernet1)#nat64 enable Device(config-if-gigabitethernet1)#exit

#Configure the NAT64 static address translation rule.

Device(config)#nat64 static 192.0.3.2 2001::2

Device(config)#nat64 static 192.0.3.3 2001::3

Step 4: Configure the IPv4 and IPv6 connection restriction policy, and reference globally.

#Configure the IPv6 access control list 7001, only permitting the packet with source address 2001::2 to pass.

Device(config)#ipv6 access-list extended 7001

Device(config-v6-list)#permit ipv6 host 2001::2 any

Device(config-v6-list)#exit

#Configure the IPv6 connection restriction policy. The matching method of connection restriction rules specified in the policy is per-service. The maximum value of restriction is 100 and the minimum value is 80. The policy is referenced globally.

Device(config)#connection limit ipv6-policy testv6

Device(config-connlmt-ipv6-policy)#rule 1 ipv6-acl 7001 per-service count 80 100

Device(config-connlmt-ipv6-policy)#exit

Device(config)#connection limit apply global ipv6-policy testv6

#Configure IPv4 access control list 1001, only permitting the packet with source address 192.0.2.2 and destination address 192.0.3.3 to pass.

Device(config)#ip access-list extended 1001

Device(config-ext-nacl)#permit ip host 192.0.2.2 host 192.0.3.3

Device(config-ext-nacl)#exit

#Configure the IPv4 connection restriction policy. The matching method of the connection restriction rules specified in the policy is per-source. The maximum value of the restriction is 200 and the minimum value is 150. The policy is referenced globally.

Device(config)#connection limit policy testv4

Device(config-connlmt-policy)#rule 1 acl 1001 per-source count 150 200

Device(config-connlmt-policy)#exit

Device(config)#connection limit apply global policy testv4

Step 5: Check the result.

#On Device, execute the command **show connection limit policy** and **show connection limit ipv6-policy** to view the configuration information of the connection restriction policy, as follows:

Device#show connection limit policy

No. Policy	R	Rule Rule-Type LoThres		s HiThres	Acl	
1 testv4	1	Src	150	200	1001	

	1			
		_	-	
www.qtech.ru				

Device#show connection limit ipv6-policy				
No. Policy	Rule Rule-Type LoThres HiThres Acl			
1 testv6	1 Dst-Port 80 100 7001			

#PC1 initiates TCP and UDP IPv6 connections to the extranet server. The source address is 2001::2 and the destination address is 2001:1::C000:0202. The source port starts from 10001 and increases by 110 in steps of 1. The TCP connection destination port is 80 and the UDP connection destination port is 53. Execute the command **show connection limit ipv6-table** on Device to view the IPv6 connection restriction table item.

Device#show connection limit ipv6-table			
connection limit table			
Rule Rule-Type No. Src-Addr/Dst-Port		Count	New flag
1 Dst-Port 1 tcp/80	100	Deny	
2 udp/53 1	00	Deny	

Print the log information of IPv6 connection limit reaching the upper limit on Device.

Sep 23 2019 08:05:14 Device %CONN-LIMIT6_EXCEED-5:Dst-Port[udp/53] connections more than HiThres 100, cann't create new connections.

Sep 23 2019 08:05:14 Device %CONN-LIMIT6_EXCEED-5:Dst-Port[tcp/80] connections more than HiThres 100, cann't create new connections.

When the number of IPv6 connections on the device ages below 80, print the log information that the connection limit is restored to the lower limit. At this time, the device can continue to create new IPv6 connections.

Sep 23 2019 08:12:27 Device %CONN-LIMIT6_RESUME-5:Dst-Port[tcp/80] connections less than LoThres 80.

Sep 23 2019 08:12:27 Device %CONN-LIMIT6_RESUME-5:Dst-Port[udp/53] connections less than LoThres 80.

#The extranet server initiates an IPv4 connection to the intranet host PC, the source address is 192.0.2.2, the destination address is 192.0.3.3, the source port starts from 10001, increases by 210 in steps of 1, and the destination port is 1024. Execute the command **show connection limit table** to view the IPv4 connection limit table entries on the device.

Device#show connection limit table							
connection limit table							
Rı	ule Rule	e-Type	No.	Src-Addr/Dst-Port		Count	New flag
1		1	100 (200	D	
	Src	I	19Z.U	J.Z.Z	200	Deny	

Print the log information that the IPv4 connection limit has reached the upper limit on the device.

Sep 23 2019 08:22:52 Device %CONN-LIMIT4_EXCEED-5:Source[192.0.2.2] connections more than HiThres 200, cann't create new connections.

www.qtech.ru

 $\bullet \bullet \bullet \bullet$

....

When the number of IPv4 connections on the device ages below 150, print the log information that the connection limit is restored to the lower limit. At this time, the device can continue to create new IPv4 connections.

Sep 23 2019 08:28:27 Device %CONN-LIMIT4_RESUME-5:Source[192.0.2.2] connections less than LoThres 150.

24. TPC

24.1. Overview

Transport Payload Compression (TPC) is a packet compression technology developed by Qtech. For the transport layer packet to be sent, compress the payload part, and the length of the payload part is reduced after compression, so as to save bandwidth. This function is mainly deployed on the limited WAN port bandwidth, so as to realize more data transmission per unit time and improve the WAN port bandwidth utilization, so as to accelerate the WAN communication.

The TPC function is based on the interface, and the enable/disable is divided into three modes:

- 1. The transmitter compression and receiver decompression are enabled/disabled at the same time;
- 2. Only enable/disable the sender compression;
- 3. Only enable/disable the receiver decompression.

During compression, the minimum length of the transport layer load can be set. Compression processing can be carried out only when the length of the transport layer load is greater than the set minimum length, which can provide an adjustable means for communication acceleration and device load balance. In addition, ACL matching is also supported during compression. Only transport layer packets that match the set ACL rules will compress their load.

24.2. TPC Function Configuration

Table 24-1 TPC function configuration list

Configuration Tasks			
Configure the TPC basic functions	Enable the transport layer payload compression function		
Configure TPC extended functions	Configure the minimum length of the transport layer load to compress		
	Configure the ACL matching the transport layer packet to be compressed		
	Configure the recalculation function of transport layer packet checksum		

24.2.1. Configure TPC Basic Functions

Configuration Conditions

None

....

www.qtech.ru

TPC

Enable Transport Layer Payload Compression Function

Table 24-2 Enable the transport layer payload compression function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable the transport layer payload compression function	tpc enable [compress decompress]	Mandatory By default, the interface does not enable the transport layer payload compression function.

Note:

• You can only enable the compression function or only enable the decompression function through parameters.

24.2.2. Configure TPC Extended Function

Configuration Conditions

Before configuring the TPC extended function, first complete the following task:

• Enable the transport layer payload compression function on the interface

Configure Minimum Length of Transport Layer Payload to Be Compressed

Table 24-3 Configure the minimum length of the transport layer payload to be compressed

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the minimum length of the transport layer payload to be compressed	tpc compress minimum length <i>length</i>	Optional By default, the minimum length of the transport layer payload to be compressed is 256 bytes.

....

Configure Matching ACL of Transport Layer Packet to Be Compressed

Table 24-4 Configure the matching ACL of the transport layer packet to be compressed

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the matching ACL of the transport layer packet to be compressed	tpc ip access-list {acl-num acl-name}	Optional By default, do not configure the matching ACL of the transport layer packet to be compressed

Note:

• ACL only supports matching the IPv4 packet.

Configure the Re-calculation Function of Transport Layer Packet Checksum

Table 24-5 Configure the re-calculation function of the transport layer packet checksum

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the re- calculation function of the transport layer packet checksum	tpc rechecksum	Optional By default, do not enable the re- calculation function of the transport layer packet checksum.

$\bullet \bullet \bullet \bullet$

....

24.2.3. TPC Monitoring and Maintaining

Table 24-6 TPC monitoring and maintaining

Command	Description
<pre>show tpc interface {interface- name}</pre>	Display the related information of the transport layer payload compression on the specified interface
clear tpc statistics {global interface interface-name}	Clear the transport layer payload compression statistics information globally or of the specified interface

FEC

25. FEC

25.1. Overview

Forward Error Correcting (FEC) is a technology that provides packet loss guarantee for realtime audio and video network flow (UDP flow). By adding a small amount of redundant packets at the sending end, in case of line packet loss, the original data can also be completely recovered through the remaining original packets and redundant packets to realize the lossless transmission.

The FEC function is based on the interface, and the enable/disable is divided into three modes:

- 1. The coding at the sending end and the decoding at the receiving end are enabled/disabled at the same time;
- 2. Only enable/disable coding at the sending end;
- 3. Only enable/disable decoding at the receiver.

ACL shall be set for filtering during coding to avoid code redundancy of irrelevant packets and waste of bandwidth. The decoding end also supports ACL matching. Only packets that match the set ACL rules will be decoded.

25.2. FEC Function Configuration

Table 25-1 FEC function configuration list

Configuration Tasks		
Configure the FEC basic function	Enable the FEC function	
Configure the FEC extended function	Configure the ACL to be matched by the coding the packet	
	Configure the ACL to be matched by the decoding packet	

25.2.1. Configure FEC Basic Function

Configuration Conditions

None

www.qtech.ru

FEC

Enable the FEC Function

Table 25-2 Enable the FEC function

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Enable the FEC function	fec enable [code decode]	Mandatory By default, the interface does not enable the FEC function.

Note:

- You can enable only the encoding function or the decoding function through parameters.
- The encoding function will not take effect until the ACL required for encoding is configured.

25.2.2. Configure FEC Extended Function

Configuration Conditions

Before configuring the FEC extended function, first complete the following task:

• Enable the FEC function on the interface

Configure ACL to Be Matched by the Coding Packet

Table 25-3 Configure the ACL to be matched by the coding packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-

FEC

www.qtech.ru

....

Step	Command	Description
Configure the ACL to be matched by the coding packet	fec code ip access-list {acl- num acl-name}	Mandatory By default, do not configure the ACL to be matched by the coding packet.

Note:

- ACL only supports matching the IPv4 packet.
- The decoding function takes effect only after the ACL to be matched by the coding packet is configured.

Configure ACL to Be Matched by the decoding Packet

Table 25-4 Configure the ACL to be matched by the decoding packet

Step	Command	Description
Enter the global configuration mode	configure terminal	-
Enter the interface configuration mode	interface interface-name	-
Configure the ACL to be matched by the decoding packet	fec decode ip access-list {acl-num acl-name}	Optional By default, do not configure the ACL to be matched by the decoding packet.

25.2.3. FEC Monitoring and Maintaining

Table 25-5 FEC monitoring and maintaining

Command	Description
<pre>show fec interface {interface-name}</pre>	Display the FEC information on the specified interface
clear fec statistics {global interface interface-name}	Clear the FEC statistics information globally or of the specified interface

Общая информация

26. ОБЩАЯ ИНФОРМАЦИЯ

26.1. Замечания и предложения

Мы всегда стремимся улучшить нашу документацию и помочь вам работать лучше, поэтому мы хотим услышать вас. Мы всегда рады обратной связи, в особенности:

- ошибки в содержании, непонятные или противоречащие места в тексте;
- идеи по улучшению документации, чтобы находить информацию быстрее;
- неработающие ссылки и замечания к навигации по документу.

Если вы хотите написать нам по поводу данного документа, то используйте, пожалуйста, форму обратной связи на <u>qtech.ru</u>.

26.2. Гарантия и сервис

Процедура и необходимые действия по вопросам гарантии описаны на сайте QTECH в разделе «Поддержка» -> «Гарантийное обслуживание».

Ознакомиться с информацией по вопросам тестирования оборудования можно на сайте QTECH в разделе «Поддержка» -> «<u>Взять оборудование на тест</u>».

Вы можете написать напрямую в службу сервиса по электронной почте sc@qtech.ru.

26.3. Техническая поддержка

Если вам необходимо содействие в вопросах, касающихся нашего оборудования, то можете воспользоваться нашей автоматизированной системой запросов технического сервис-центра <u>helpdesk.qtech.ru</u>.

Телефон Технической поддержки +7 (495) 797-33-11 доб. 0

